1
|
Matchin W, Mollasaraei ZK, Bonilha L, Rorden C, Hickok G, den Ouden D, Fridriksson J. Verbal working memory and syntactic comprehension segregate into the dorsal and ventral streams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592577. [PMID: 38746328 PMCID: PMC11092776 DOI: 10.1101/2024.05.05.592577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioral testing in 103 individuals with chronic post-stroke aphasia. We employed a rhyme judgment task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgment, isolating the effect of working memory load. We assessed noncanonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgment performance as a covariate for working memory load. Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4,000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.
Collapse
|
2
|
Zhan L, Gao Y, Huang L, Zhang H, Huang G, Wang Y, Sun J, Xie Z, Li M, Jia X, Cheng L, Yu Y. Brain functional connectivity alterations of Wernicke's area in individuals with autism spectrum conditions in multi-frequency bands: A mega-analysis. Heliyon 2024; 10:e26198. [PMID: 38404781 PMCID: PMC10884452 DOI: 10.1016/j.heliyon.2024.e26198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Characterized by severe deficits in communication, most individuals with autism spectrum conditions (ASC) experience significant language dysfunctions, thereby impacting their overall quality of life. Wernicke's area, a classical and traditional brain region associated with language processing, plays a substantial role in the manifestation of language impairments. The current study carried out a mega-analysis to attain a comprehensive understanding of the neural mechanisms underpinning ASC, particularly in the context of language processing. The study employed the Autism Brain Image Data Exchange (ABIDE) dataset, which encompasses data from 443 typically developing (TD) individuals and 362 individuals with ASC. The objective was to detect abnormal functional connectivity (FC) between Wernicke's area and other language-related functional regions, and identify frequency-specific altered FC using Wernicke's area as the seed region in ASC. The findings revealed that increased FC in individuals with ASC has frequency-specific characteristics. Further, in the conventional frequency band (0.01-0.08 Hz), individuals with ASC exhibited increased FC between Wernicke's area and the right thalamus compared with TD individuals. In the slow-5 frequency band (0.01-0.027 Hz), increased FC values were observed in the left cerebellum Crus II and the right lenticular nucleus, pallidum. These results provide novel insights into the potential neural mechanisms underlying communication deficits in ASC from the perspective of language impairments.
Collapse
Affiliation(s)
- Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Yanyan Gao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Yang Yu
- Psychiatry Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
3
|
Kram L, Ohlerth AK, Ille S, Meyer B, Krieg SM. CompreTAP: Feasibility and reliability of a new language comprehension mapping task via preoperative navigated transcranial magnetic stimulation. Cortex 2024; 171:347-369. [PMID: 38086145 DOI: 10.1016/j.cortex.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 09/25/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Stimulation-based language mapping approaches that are used pre- and intraoperatively employ predominantly overt language tasks requiring sufficient language production abilities. Yet, these production-based setups are often not feasible in brain tumor patients with severe expressive aphasia. This pilot study evaluated the feasibility and reliability of a newly developed language comprehension task with preoperative navigated transcranial magnetic stimulation (nTMS). METHODS Fifteen healthy subjects and six brain tumor patients with severe expressive aphasia unable to perform classic overt naming tasks underwent preoperative nTMS language mapping based on an auditory single-word Comprehension TAsk for Perioperative mapping (CompreTAP). Comprehension was probed by button-press responses to auditory stimuli, hence not requiring overt language responses. Positive comprehension areas were identified when stimulation elicited an incorrect or delayed button press. Error categories, case-wise cortical error rate distribution and inter-rater reliability between two experienced specialists were examined. RESULTS Overall, the new setup showed to be feasible. Comprehension-disruptions induced by nTMS manifested in no responses, delayed or hesitant responses, searching behavior or selection of wrong target items across all patients and controls and could be performed even in patients with severe expressive aphasia. The analysis agreement between both specialists was substantial for classifying comprehension-positive and -negative sites. Extensive left-hemispheric individual cortical comprehension sites were identified for all patients. Apart from one case presenting with transient worsening of aphasic symptoms, pre-existing language deficits did not aggravate if results were used for subsequent surgical planning. CONCLUSION Employing this new comprehension-based nTMS setup allowed to identify language relevant cortical sites in all healthy subjects and severely aphasic patients who were thus far precluded from classic production-based mapping. This pilot study, moreover, provides first indications that the CompreTAP mapping results may support the preservation of residual language function if used for subsequent surgical planning.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Ann-Katrin Ohlerth
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany.
| |
Collapse
|
4
|
Jiang Y, Gong G. Common and distinct patterns underlying different linguistic tasks: multivariate disconnectome symptom mapping in poststroke patients. Cereb Cortex 2024; 34:bhae008. [PMID: 38265297 DOI: 10.1093/cercor/bhae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/25/2024] Open
Abstract
Numerous studies have been devoted to neural mechanisms of a variety of linguistic tasks (e.g. speech comprehension and production). To date, however, whether and how the neural patterns underlying different linguistic tasks are similar or differ remains elusive. In this study, we compared the neural patterns underlying 3 linguistic tasks mainly concerning speech comprehension and production. To address this, multivariate regression approaches with lesion/disconnection symptom mapping were applied to data from 216 stroke patients with damage to the left hemisphere. The results showed that lesion/disconnection patterns could predict both poststroke scores of speech comprehension and production tasks; these patterns exhibited shared regions on the temporal pole of the left hemisphere as well as unique regions contributing to the prediction for each domain. Lower scores in speech comprehension tasks were associated with lesions/abnormalities in the superior temporal gyrus and middle temporal gyrus, while lower scores in speech production tasks were associated with lesions/abnormalities in the left inferior parietal lobe and frontal lobe. These results suggested an important role of the ventral and dorsal stream pathways in speech comprehension and production (i.e. supporting the dual stream model) and highlighted the applicability of the novel multivariate disconnectome-based symptom mapping in cognitive neuroscience research.
Collapse
Affiliation(s)
- Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
5
|
Barbieri E, Lukic S, Rogalski E, Weintraub S, Mesulam MM, Thompson CK. Neural mechanisms of sentence production: a volumetric study of primary progressive aphasia. Cereb Cortex 2024; 34:bhad470. [PMID: 38100360 PMCID: PMC10793577 DOI: 10.1093/cercor/bhad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Studies on the neural bases of sentence production have yielded mixed results, partly due to differences in tasks and participant types. In this study, 101 individuals with primary progressive aphasia (PPA) were evaluated using a test that required spoken production following an auditory prime (Northwestern Assessment of Verbs and Sentences-Sentence Production Priming Test, NAVS-SPPT), and one that required building a sentence by ordering word cards (Northwestern Anagram Test, NAT). Voxel-Based Morphometry revealed that gray matter (GM) volume in left inferior/middle frontal gyri (L IFG/MFG) was associated with sentence production accuracy on both tasks, more so for complex sentences, whereas, GM volume in left posterior temporal regions was exclusively associated with NAVS-SPPT performance and predicted by performance on a Digit Span Forward (DSF) task. Verb retrieval deficits partly mediated the relationship between L IFG/MFG and performance on the NAVS-SPPT. These findings underscore the importance of L IFG/MFG for sentence production and suggest that this relationship is partly accounted for by verb retrieval deficits, but not phonological loop integrity. In contrast, it is possible that the posterior temporal cortex is associated with auditory short-term memory ability, to the extent that DSF performance is a valid measure of this in aphasia.
Collapse
Affiliation(s)
- Elena Barbieri
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Sladjana Lukic
- Department of Communication Sciences and Disorders, Adelphi University, 158 Cambridge Avenue, Garden City, NY 11530, United States
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Psychiatry and Behavioral Sciences, Northwestern University, 676 N Saint Clair Street, Chicago, IL 60611, United States
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Cynthia K Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| |
Collapse
|
6
|
Keshishian M, Akkol S, Herrero J, Bickel S, Mehta AD, Mesgarani N. Joint, distributed and hierarchically organized encoding of linguistic features in the human auditory cortex. Nat Hum Behav 2023; 7:740-753. [PMID: 36864134 PMCID: PMC10417567 DOI: 10.1038/s41562-023-01520-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2023] [Indexed: 03/04/2023]
Abstract
The precise role of the human auditory cortex in representing speech sounds and transforming them to meaning is not yet fully understood. Here we used intracranial recordings from the auditory cortex of neurosurgical patients as they listened to natural speech. We found an explicit, temporally ordered and anatomically distributed neural encoding of multiple linguistic features, including phonetic, prelexical phonotactics, word frequency, and lexical-phonological and lexical-semantic information. Grouping neural sites on the basis of their encoded linguistic features revealed a hierarchical pattern, with distinct representations of prelexical and postlexical features distributed across various auditory areas. While sites with longer response latencies and greater distance from the primary auditory cortex encoded higher-level linguistic features, the encoding of lower-level features was preserved and not discarded. Our study reveals a cumulative mapping of sound to meaning and provides empirical evidence for validating neurolinguistic and psycholinguistic models of spoken word recognition that preserve the acoustic variations in speech.
Collapse
Affiliation(s)
- Menoua Keshishian
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Serdar Akkol
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Jose Herrero
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra-Northwell School of Medicine, Manhasset, NY, USA
| | - Stephan Bickel
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra-Northwell School of Medicine, Manhasset, NY, USA
| | - Ashesh D Mehta
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra-Northwell School of Medicine, Manhasset, NY, USA
| | - Nima Mesgarani
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Mesulam M, Thompson C, Weintraub S, Rogalski E. The Wernicke conundrum is misinterpreted. Brain 2023; 146:e21-e22. [PMID: 36549670 PMCID: PMC10319756 DOI: 10.1093/brain/awac482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cynthia Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Li Q, Zhao W, Palaniyappan L, Guo S. Atypical hemispheric lateralization of brain function and structure in autism: a comprehensive meta-analysis study. Psychol Med 2023:1-12. [PMID: 37014101 DOI: 10.1017/s0033291723000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Characteristic changes in the asymmetric nature of the human brain are associated with neurodevelopmental differences related to autism. In people with autism, these differences are thought to affect brain structure and function, although the structural and functional bases of these defects are yet to be fully characterized. METHODS We applied a comprehensive meta-analysis to resting-state functional and structural magnetic resonance imaging datasets from 370 people with autism and 498 non-autistic controls using seven datasets of the Autism Brain Imaging Data Exchange Project. We studied the meta-effect sizes based on standardized mean differences and standard deviations (s.d.) for lateralization of gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo). We examined the functional correlates of atypical laterality through an indirect annotation approach followed by a direct correlation analysis with symptom scores. RESULTS In people with autism, 85, 51, and 51% of brain regions showed a significant diagnostic effect for lateralization in GMV, fALFF, and ReHo, respectively. Among these regions, 35.7% showed overlapping differences in lateralization in GMV, fALFF, and ReHo, particularly in regions with functional annotations for language, motor, and perceptual functions. These differences were associated with clinical measures of reciprocal social interaction, communication, and repetitive behaviors. A meta-analysis based on s.d. showed that people with autism had lower variability in structural lateralization but higher variability in functional lateralization. CONCLUSION These findings highlight that atypical hemispheric lateralization is a consistent feature in autism across different sites and may be used as a neurobiological marker for autism.
Collapse
Affiliation(s)
- Qingqing Li
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P. R. China
- Key Laboratory of Applied Statistics and Data Science, College of Hunan Province, Hunan Normal University, Changsha 410006, P. R. China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P. R. China
- Key Laboratory of Applied Statistics and Data Science, College of Hunan Province, Hunan Normal University, Changsha 410006, P. R. China
| | - Lena Palaniyappan
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P. R. China
- Key Laboratory of Applied Statistics and Data Science, College of Hunan Province, Hunan Normal University, Changsha 410006, P. R. China
| |
Collapse
|
9
|
Mesulam MM. Temporopolar regions of the human brain. Brain 2023; 146:20-41. [PMID: 36331542 DOI: 10.1093/brain/awac339] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Following prolonged neglect during the formative decades of behavioural neurology, the temporopolar region has become a site of vibrant research on the neurobiology of cognition and conduct. This turnaround can be attributed to increasing recognition of neurodegenerative diseases that target temporopolar regions for peak destruction. The resultant syndromes include behavioural dementia, associative agnosia, semantic forms of primary progressive aphasia and semantic dementia. Clinicopathological correlations show that object naming and word comprehension are critically dependent on the language-dominant (usually left) temporopolar region, whereas behavioural control and non-verbal object recognition display a more bilateral representation with a rightward bias. Neuroanatomical experiments in macaques and neuroimaging in humans show that the temporoparietal region sits at the confluence of auditory, visual and limbic streams of processing at the downstream (deep) pole of the 'what' pathway. The functional neuroanatomy of this region revolves around three axes, an anterograde horizontal axis from unimodal to heteromodal and paralimbic cortex; a radial axis where visual (ventral), auditory (dorsal) and paralimbic (medial) territories encircle temporopolar cortex and display hemispheric asymmetry; and a vertical depth-of-processing axis for the associative elaboration of words, objects and interoceptive states. One function of this neural matrix is to support the transformation of object and word representations from unimodal percepts to multimodal concepts. The underlying process is likely to start at canonical gateways that successively lead to generic (superordinate), specific (basic) and unique levels of recognition. A first sign of left temporopolar dysfunction takes the form of taxonomic blurring where boundaries among categories are preserved but not boundaries among exemplars of a category. Semantic paraphasias and coordinate errors in word-picture verification tests are consequences of this phenomenon. Eventually, boundaries among categories are also blurred and comprehension impairments become more profound. The medial temporopolar region belongs to the amygdalocentric component of the limbic system and stands to integrate exteroceptive information with interoceptive states underlying social interactions. Review of the pertinent literature shows that word comprehension and conduct impairments caused by temporopolar strokes and temporal lobectomy are far less severe than those seen in temporopolar atrophies. One explanation for this unexpected discrepancy invokes the miswiring of residual temporopolar neurons during the many years of indolently progressive neurodegeneration. According to this hypothesis, the temporopolar regions become not only dysfunctional but also sources of aberrant outputs that interfere with the function of areas elsewhere in the language and paralimbic networks, a juxtaposition not seen in lobectomy or stroke.
Collapse
Affiliation(s)
- M Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Kang SH, Park YH, Shin J, Kim HR, Yun J, Jang H, Kim HJ, Koh SB, Na DL, Suh MK, Seo SW. Cortical neuroanatomical changes related to specific language impairments in primary progressive aphasia. Front Aging Neurosci 2022; 14:878758. [PMID: 36092818 PMCID: PMC9452784 DOI: 10.3389/fnagi.2022.878758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Language function test-specific neural substrates in Korean patients with primary progressive aphasia (PPA) might differ from those in other causes of dementia and English-speaking PPA patients. We investigated the correlation between language performance tests and cortical thickness to determine neural substrates in Korean patients with PPA. Materials and methods Ninety-six patients with PPA were recruited from the memory clinic. To acquire neural substrates, we performed linear regression using the scores of each language test as a predictor, cortical thickness as an outcome and age, sex, years of education, and intracranial volume as confounders. Results Poor performance in each language function test was associated with lower cortical thickness in specific cortical regions: (1) object naming and the bilateral anterior to mid-portion of the lateral temporal and basal temporal regions; (2) semantic generative naming and the bilateral anterior to mid-portion of the lateral temporal and basal temporal regions; (3) phonemic generative naming and the left prefrontal and inferior parietal regions; and (4) comprehension and the left posterior portion of the superior and middle temporal regions. In particular, the neural substrates of the semantic generative naming test in PPA patients, left anterior to mid-portion of the lateral and basal temporal regions, quite differed from those in patients with other causes of dementia. Conclusion Our findings provide a better understanding of the different pathomechanisms for language impairments among PPA patients from those with other causes of dementia.
Collapse
Affiliation(s)
- Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Yu Hyun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Jiho Shin
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hang-Rai Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, South Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mee Kyung Suh
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- *Correspondence: Mee Kyung Suh,
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Sang Won Seo, ;
| |
Collapse
|
11
|
Cid-Fernández S, Rivas-Fernández MÁ, Varela-López B, Galdo-Álvarez S. Combined anodal transcranial direct current stimulation and behavioural naming treatment improves language performance in patients with post-stroke aphasia. Brain Inj 2022; 36:1039-1045. [PMID: 35949195 DOI: 10.1080/02699052.2022.2109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PRIMARY OBJECTIVE During the last decade, studies using anodal transcranial Direct Current Stimulation (atDCS) have yielded promising results in patients with aphasia. The main aim of the present pilot study was to assess the effects of combined atDCS over the left posterior perisylvian region and behavioral naming training on the behavioral outcomes of language comprehension and production of patients with post-stroke aphasia. RESEARCH DESIGN A 2 × 2 quasi-experimental design was conducted, optimal to compare changes after treatment in experimental versus control group. METHODS AND PROCEDURES Ten patients with post-stroke aphasia were enrolled in this study: half received atDCS on the left posterior perisylvian region while they underwent a 2-week behavioral naming training. The other half received sham stimulation. The outcomes were measured using the abbreviated form of the Boston Diagnostic Aphasia Examination and analyzed using ANOVAs. MAIN OUTCOMES AND RESULTS Both groups improved their performance in Oral comprehension, Narrative writing and Language Competence Index, but only those that received anodal tDCS presented better results in the Naming category after the treatment. CONCLUSIONS AtDCS on the left posterior perisylvian area seems to be a promising tool for boosting the outcomes of behavioral naming therapy in patients with post-stroke aphasia.
Collapse
Affiliation(s)
- Susana Cid-Fernández
- Department of Developmental and Educational Psychology, Universidade de Santiago de Compostela, Santiago, Spain
| | | | - Benxamín Varela-López
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago, Spain
| | - Santiago Galdo-Álvarez
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago, Spain
| |
Collapse
|
12
|
Integrity of the Left Arcuate Fasciculus Segments Significantly Affects Language Performance in Individuals with Acute/Subacute Post-Stroke Aphasia: A Cross-Sectional Diffusion Tensor Imaging Study. Brain Sci 2022; 12:brainsci12070907. [PMID: 35884714 PMCID: PMC9313217 DOI: 10.3390/brainsci12070907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate the correlation between the left arcuate fasciculus (AF) segments and acute/subacute post-stroke aphasia (PSA). Methods: Twenty-six patients underwent language assessment and MRI scanning. The integrity of the AF based on a three-segment model was evaluated using diffusion tensor imaging. All patients were classified into three groups according to the reconstruction of the left AF: completely reconstructed (group A, 8 cases), non-reconstructed (group B, 6 cases), and partially reconstructed (group C, 12 cases). The correlations and intergroup differences in language performance and diffusion indices were comprehensively estimated. Results: A correlation analyses showed that the lesion load of the language areas and diffusion indices on the left AF posterior and long segments was significantly related to some language subsets, respectively. When controlled lesion load was variable, significant correlations between diffusion indices on the posterior and long segments and comprehension, repetition, naming, and aphasia quotient were retained. Multiple comparison tests revealed intergroup differences in diffusion indices on the left AF posterior and long segments, as well as these language subsets. No significant correlation was found between the anterior segment and language performance. Conclusions: The integrity of the left AF segments, particularly the posterior segment, is crucial for the residual comprehension and repetition abilities in individuals with acute/subacute PSA, and lesion load in cortical language areas is an important factor that should be taken into account when illustrating the contributions of damage to special fiber tracts to language impairments.
Collapse
|
13
|
Mesulam MM, Coventry CA, Bigio EH, Sridhar J, Gill N, Fought AJ, Zhang H, Thompson CK, Geula C, Gefen T, Flanagan M, Mao Q, Weintraub S, Rogalski EJ. Neuropathological fingerprints of survival, atrophy and language in primary progressive aphasia. Brain 2022; 145:2133-2148. [PMID: 35441216 PMCID: PMC9246707 DOI: 10.1093/brain/awab410] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
Primary progressive aphasia is a neurodegenerative disease that selectively impairs language without equivalent impairment of speech, memory or comportment. In 118 consecutive autopsies on patients with primary progressive aphasia, primary diagnosis was Alzheimer's disease neuropathological changes (ADNC) in 42%, corticobasal degeneration or progressive supranuclear palsy neuropathology in 24%, Pick's disease neuropathology in 10%, transactive response DNA binding proteinopathy type A [TDP(A)] in 10%, TDP(C) in 11% and infrequent entities in 3%. Survival was longest in TDP(C) (13.2 ± 2.6 years) and shortest in TDP(A) (7.1 ± 2.4 years). A subset of 68 right-handed participants entered longitudinal investigations. They were classified as logopenic, agrammatic/non-fluent or semantic by quantitative algorithms. Each variant had a preferred but not invariant neuropathological correlate. Seventy-seven per cent of logopenics had ADNC, 56% of agrammatics had corticobasal degeneration/progressive supranuclear palsy or Pick's disease and 89% of semantics had TDP(C). Word comprehension impairments had strong predictive power for determining underlying neuropathology positively for TDP(C) and negatively for ADNC. Cortical atrophy was smallest in corticobasal degeneration/progressive supranuclear palsy and largest in TDP(A). Atrophy encompassed posterior frontal but not temporoparietal cortex in corticobasal degeneration/progressive supranuclear palsy, anterior temporal but not frontoparietal cortex in TDP(C), temporofrontal but not parietal cortex in Pick's disease and all three lobes with ADNC or TDP(A). There were individual deviations from these group patterns, accounting for less frequent clinicopathologic associations. The one common denominator was progressive asymmetric atrophy overwhelmingly favouring the left hemisphere language network. Comparisons of ADNC in typical amnestic versus atypical aphasic dementia and of TDP in type A versus type C revealed fundamental biological and clinical differences, suggesting that members of each pair may constitute distinct clinicopathologic entities despite identical downstream proteinopathies. Individual TDP(C) participants with unilateral left temporal atrophy displayed word comprehension impairments without additional object recognition deficits, helping to dissociate semantic primary progressive aphasia from semantic dementia. When common and uncommon associations were considered in the set of 68 participants, one neuropathology was found to cause multiple clinical subtypes, and one subtype of primary progressive aphasia to be caused by multiple neuropathologies, but with different probabilities. Occasionally, expected clinical manifestations of atrophy sites were absent, probably reflecting individual peculiarities of language organization. The hemispheric asymmetry of neurodegeneration and resultant language impairment in primary progressive aphasia reflect complex interactions among the cellular affinities of the degenerative disease, the constitutive biology of language cortex, familial or developmental vulnerabilities of this network and potential idiosyncrasies of functional anatomy in the affected individual.
Collapse
Affiliation(s)
- M Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Davee Department of Neurology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christina A Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Preventive Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Angela J Fought
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Preventive Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cynthia K Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- School of Communication, Northwestern University, Evanston, IL 60208, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Margaret Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Matchin W, den Ouden DB, Hickok G, Hillis AE, Bonilha L, Fridriksson J. The Wernicke conundrum revisited: evidence from connectome-based lesion-symptom mapping. Brain 2022; 145:3916-3930. [PMID: 35727949 DOI: 10.1093/brain/awac219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke's area has been assumed since the 1800s to be the primary region supporting word and sentence comprehension. However, in 2015 and 2019, Mesulam and colleagues raised what they termed the 'Wernicke conundrum', noting widespread variability in the anatomical definition of this area and presenting data from primary progressive aphasia that challenged this classical assumption. To resolve the conundrum, they posited a 'double disconnection' hypothesis: that word and sentence comprehension deficits in stroke-based aphasia result from disconnection of anterior temporal and inferior frontal regions from other parts of the brain due to white matter damage, rather than dysfunction of Wernicke's area itself. To test this hypothesis, we performed lesion-deficit correlations, including connectome-based lesion-symptom mapping, in four large, partially overlapping groups of English-speaking chronic left hemisphere stroke survivors. After removing variance due to object recognition and associative semantic processing, the same middle and posterior temporal lobe regions were implicated in both word comprehension deficits and complex noncanonical sentence comprehension deficits. Connectome lesion-symptom mapping revealed similar temporal-occipital white matter disconnections for impaired word and noncanonical sentence comprehension, including the temporal pole. We found an additional significant temporal-parietal disconnection for noncanonical sentence comprehension deficits, which may indicate a role for phonological working memory in processing complex syntax, but no significant frontal disconnections. Moreover, damage to these middle-posterior temporal lobe regions was associated with both word and noncanonical sentence comprehension deficits even when accounting for variance due to the strongest anterior temporal and inferior frontal white matter disconnections, respectively. Our results largely agree with the classical notion that Wernicke's area, defined here as middle superior temporal gyrus and middle-posterior superior temporal sulcus, supports both word and sentence comprehension, suggest a supporting role for temporal pole in both word and sentence comprehension, and speak against the hypothesis that comprehension deficits in Wernicke's aphasia result from double disconnection.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Department of Language Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Giampiccolo D, Duffau H. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain 2022; 145:1242-1256. [PMID: 35142842 DOI: 10.1093/brain/awac057] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
The arcuate fasciculus has been considered a major dorsal fronto-temporal white matter pathway linking frontal language production regions with auditory perception in the superior temporal gyrus, the so-called Wernicke's area. In line with this tradition, both historical and contemporary models of language function have assigned primacy to superior temporal projections of the arcuate fasciculus. However, classical anatomical descriptions and emerging behavioural data are at odds with this assumption. On one hand, fronto-temporal projections to Wernicke's area may not be unique to the arcuate fasciculus. On the other hand, dorsal stream language deficits have been reported also for damage to middle, inferior and basal temporal gyri which may be linked to arcuate disconnection. These findings point to a reappraisal of arcuate projections in the temporal lobe. Here, we review anatomical and functional evidence regarding the temporal cortical terminations of the left arcuate fasciculus by incorporating dissection and tractography findings with stimulation data using cortico-cortical evoked potentials and direct electrical stimulation mapping in awake patients. Firstly, we discuss the fibers of the arcuate fasciculus projecting to the superior temporal gyrus and the functional rostro-caudal gradient in this region where both phonological encoding and auditory-motor transformation may be performed. Caudal regions within the temporoparietal junction may be involved in articulation and associated with temporoparietal projections of the third branch of the superior longitudinal fasciculus, while more rostral regions may support encoding of acoustic phonetic features, supported by arcuate fibres. We then move to examine clinical data showing that multimodal phonological encoding is facilitated by projections of the arcuate fasciculus to superior, but also middle, inferior and basal temporal regions. Hence, we discuss how projections of the arcuate fasciculus may contribute to acoustic (middle-posterior superior and middle temporal gyri), visual (posterior inferior temporal/fusiform gyri comprising the visual word form area) and lexical (anterior-middle inferior temporal/fusiform gyri in the basal temporal language area) information in the temporal lobe to be processed, encoded and translated into a dorsal phonological route to the frontal lobe. Finally, we point out surgical implications for this model in terms of the prediction and avoidance of neurological deficit.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy.,Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
16
|
Parrish A, Pylkkänen L. Conceptual Combination in the LATL With and Without Syntactic Composition. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:46-66. [PMID: 37215334 PMCID: PMC10158584 DOI: 10.1162/nol_a_00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
The relationship among syntactic, semantic, and conceptual processes in language comprehension is a central question to the neurobiology of language. Several studies have suggested that conceptual combination in particular can be localized to the left anterior temporal lobe (LATL), while syntactic processes are more often associated with the posterior temporal lobe or inferior frontal gyrus. However, LATL activity can also correlate with syntactic computations, particularly in narrative comprehension. Here we investigated the degree to which LATL conceptual combination is dependent on syntax, specifically asking whether rapid (∼200 ms) magnetoencephalography effects of conceptual combination in the LATL can occur in the absence of licit syntactic phrase closure and in the absence of a semantically plausible output for the composition. We find that such effects do occur: LATL effects of conceptual combination were observed even when there was no syntactic phrase closure or plausible meaning. But syntactic closure did have an additive effect such that LATL signals were the highest for expressions that composed both conceptually and syntactically. Our findings conform to an account in which LATL conceptual composition is influenced by local syntactic composition but is also able to operate without it.
Collapse
Affiliation(s)
- Alicia Parrish
- Department of Linguistics, New York University, New York, USA
| | - Liina Pylkkänen
- Department of Linguistics, New York University, New York, USA
- Department of Psychology, New York University, New York, USA
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
17
|
OUP accepted manuscript. Brain 2022; 145:2250-2275. [DOI: 10.1093/brain/awac096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/13/2022] Open
|
18
|
Cousins KA, Bove J, Giannini LAA, Kinney NG, Balgenorth YR, Rascovsky K, Lee EB, Trojanowski JQ, Grossman M, Irwin DJ. Longitudinal naming and repetition relates to AD pathology and burden in autopsy-confirmed primary progressive aphasia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12188. [PMID: 34368417 PMCID: PMC8327471 DOI: 10.1002/trc2.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION In primary progressive aphasia (PPA) patients with autopsy-confirmed Alzheimer's disease (AD) or frontotemporal lobar degeneration (FLTD), we tested how the core clinical features of logopenic PPA-naming and repetition-change over time and relate to pathologic burden. METHODS In PPA with AD (n = 13) or FTLD (n = 16) pathology, Boston Naming Test and Forward Digit Span measured longitudinal naming and repetition; as reference, Mini-Mental State Examination (MMSE) measured global cognition. Pathologic burden in left peri-Sylvian regions was related to longitudinal cognitive decline. RESULTS PPA with AD showed greater decline in naming (P = 0.021) and repetition (P = 0.020), compared to FTLD; there was no difference in MMSE decline (P = 0.99). Across all PPA, declining naming (P = 0.0084) and repetition (P = 0.011) were associated with angular, superior-middle temporal (naming P = 0.014; repetition P = 0.011) and middle frontal (naming P = 0.041; repetition P = 0.030) pathologic burden. DISCUSSION Unique longitudinal profiles of naming and repetition performance in PPA with AD are related to left peri-Sylvian pathology.
Collapse
Affiliation(s)
- Katheryn A.Q. Cousins
- Frontotemporal Degeneration Center, Perelman School of MedicineDepartment of NeurologyPhiladelphiaPennsylvaniaUSA
| | - Jessica Bove
- Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleFloridaUSA
| | - Lucia A. A. Giannini
- Alzheimer CenterDepartment of NeurologyErasmus Medical CenterRotterdamthe Netherlands
| | - Nikolas G. Kinney
- Frontotemporal Degeneration Center, Perelman School of MedicineDepartment of NeurologyPhiladelphiaPennsylvaniaUSA
| | - Yvonne R. Balgenorth
- Frontotemporal Degeneration Center, Perelman School of MedicineDepartment of NeurologyPhiladelphiaPennsylvaniaUSA
| | - Katya Rascovsky
- Frontotemporal Degeneration Center, Perelman School of MedicineDepartment of NeurologyPhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Translational Neuropathology Research LaboratoryPerelman School of MedicineDepartment of Pathology and Laboratory MedicinePhiladelphiaPennsylvaniaUSA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineDepartment of Pathology and Laboratory MedicinePhiladelphiaPennsylvaniaUSA
| | - Murray Grossman
- Frontotemporal Degeneration Center, Perelman School of MedicineDepartment of NeurologyPhiladelphiaPennsylvaniaUSA
| | - David J. Irwin
- Frontotemporal Degeneration Center, Perelman School of MedicineDepartment of NeurologyPhiladelphiaPennsylvaniaUSA
- Digital Neuropathology LaboratoryPerelman School of MedicineDepartment of NeurologyPhiladelphiaPAUSA
| |
Collapse
|
19
|
Mesulam MM, Coventry CA, Rader BM, Kuang A, Sridhar J, Martersteck A, Zhang H, Thompson CK, Weintraub S, Rogalski EJ. Modularity and granularity across the language network-A primary progressive aphasia perspective. Cortex 2021; 141:482-496. [PMID: 34153680 PMCID: PMC8319115 DOI: 10.1016/j.cortex.2021.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/22/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Tests of grammar, repetition and semantics were administered to 62 prospectively enrolled right-handed participants with primary progressive aphasia (PPA). Structural brain images were obtained at the time of testing. Regression analyses uncovered 3 clearly delineated non-overlapping left hemisphere clusters where cortical thinning (atrophy) was significantly correlated with impaired performance. A morphosyntactic cluster associated with the grammaticality of sentence construction was located predominantly within the middle and inferior frontal gyri; a phonolexical cluster associated with language repetition was located in the temporoparietal junction; a lexicosemantic cluster associated with object naming and single word comprehension was located within the middle and anterior parts of the temporal lobe and extended into insular, orbitofrontal, and mediotemporal cortices. Commonality analyses were undertaken to explore whether these three clusters were as modular as indicated by the regression analyses or whether some underlying functional granularity could be uncovered. Modularity was defined as the exclusive association of an anatomical cluster with a single type of language task whereas granularity was defined as the association of a single anatomical cluster with more than one type of language task. The commonality analyses revealed a predominantly modular organization with quantitatively minor instances of inter-cluster granularity. The results also reconfirmed previous work on PPA which had shown that Wernicke's area is not essential for word comprehension, that naming impairments can be based either on deficits of lexical retrieval or word comprehension, and that the essential substrates of word comprehension encompass much wider areas of the temporal lobe than the temporal pole. The anatomy of the language network has traditionally been explored through patients with focal cerebrovascular accidents and experiments based on functional activation. Investigations on PPA are showing that focal neurodegenerations can add new perspectives to existing models of the language network.
Collapse
Affiliation(s)
- M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Christina A Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Alan Kuang
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL, USA
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam Martersteck
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL, USA
| | - Cynthia K Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University School of Communication, Evanston, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA
| |
Collapse
|
20
|
Lukic S, Thompson CK, Barbieri E, Chiappetta B, Bonakdarpour B, Kiran S, Rapp B, Parrish TB, Caplan D. Common and distinct neural substrates of sentence production and comprehension. Neuroimage 2021; 224:117374. [PMID: 32949711 PMCID: PMC10134242 DOI: 10.1016/j.neuroimage.2020.117374] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023] Open
Abstract
Functional neuroimaging and lesion-symptom mapping investigations implicate a left frontal-temporal-parietal network for sentence processing. The majority of studies have focused on sentence comprehension, with fewer in the domain of sentence production, which have not fully elucidated overlapping and/or unique brain structures associated with the two domains, particularly for sentences with noncanonical word order. Using voxel-based lesion symptom mapping (VLSM) we examined the relationship between lesions within the left hemisphere language network and both sentence comprehension and production of simple and complex syntactic structures in 76 participants with chronic stroke-induced aphasia. Results revealed shared regions across domains in the anterior and posterior superior temporal gyri (aSTG, pSTG), and the temporal pole (adjusted for verb production/comprehension). Additionally, comprehension was associated with lesions in the anterior and posterior middle temporal gyri (aMTG, pMTG), the MTG temporooccipital regions, SMG/AG, central and parietal operculum, and the insula. Subsequent VLSM analyses (production versus comprehension) revealed critical regions associated with each domain: anterior temporal lesions were associated with production; posterior temporo-parietal lesions were associated with comprehension, implicating important roles for regions within the ventral and dorsal stream processing routes, respectively. Processing of syntactically complex, noncanonical (adjusted for canonical), sentences was associated with damage to the pSTG across domains, with additional damage to the pMTG and IPL associated with impaired sentence comprehension, suggesting that the pSTG is crucial for computing noncanonical sentences across domains and that the pMTG, and IPL are necessary for re-analysis of thematic roles as required for resolution of long-distance dependencies. These findings converge with previous studies and extend our knowledge of the neural mechanisms of sentence comprehension to production, highlighting critical regions associated with both domains, and further address the mechanism engaged for syntactic computation, controlled for the contribution of verb processing.
Collapse
|
21
|
Mesulam MM, Coventry C, Bigio EH, Geula C, Thompson C, Bonakdarpour B, Gefen T, Rogalski EJ, Weintraub S. Nosology of Primary Progressive Aphasia and the Neuropathology of Language. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:33-49. [PMID: 33433867 PMCID: PMC8103786 DOI: 10.1007/978-3-030-51140-1_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary progressive aphasia (PPA) is a dementia syndrome associated with several neuropathologic entities, including Alzheimer's disease (AD) and all major forms of frontotemporal lobar degeneration (FTLD). It is classified into subtypes defined by the nature of the language domain that is most impaired. The asymmetric neurodegeneration of the hemisphere dominant for language (usually left) is one consistent feature of all PPA variants. This feature offers unique opportunities for exploring mechanisms of selective vulnerability in neurodegenerative diseases and the neuroanatomy of language. This chapter reviews some of the current trends in PPA research as well as the challenges that remain to be addressed on the nosology, clinicopathologic correlations, and therapy of this syndrome.
Collapse
Affiliation(s)
- M -Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Neurology, Northwestern University, Chicago, IL, USA.
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| | - Cynthia Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Communication Sciences and Disorders; Department of Neurology, Northwestern University, Evanston, IL, USA
| | - Borna Bonakdarpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Psychiatry, Northwestern University, Chicago, IL, USA
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Psychiatry, Northwestern University, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| |
Collapse
|
22
|
Association of TDP-43 Pathology With Domain-specific Literacy in Older Persons. Alzheimer Dis Assoc Disord 2020; 33:315-320. [PMID: 31305319 DOI: 10.1097/wad.0000000000000334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Low health and financial literacy may be an early behavioral manifestation of cognitive impairment, dementia, and accumulating Alzheimer pathology. However, there are limited studies investigating the behavioral features associated with hyperphosphorylated transactive response DNA-binding protein-43 (TDP-43), a common age-related pathology, and even fewer studies investigating the neurobiological basis underlying low literacy in aging. OBJECTIVE To test the hypothesis that TDP-43 pathology is associated with lower literacy. MATERIALS AND METHODS Data came from 293 community-based older persons who were enrolled in 2 ongoing studies of aging. Participants completed literacy and cognitive assessments, consented to brain donation, and underwent detailed neuropathologic evaluation for Alzheimer disease (AD) and TDP-43. Linear regression models assessed the association of TDP-43 with literacy after adjusting for demographics, and AD pathology. Posthoc pairwise comparisons examined whether the level of literacy differed by TDP-43 stage. RESULTS TDP-43 pathology was associated with lower literacy (estimate=-3.16; SE=0.86; P<0.001), above and beyond demographics and AD pathology, and this association persisted even after additionally adjusting for global cognition (estimate=-1.53; SE=0.74; P=0.038). Further, literacy was lower among persons with neocortical TDP-43 pathology compared with those without TDP-43 pathology. CONCLUSIONS TDP-43 pathology is associated with lower health and financial literacy in old age, above and beyond AD pathology.
Collapse
|
23
|
Lee DJ, Bigio EH, Rogalski EJ, Mesulam MM. Speech and Language Presentations of FTLD-TDP Type B Neuropathology. J Neuropathol Exp Neurol 2020; 79:277-283. [PMID: 31995205 DOI: 10.1093/jnen/nlz132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Four right-handed patients who presented with an isolated impairment of speech or language had transactive response DNA-binding protein of 43 kDa (TDP-43) type B pathology. Comportment and pyramidal motor function were preserved at presentation. Three of the cases developed axial rigidity and oculomotor findings late in their course with no additional pyramidal or lower motor neuron impairments. However, in all 4 cases, postmortem examination disclosed some degree of upper and lower motor neuron disease (MND) pathology in motor cortex, brainstem, and spinal cord. Although TDP-43 type B pathology is commonly associated with MND and behavioral variant frontotemporal dementia, it is less recognized as a pathologic correlate of primary progressive aphasia and/or apraxia of speech as the presenting syndrome. These cases, taken together, contribute to the growing heterogeneity in clinical presentations associated with TDP pathology. Additionally, 2 cases demonstrated left anterior temporal lobe atrophy but without word comprehension impairments, shedding light on the relevance of the left temporal tip for single-word comprehension.
Collapse
Affiliation(s)
- Daniel J Lee
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease.,Department of Neurology
| | - Eileen H Bigio
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease.,Department of Pathology
| | - Emily J Rogalski
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease.,Department of Psychiatry and Behavioral Sciences (EJR), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - M-Marsel Mesulam
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease.,Department of Neurology
| |
Collapse
|
24
|
Forkel SJ, Rogalski E, Drossinos Sancho N, D'Anna L, Luque Laguna P, Sridhar J, Dell'Acqua F, Weintraub S, Thompson C, Mesulam MM, Catani M. Anatomical evidence of an indirect pathway for word repetition. Neurology 2020; 94:e594-e606. [PMID: 31996450 PMCID: PMC7136066 DOI: 10.1212/wnl.0000000000008746] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/11/2019] [Indexed: 11/29/2022] Open
Abstract
Objective To combine MRI-based cortical morphometry and diffusion white matter tractography to describe the anatomical correlates of repetition deficits in patients with primary progressive aphasia (PPA). Methods The traditional anatomical model of language identifies a network for word repetition that includes Wernicke and Broca regions directly connected via the arcuate fasciculus. Recent tractography findings of an indirect pathway between Wernicke and Broca regions suggest a critical role of the inferior parietal lobe for repetition. To test whether repetition deficits are associated with damage to the direct or indirect pathway between both regions, tractography analysis was performed in 30 patients with PPA (64.27 ± 8.51 years) and 22 healthy controls. Cortical volume measurements were also extracted from 8 perisylvian language areas connected by the direct and indirect pathways. Results Compared to healthy controls, patients with PPA presented with reduced performance in repetition tasks and increased damage to most of the perisylvian cortical regions and their connections through the indirect pathway. Repetition deficits were prominent in patients with cortical atrophy of the temporo-parietal region with volumetric reductions of the indirect pathway. Conclusions The results suggest that in PPA, deficits in repetition are due to damage to the temporo-parietal cortex and its connections to Wernicke and Broca regions. We therefore propose a revised language model that also includes an indirect pathway for repetition, which has important clinical implications for the functional mapping and treatment of neurologic patients.
Collapse
Affiliation(s)
- Stephanie J Forkel
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Emily Rogalski
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Niki Drossinos Sancho
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Lucio D'Anna
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Pedro Luque Laguna
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Jaiashre Sridhar
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Flavio Dell'Acqua
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Sandra Weintraub
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Cynthia Thompson
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - M-Marsel Mesulam
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL
| | - Marco Catani
- From the Departments of Neuroimaging and Forensic and Neurodevelopmental Sciences (S.J.F., N.D.S., L.D., P.L.L., F.D., M.C.), Natbrainlab, Sackler Institute of Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Mesulam Center for Cognitive Neurology and Alzheimer's Disease (E.R., J.S., S.W., M.-M.M.), Department of Psychiatry and Behavioral Sciences (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Neuroscience and Experimental Psychology, School of Biological Sciences (N.D.S., S.W.), University of Manchester, UK; and Neurobiology of Language Recovery, Aphasia and Neurolinguistics Research Laboratory, Communication Sciences and Disorders, and Neurology (C.T.), Northwestern University, Chicago, IL.
| |
Collapse
|
25
|
Bonakdarpour B, Hurley RS, Wang AR, Fereira HR, Basu A, Chatrathi A, Guillaume K, Rogalski EJ, Mesulam MM. Perturbations of language network connectivity in primary progressive aphasia. Cortex 2019; 121:468-480. [PMID: 31530376 DOI: 10.1016/j.cortex.2019.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Aphasias are caused by disruption in structural integrity and interconnectivity within a large-scale distributed language network. We investigated the distribution and behavioral consequences of altered functional connectivity in three variants of primary progressive aphasia (PPA). The goal was to clarify relationships among atrophy, resting connectivity, and the resulting behavioral changes in 73 PPA and 33 control participants. Three core regions of the left perisylvian language network: the inferior frontal gyrus (IFG), middle temporal gyrus (MTG), and anterior temporal lobe (ATL) were evaluated in agrammatic (PPA-G), logopenic (PPA-L), and semantic (PPA-S) PPA variants. All PPA groups showed decreased connectivity between IFG and MTG. The PPA-S group also showed additional loss of connectivity strength between ATL and the other language regions. Decreased connectivity between the IFG and MTG nodes in PPA-G remained significant even when controlled for the effect of atrophy. In the PPA group as a whole, IFG-MTG connectivity strength correlated with repetition and grammar scores, whereas MTG-ATL connectivity correlated with picture naming and single-word comprehension. There was no significant change in the connectivity of homologous regions in the right hemisphere. These results show that language impairments in PPA are associated with perturbations of functional connectivity within behaviorally concordant components of the language network. Altered connectivity in PPA may reflect not only the irreversible loss of cortical components indexed by atrophy, but also the dysfunction of remaining neurons.
Collapse
Affiliation(s)
- Borna Bonakdarpour
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Department of Neurology, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Robert S Hurley
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Department of Neurology, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychology, Cleveland State University, Cleveland, OH, USA
| | - Allan R Wang
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hernando R Fereira
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anisha Basu
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Arjuna Chatrathi
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kyla Guillaume
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M Marsel Mesulam
- Mesulam Center for Cognitive Neurology & Alzheimer Disease, USA; Department of Neurology, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
26
|
Walenski M, Europa E, Caplan D, Thompson CK. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2019; 40:2275-2304. [PMID: 30689268 DOI: 10.1002/hbm.24523] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Comprehending and producing sentences is a complex endeavor requiring the coordinated activity of multiple brain regions. We examined three issues related to the brain networks underlying sentence comprehension and production in healthy individuals: First, which regions are recruited for sentence comprehension and sentence production? Second, are there differences for auditory sentence comprehension vs. visual sentence comprehension? Third, which regions are specifically recruited for the comprehension of syntactically complex sentences? Results from activation likelihood estimation (ALE) analyses (from 45 studies) implicated a sentence comprehension network occupying bilateral frontal and temporal lobe regions. Regions implicated in production (from 15 studies) overlapped with the set of regions associated with sentence comprehension in the left hemisphere, but did not include inferior frontal cortex, and did not extend to the right hemisphere. Modality differences between auditory and visual sentence comprehension were found principally in the temporal lobes. Results from the analysis of complex syntax (from 37 studies) showed engagement of left inferior frontal and posterior temporal regions, as well as the right insula. The involvement of the right hemisphere in the comprehension of these structures has potentially important implications for language treatment and recovery in individuals with agrammatic aphasia following left hemisphere brain damage.
Collapse
Affiliation(s)
- Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois
| | - Eduardo Europa
- Department of Neurology, University of California, San Francisco
| | - David Caplan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|