1
|
Sherlock SP, McCrady A, Palmer J, Aghamolaey H, Ahlgren A, Widholm P, Dahlqvist Leinhard O, Karlsson M. Relationship Between Quantitative Magnetic Resonance Imaging Measures and Functional Changes in Patients With Duchenne Muscular Dystrophy. Muscle Nerve 2024. [PMID: 39713935 DOI: 10.1002/mus.28321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION/AIMS Improved methodologies to monitor the progression of Duchenne muscular dystrophy (DMD) are needed, especially in the context of clinical trials. We report changes in muscle magnetic resonance imaging (MRI) parameters in participants with DMD, including changes in lean muscle volume (LMV), muscle fat fraction (MFF), and muscle fat infiltration (MFI) and their relationship to changes in functional parameters. METHODS MRI data were obtained as part of a clinical study (NCT02310763) of domagrozumab, an antibody-targeting myostatin that negatively regulates skeletal muscle mass. This post hoc analysis evaluated participants with Dixon MRI data and corresponding functional data at baseline and weeks 49 and 97. Images were analyzed to evaluate changes in adductors, hamstrings, and quadriceps. RESULTS There was a positive correlation between increases in LMV and function. LMV changes in adductors (R = 0.51) and quadriceps (R = 0.54) showed a stronger correlation with function than LMV changes in hamstrings (R = 0.30). There was a negative correlation between MFF and MFI, respectively, and function in adductors (R = -0.57, R = -0.42), quadriceps (R = -0.59, R = -0.50), and hamstrings (R = -0.53, R = -048). Participants with preserved North Star Ambulatory Assessment scores had high total LMV (LMVtot) and low total MFI (MFItot). Low ratios of LMVtot to MFItot, or participants with small LMVtot and high MFItot, appeared to have a rapid decline in function and loss of ambulation. DISCUSSION These findings support the use of MRI biomarkers as potential surrogate endpoints in clinical trials of patients with DMD. TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT02310763.
Collapse
Affiliation(s)
| | - Allison McCrady
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | - Haleh Aghamolaey
- Department of Statistics, Quanticate Clinical Research Organization, Ontario, Canada
| | | | | | | | | |
Collapse
|
2
|
Heerfordt J, Karlsson M, Kusama M, Ogata S, Mukasa R, Kiyosawa N, Sato N, Widholm P, Dahlqvist Leinhard O, Ahlgren A, Mori-Yoshimura M. Volumetric muscle composition analysis in sporadic inclusion body myositis using fat-referenced magnetic resonance imaging: Disease pattern, repeatability, and natural progression. Muscle Nerve 2024; 70:1181-1191. [PMID: 39318110 DOI: 10.1002/mus.28252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION/AIMS Fat-referenced magnetic resonance imaging (MRI) has emerged as a promising volumetric technique for measuring muscular volume and fat in neuromuscular disorders, but the experience in inflammatory myopathies remains limited. Therefore, this work aimed at describing how sporadic inclusion body myositis (sIBM) manifests on standardized volumetric fat-referenced MRI muscle measurements, including within-scanner repeatability, natural progression rate, and relationship to clinical parameters. METHODS Ten sIBM patients underwent whole-leg Dixon MRI at baseline (test-retest) and after 12 months. The lean muscle volume (LMV), muscle fat fraction (MFF), and muscle fat infiltration (MFI) of the quadriceps, hamstrings, adductors, medial gastrocnemius, and tibialis anterior were computed. Clinical assessments of IBM Functional Rating Scale (IBMFRS) and knee extension strength were also performed. The baseline test-retest MRI measurements were used to estimate the within-subject standard deviation (sw). 12-month changes were derived for all parameters. RESULTS The MRI measurements showed high repeatability in all muscles; sw ranged from 2.7 to 18.0 mL for LMV, 0.7-1.3 percentage points (pp) for MFF, and 0.2-0.7 pp for MFI. Over 12 months, average LMV decreased by 7.4% while MFF and MFI increased by 3.8 pp and 1.8 pp, respectively. Mean IBMFRS decreased by 2.4 and mean knee extension strength decreased by 32.8 N. DISCUSSION The MRI measurements showed high repeatability and 12-month changes consistent with muscle atrophy and fat replacement as well as a decrease in both muscle strength and IBMFRS. Our findings suggest that fat-referenced MRI measurements are suitable for assessing disease progression and treatment response in inflammatory myopathies.
Collapse
Affiliation(s)
| | | | - Midori Kusama
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Seiya Ogata
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo, Co. Ltd., Tokyo, Japan
| | - Ryuta Mukasa
- Translational Science Department II, Daiichi Sankyo, Co. Ltd., Tokyo, Japan
| | - Naoki Kiyosawa
- Translational Science Department II, Daiichi Sankyo, Co. Ltd., Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Per Widholm
- AMRA Medical AB, Linköping, Sweden
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
3
|
Kemp GJ. Editorial for "Utilization of Multi-Parametric Quantitative Magnetic Resonance Imaging in the Early Diagnosis of Duchenne Muscular Dystrophy". J Magn Reson Imaging 2024; 60:1414-1415. [PMID: 38112046 DOI: 10.1002/jmri.29200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Affiliation(s)
- Graham J Kemp
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
5
|
Willcocks RJ, Barnard AM, Daniels MJ, Forbes SC, Triplett WT, Brandsema JF, Finanger EL, Rooney WD, Kim S, Wang D, Lott DJ, Senesac CR, Walter GA, Sweeney HL, Vandenborne K. Clinical importance of changes in magnetic resonance biomarkers for Duchenne muscular dystrophy. Ann Clin Transl Neurol 2024; 11:67-78. [PMID: 37932907 PMCID: PMC10791017 DOI: 10.1002/acn3.51933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE Magnetic resonance (MR) measures of muscle quality are highly sensitive to disease progression and predictive of meaningful functional milestones in Duchenne muscular dystrophy (DMD). This investigation aimed to establish the reproducibility, responsiveness to disease progression, and minimum clinically important difference (MCID) for multiple MR biomarkers at different disease stages in DMD using a large natural history dataset. METHODS Longitudinal MR imaging and spectroscopy outcomes and ambulatory function were measured in 180 individuals with DMD at three sites, including repeated measurements on two separate days (within 1 week) in 111 participants. These data were used to calculate day-to-day reproducibility, responsiveness (standardized response mean, SRM), minimum detectable change, and MCID. A survey of experts was also performed. RESULTS MR spectroscopy fat fraction (FF), as well as MR imaging transverse relaxation time (MRI-T2 ), measures performed in multiple leg muscles, and had high reproducibility (Pearson's R > 0.95). Responsiveness to disease progression varied by disease stage across muscles. The average FF from upper and lower leg muscles was highly responsive (SRM > 0.9) in both ambulatory and nonambulatory individuals. MCID estimated from the distribution of scores, by anchoring to function, and via expert opinion was between 0.01 and 0.05 for FF and between 0.8 and 3.7 ms for MRI-T2 . INTERPRETATION MR measures of FF and MRI T2 are reliable and highly responsive to disease progression. The MCID for MR measures is less than or equal to the typical annualized change. These results confirm the suitability of these measures for use in DMD and potentially other muscular dystrophies.
Collapse
Affiliation(s)
- Rebecca J. Willcocks
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Alison M. Barnard
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | | | - Sean C. Forbes
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - William T. Triplett
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - John F. Brandsema
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Erika L. Finanger
- Department of Pediatrics and NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - William D. Rooney
- Advanced Imaging Research CenterOregon Health & Science UniversityPortlandOregonUSA
| | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Dah‐Jyuu Wang
- Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Donovan J. Lott
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Claudia R. Senesac
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Krista Vandenborne
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
6
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
7
|
Landfeldt E, Alemán A, Abner S, Zhang R, Werner C, Tomazos I, Ferizovic N, Lochmüller H, Kirschner J. Predictors of Loss of Ambulation in Duchenne Muscular Dystrophy: A Systematic Review and Meta-Analysis. J Neuromuscul Dis 2024; 11:579-612. [PMID: 38669554 DOI: 10.3233/jnd-230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Objective The objective of this study was to describe predictors of loss of ambulation in Duchenne muscular dystrophy (DMD). Methods This systematic review and meta-analysis included searches of MEDLINE ALL, Embase, and the Cochrane Database of Systematic Reviews from January 1, 2000, to December 31, 2022, for predictors of loss of ambulation in DMD. Search terms included "Duchenne muscular dystrophy" as a Medical Subject Heading or free text term, in combination with variations of the term "predictor". Risk of bias was assessed using the Newcastle-Ottawa Scale. We performed meta-analysis pooling of hazard ratios of the effects of glucocorticoids (vs. no glucocorticoid therapy) by fitting a common-effect inverse-variance model. Results The bibliographic searches resulted in the inclusion of 45 studies of children and adults with DMD from 17 countries across Europe, Asia, and North America. Glucocorticoid therapy was associated with delayed loss of ambulation (overall meta-analysis HR deflazacort/prednisone/prednisolone: 0.44 [95% CI: 0.40-0.48]) (n = 25 studies). Earlier onset of first signs or symptoms, earlier loss of developmental milestones, lower baseline 6MWT (i.e.,<350 vs. ≥350 metres and <330 vs. ≥330 metres), and lower baseline NSAA were associated with earlier loss of ambulation (n = 5 studies). Deletion of exons 3-7, proximal mutations (upstream intron 44), single exon 45 deletions, and mutations amenable of skipping exon 8, exon 44, and exon 53, were associated with prolonged ambulation; distal mutations (intron 44 and downstream), deletion of exons 49-50, and mutations amenable of skipping exon 45, and exon 51 were associated with earlier loss of ambulation (n = 13 studies). Specific single-nucleotide polymorphisms in CD40 gene rs1883832, LTBP4 gene rs10880, SPP1 gene rs2835709 and rs11730582, and TCTEX1D1 gene rs1060575 (n = 7 studies), as well as race/ethnicity and level of family/patient deprivation (n = 3 studies), were associated with loss of ambulation. Treatment with ataluren (n = 2 studies) and eteplirsen (n = 3 studies) were associated with prolonged ambulation. Magnetic resonance biomarkers (MRI and MRS) were identified as significant predictors of loss of ambulation (n = 6 studies). In total, 33% of studies exhibited some risk of bias. Conclusion Our synthesis of predictors of loss of ambulation in DMD contributes to the understanding the natural history of disease and informs the design of new trials of novel therapies targeting this heavily burdened patient population.
Collapse
Affiliation(s)
| | - A Alemán
- Department of Pediatrics, Division of Neurology, Children's Hospital of Eastern Ontario, Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | | | - R Zhang
- PTC Therapeutics Sweden AB, Askim, Sweden
| | - C Werner
- PTC Therapeutics Germany GmbH, Frankfurt, Germany
| | - I Tomazos
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | | | - H Lochmüller
- Department of Pediatrics, Division of Neurology, Children's Hospital of Eastern Ontario, Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - J Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
8
|
Song Y, Xu K, Xu HY, Guo YK, Xu R, Fu H, Yuan WF, Zhou ZQ, Xu T, Chen XJ, Wang YL, Fu C, Zhou H, Cai XT, Li XS. Longitudinal changes in magnetic resonance imaging biomarkers of the gluteal muscle groups and functional ability in Duchenne muscular dystrophy: a 12-month cohort study. Pediatr Radiol 2023; 53:2672-2682. [PMID: 37889296 PMCID: PMC10697878 DOI: 10.1007/s00247-023-05791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Quantitative magnetic resonance imaging (MRI) is considered an objective biomarker of Duchenne muscular dystrophy (DMD), but the longitudinal progression of MRI biomarkers in gluteal muscle groups and their predictive value for future motor function have not been described. OBJECTIVE To explore MRI biomarkers of the gluteal muscle groups as predictors of motor function decline in DMD by characterizing the progression over 12 months. MATERIALS AND METHODS A total of 112 participants with DMD were enrolled and underwent MRI examination of the gluteal muscles to determine fat fraction and longitudinal relaxation time (T1). Investigations were based on gluteal muscle groups including flexors, extensors, adductors, and abductors. The North Star Ambulatory Assessment and timed functional tests were performed. All participants returned for follow-up at an average of 12 months and were divided into two subgroups (functional stability/decline groups) based on changes in timed functional tests. Univariable and multivariable logistic regression methods were used to explore the risk factors associated with future motor function decline. RESULTS For the functional decline group, all T1 values decreased, while fat fraction values increased significantly over 12 months (P<0.05). For the functional stability group, only the fat fraction of the flexors and abductors increased significantly over 12 months (P<0.05). The baseline T1 value was positively correlated with North Star Ambulatory Assessment and negatively correlated with timed functional tests at the 12-month follow-up (P<0.001), while the baseline fat fraction value was negatively correlated with North Star Ambulatory Assessment and positively correlated with timed functional tests at the 12-month follow-up (P<0.001). Multivariate regression showed that increased fat fraction of the abductors was associated with future motor function decline (model 1: odds ratio [OR]=1.104, 95% confidence interval [CI]: 1.026~1.187, P=0.008; model 2: OR=1.085, 95% CI: 1.013~1.161, P=0.019), with an area under the curve of 0.874. CONCLUSION Fat fraction of the abductors is a powerful predictor of future motor functional decline in DMD patients at 12 months, underscoring the importance of focusing early on this parameter in patients with DMD.
Collapse
Affiliation(s)
- Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei-Feng Yuan
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Qi Zhou
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi-Jian Chen
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Lei Wang
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Zhou
- Department of Rehabilitation Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Tang Cai
- Department of Rehabilitation Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue-Sheng Li
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Reyngoudt H, Baudin PY, Carlier PG, Lopez Kolkovsky AL, de Almeida Araujo EC, Marty B. New Insights into the Spread of MRS-Based Water T2 Values Observed in Highly Fatty Replaced Muscles. J Magn Reson Imaging 2023; 58:1557-1568. [PMID: 36877200 DOI: 10.1002/jmri.28669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND The reference standard for assessing water T2 (T2,H2O ) at high fat fraction (FF) is 1 H MRS. T2,H2O (T2,H2O,MRS ) dependence on FF (FFMRS ) has recently been demonstrated in muscle at high FF (i.e. ≥60%). PURPOSE To investigate the relationship between T2,H2O,MRS and FFMRS in the thigh/leg muscles of patients with neuromuscular diseases and to compare with quantitative MRI. STUDY TYPE Retrospective case-control study. POPULATION A total of 151 patients with neuromuscular disorders (mean age ± standard deviation = 52.5 ± 22.6 years, 54% male), 44 healthy volunteers (26.5 ± 13.0 years, 57% male). FIELD STRENGTH/SEQUENCE A 3-T; single-voxel stimulated echo acquisition mode (STEAM) MRS, multispin echo (MSE) imaging (for T2 mapping, T2,H2O,MRI ), three-point Dixon imaging (for FFMRI andR 2 * mapping). ASSESSMENT Mono-exponential and bi-exponential models were fitted to water T2 decay curves to extract T2,H2O,MRS and FFMRS . Water resonance full-width-at-half-maximum (FWHM) and B0 spread (∆B0 ) values were calculated. T2,H2O,MRI (mean), FFMRI (mean, kurtosis, and skewness), andR 2 * (mean) values were estimated in the MRS voxel. STATISTICAL TESTS Mann-Whitney U tests, Kruskal-Wallis tests. A P-value <0.05 was considered statistically significant. RESULTS Normal T2,H2O,MRS threshold was defined as the 90th percentile in healthy controls: 30.3 msec. T2,H2O,MRS was significantly higher in all patients with FFMRS < 60% compared to healthy controls. We discovered two subgroups in patients with FFMRS ≥ 60%: one with T2,H2O,MRS ≥ 30.3 msec and one with T2,H2O,MRS < 30.3 msec including abnormally low T2,H2O,MRS . The latter subgroup had significantly higher water resonance FWHM, ∆B0 , FFMRI kurtosis, and skewness values but nonsignificantly differentR 2 * (P = 1.00) and long T2,H2O,MRS component and its fraction (P > 0.11) based on the bi-exponential analysis. DATA CONCLUSION The findings suggest that the cause for (abnormally) T2,H2O,MRS at high FFMRS is biophysical, due to differences in susceptibility between muscle and fat (increased FWHM and ∆B0 ), rather than pathophysiological such as compartmentation changes, which would be reflected by the bi-exponential analysis. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre-Yves Baudin
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre G Carlier
- Université Paris Saclay, CEA, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| |
Collapse
|
10
|
Zaidman CM, Proud CM, McDonald CM, Lehman KJ, Goedeker NL, Mason S, Murphy AP, Guridi M, Wang S, Reid C, Darton E, Wandel C, Lewis S, Malhotra J, Griffin DA, Potter RA, Rodino-Klapac LR, Mendell JR. Delandistrogene Moxeparvovec Gene Therapy in Ambulatory Patients (Aged ≥4 to <8 Years) with Duchenne Muscular Dystrophy: 1-Year Interim Results from Study SRP-9001-103 (ENDEAVOR). Ann Neurol 2023; 94:955-968. [PMID: 37539981 DOI: 10.1002/ana.26755] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE Delandistrogene moxeparvovec is approved in the USA for the treatment of ambulatory patients (4-5 years) with Duchenne muscular dystrophy. ENDEAVOR (SRP-9001-103; NCT04626674) is a single-arm, open-label study to evaluate delandistrogene moxeparvovec micro-dystrophin expression, safety, and functional outcomes following administration of commercial process delandistrogene moxeparvovec. METHODS In cohort 1 of ENDEAVOR (N = 20), eligible ambulatory males, aged ≥4 to <8 years, received a single intravenous infusion of delandistrogene moxeparvovec (1.33 × 1014 vg/kg). The primary endpoint was change from baseline (CFBL) to week 12 in delandistrogene moxeparvovec micro-dystrophin by western blot. Additional endpoints evaluated included: safety; vector genome copies; CFBL to week 12 in muscle fiber-localized micro-dystrophin by immunofluorescence; and functional assessments, including North Star Ambulatory Assessment, with comparison with a propensity score-weighted external natural history control. RESULTS The 1-year safety profile of commercial process delandistrogene moxeparvovec in ENDEAVOR was consistent with safety data reported in other delandistrogene moxeparvovec trials (NCT03375164 and NCT03769116). Delandistrogene moxeparvovec micro-dystrophin expression was robust, with sarcolemmal localization at week 12; mean (SD) CFBL in western blot, 54.2% (42.6); p < 0.0001. At 1 year, patients demonstrated stabilized or improved North Star Ambulatory Assessment total scores; mean (SD) CFBL, +4.0 (3.5). Treatment versus a propensity score-weighted external natural history control demonstrated a statistically significant difference in least squares mean (standard error) CFBL in North Star Ambulatory Assessment, +3.2 (0.6) points; p < 0.0001. INTERPRETATION Results confirm efficient transduction of muscle by delandistrogene moxeparvovec. One-year post-treatment, delandistrogene moxeparvovec was well tolerated, and demonstrated stabilized or improved motor function, suggesting a clinical benefit for patients with Duchenne muscular dystrophy. ANN NEUROL 2023;94:955-968.
Collapse
Affiliation(s)
- Craig M Zaidman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Crystal M Proud
- Children's Hospital of the King's Daughters, Norfolk, VA, USA
| | | | - Kelly J Lehman
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Natalie L Goedeker
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Carol Reid
- Roche Products Ltd, Welwyn Garden City, UK
| | | | | | - Sarah Lewis
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | | | - Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Naarding KJ, Stimpson G, Ward SJ, Goemans N, McDonald C, Mercuri E, Muntoni F. 269th ENMC international workshop: 10 years of clinical trials in Duchenne muscular dystrophy - What have we learned? 9-11 December 2022, Hoofddorp, The Netherlands. Neuromuscul Disord 2023; 33:897-910. [PMID: 37926638 DOI: 10.1016/j.nmd.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
There are multiple avenues for therapeutic development in Duchenne muscular dystrophy (DMD), which are highlighted in the first section of this report for the "10 years of Clinical trials in DMD - What have we learned?" workshop. This report then provides an overview of the presentations made at the workshop grouped into the following core themes: trial outcomes, disease heterogeneity, meaningfulness of outcomes and the utility of real-world data in trials. Finally, we present the consensus that was achieved at the workshop on the learning points from 10 years of clinical trials in DMD, and possible action points from these. This includes further work in expanding the scope and range of trial outcomes and assessing the efficacy of new trial structures for DMD. We also highlight several points which should be addressed during future interactions with regulators, such as clinical meaningfulness and the use of real-world data.
Collapse
Affiliation(s)
- Karin J Naarding
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Duchenne Center Netherlands, the Netherlands
| | - Georgia Stimpson
- UCL Great Ormond Street Institute of Child Health, Dubowitz Neuromuscular Centre, London, UK
| | - Susan J Ward
- Collaborative Trajectory Analysis Project (cTAP), United States
| | - Nathalie Goemans
- University Hospitals Leuven, Dept of Child Neurology, Leuven, Belgium
| | - Craig McDonald
- Department of Physical Medicine and Rehabilitation in Sacramento, University of California, Davis, CA, United States
| | - Eugenio Mercuri
- Pediatric Neurology Unit, Catholic University, Rome, Italy; Centro Clinico Nemo, U.O.C. Neuropsichiatria Infantile Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, Dubowitz Neuromuscular Centre, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
12
|
Kim S, Willcocks RJ, Daniels MJ, Morales JF, Yoon DY, Triplett WT, Barnard AM, Conrado DJ, Aggarwal V, Belfiore‐Oshan R, Martinez TN, Walter GA, Rooney WD, Vandenborne K. Multivariate modeling of magnetic resonance biomarkers and clinical outcome measures for Duchenne muscular dystrophy clinical trials. CPT Pharmacometrics Syst Pharmacol 2023; 12:1437-1449. [PMID: 37534782 PMCID: PMC10583249 DOI: 10.1002/psp4.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Although regulatory agencies encourage inclusion of imaging biomarkers in clinical trials for Duchenne muscular dystrophy (DMD), industry receives minimal guidance on how to use these biomarkers most beneficially in trials. This study aims to identify the optimal use of muscle fat fraction biomarkers in DMD clinical trials through a quantitative disease-drug-trial modeling and simulation approach. We simultaneously developed two multivariate models quantifying the longitudinal associations between 6-minute walk distance (6MWD) and fat fraction measures from vastus lateralis and soleus muscles. We leveraged the longitudinal individual-level data collected for 10 years through the ImagingDMD study. Age of the individuals at assessment was chosen as the time metric. After the longitudinal dynamic of each measure was modeled separately, the selected univariate models were combined using correlation parameters. Covariates, including baseline scores of the measures and steroid use, were assessed using the full model approach. The nonlinear mixed-effects modeling was performed in Monolix. The final models showed reasonable precision of the parameter estimates. Simulation-based diagnostics and fivefold cross-validation further showed the model's adequacy. The multivariate models will guide drug developers on using fat fraction assessment most efficiently using available data, including the widely used 6MWD. The models will provide valuable information about how individual characteristics alter disease trajectories. We will extend the multivariate models to incorporate trial design parameters and hypothetical drug effects to inform better clinical trial designs through simulation, which will facilitate the design of clinical trials that are both more inclusive and more conclusive using fat fraction biomarkers.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | | | | | - Juan Francisco Morales
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | - Deok Yong Yoon
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | | | - Alison M. Barnard
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | | | | | | | | | - Glenn A. Walter
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| | - William D. Rooney
- Advanced Imaging Research CenterOregon Health & Science UniversityPortlandOregonUSA
| | - Krista Vandenborne
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
13
|
Xu T, Xu K, Song Y, Zhou Z, Fu H, Xu R, Cai X, Guo Y, Ye P, Xu H. High-Speed T 2 -Corrected Multiecho Magnetic Resonance Spectroscopy for Quantitatively Detecting Skeletal Muscle Fatty Infiltration and Predicting the Loss of Ambulation in Patients With Duchenne Muscular Dystrophy. J Magn Reson Imaging 2023; 58:1270-1278. [PMID: 36773028 DOI: 10.1002/jmri.28641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND High-speed T2 -corrected multiecho MRS (HISTO-MRS) is emerging as a quantitative modality for detecting muscle fat infiltration (MFF). However, the predictive value of HISTO-MRS for the loss of ambulation (LoA) in Duchenne muscular dystrophy (DMD) is unknown. PURPOSE To determine the feasibility of HISTO-MRS for assessing MFF in DMD and further identify the predictive value of HISTO-MRS for the LoA. STUDY TYPE Prospective. SUBJECTS A total of 134 DMD boys (9.20 ± 2.43 years old) and 21 healthy boys (9.25 ± 2.10 years old). FIELD STRENGTH/SEQUENCE A 3 T, fast spin echo T1 -weighted imaging (T1 WI), two-point-Dixon gradient echo sequence (2-pt-Dixon) and HISTO-MRS. ASSESSMENT Subjective T1 WI fat grades by three radiologists, ROI analysis for MFF on 2 pt-Dixon (Dixon MFF) and MFF on HISTO-MRS (HISTO MFF) by two radiologists. Clinical motor function: North Star Ambulatory Assessment, 10-m run/walk time, Gowers maneuver, and time to four-stairs climb and descend. STATISTICAL TESTS Spearman rank correlation was used to assess the relation of fat filtration assessments and motor ability. Bland-Altman plots was performed to determine the agreement of HISTO MFF and Dixon MFF. Receiver operating characteristic (ROC) curves were analyzed to determine the discriminating ability of above MRI modalities for ambulatory and nonambulatory DMD. Logistic regression was used to identify the predictor of LoA. Variables with P < 0.05 in univariate logistic regression analysis were entered into the multivariate logistic regression model. RESULTS HISTO MFF was significantly correlated with Dixon MFF. Bland-Altman plots show good agreement of HISTO MFF and Dixon MFF. ROC curves indicated that HISTO MFF show similar discrimination of LoA for DMD with Dixon MFF but better value than T1WI fat grades. Logistic regression showed that HISTO MFF was an independent predictor for LoA. DATA CONCLUSION HISTO-MRS is a potential quantitative method for assessing fat infiltration and shows predictive value for LoA in DMD patients. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 5.
Collapse
Affiliation(s)
- Ting Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Ziqi Zhou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Xiaotang Cai
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Pengfei Ye
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| |
Collapse
|
14
|
Wang F, Fang S, Li J, Yuan L, Hou B, Zhu J, Jiao Y, Liu Z, Qian M, Santini F, Wang Q, Chen L, Feng F. Correlation analysis of quantitative MRI measurements of thigh muscles with histopathology in patients with idiopathic inflammatory myopathy. Eur Radiol Exp 2023; 7:51. [PMID: 37589922 PMCID: PMC10435435 DOI: 10.1186/s41747-023-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/29/2023] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVES To validate the correlation between histopathological findings and quantitative magnetic resonance imaging (qMRI) fat fraction (FF) and water T2 mapping in patients with idiopathic inflammatory myopathy (IIM). METHODS The study included 13 patients with histopathologically confirmed IIM who underwent dedicated thigh qMRI scanning within 1 month before open muscle biopsy. For the biopsied muscles, FF derived from the iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation (IDEAL-IQ) and T2 time from T2 mapping with chemical shift selective fat saturation were measured using a machine learning software. Individual histochemical and immunohistochemical slides were evaluated using a 5-point Likert score. Inter-reader agreement and the correlation between qMRI markers and histopathological scores were analyzed. RESULTS Readers showed good to perfect agreement in qMRI measurements and most histopathological scores. FF of the biopsied muscles was positively correlated with the amount of fat in histopathological slides (p = 0.031). Prolonged T2 time was associated with the degree of variation in myofiber size, inflammatory cell infiltration, and amount of connective tissues (p ≤ 0.008 for all). CONCLUSIONS Using the machine learning-based muscle segmentation method, a positive correlation was confirmed between qMRI biomarkers and histopathological findings of patients with IIM. This finding provides a basis for using qMRI as a non-invasive tool in the diagnostic workflow of IIM. RELEVANCE STATEMENT By using ML-based muscle segmentation, a correlation between qMRI biomarkers and histopathology was found in patients with IIM: qMRI is a potential non-invasive tool in this clinical setting. KEY POINTS • Quantitative magnetic resonance imaging measurements using machine learning-based muscle segmentation have good consistency and reproductivity. • Fat fraction of idiopathic inflammatory myopathy (IIM) correlated with the amount of fat at histopathology. • Prolonged T2 time was associated with muscle inflammation in IIM.
Collapse
Affiliation(s)
- Fengdan Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shiyuan Fang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Yuan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Yang Jiao
- Department of General Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Qian
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Francesco Santini
- Department of Research and Analytic Services, University Hospital Basel, Basel, Switzerland.
- Radiological Physics, University Hospital Basel, Basel, Switzerland.
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| | - Qian Wang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Chen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Mendell JR, Shieh PB, McDonald CM, Sahenk Z, Lehman KJ, Lowes LP, Reash NF, Iammarino MA, Alfano LN, Sabo B, Woods JD, Skura CL, Mao HC, Staudt LA, Griffin DA, Lewis S, Wang S, Potter RA, Singh T, Rodino-Klapac LR. Expression of SRP-9001 dystrophin and stabilization of motor function up to 2 years post-treatment with delandistrogene moxeparvovec gene therapy in individuals with Duchenne muscular dystrophy. Front Cell Dev Biol 2023; 11:1167762. [PMID: 37497476 PMCID: PMC10366687 DOI: 10.3389/fcell.2023.1167762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: Delandistrogene moxeparvovec (SRP-9001) is an investigational gene transfer therapy designed for targeted expression of SRP-9001 dystrophin protein, a shortened dystrophin retaining key functional domains of the wild-type protein. Methods: This Phase 2, double-blind, two-part (48 weeks per part) crossover study (SRP-9001-102 [Study 102]; NCT03769116) evaluated delandistrogene moxeparvovec in patients, aged ≥4 to <8 years with Duchenne muscular dystrophy. Primary endpoints (Part 1) were change from baseline (CFBL) in SRP-9001 dystrophin expression (Week 12), by Western blot, and in North Star Ambulatory Assessment (NSAA) score (Week 48). Safety assessments included treatment-related adverse events (TRAEs). Patients were randomized and stratified by age to placebo (n = 21) or delandistrogene moxeparvovec (n = 20) and crossed over for Part 2. Results: SRP-9001 dystrophin expression was achieved in all patients: mean CFBL to Week 12 was 23.82% and 39.64% normal in Parts 1 and 2, respectively. In Part 1, CFBL to Week 48 in NSAA score (least-squares mean, LSM [standard error]) was +1.7 (0.6) with treatment versus +0.9 (0.6) for placebo; p = 0.37. Disparity in baseline motor function between groups likely confounded these results. In 4- to 5-year-olds with matched baseline motor function, CFBL to Week 48 in NSAA scores was significantly different (+2.5 points; p = 0.0172), but not significantly different in 6-to-7-year-olds with imbalanced baseline motor function (-0.7 points; p = 0.5384). For patients treated with delandistrogene moxeparvovec in Part 2, CFBL to Week 48 in NSAA score was +1.3 (2.7), whereas for those treated in Part 1, NSAA scores were maintained. As all patients in Part 2 were exposed to treatment, results were compared with a propensity-score-weighted external control (EC) cohort. The LSM difference in NSAA score between the Part 2 treated group and EC cohort was statistically significant (+2.0 points; p = 0.0009). The most common TRAEs were vomiting, decreased appetite, and nausea. Most occurred within the first 90 days and all resolved. Discussion: Results indicate robust expression of SRP-9001 dystrophin and overall stabilization in NSAA up to 2 years post-treatment. Differences in NSAA between groups in Part 1 were not significant for the overall population, likely because cohorts were stratified only by age, and other critical prognostic factors were not well matched at baseline.
Collapse
Affiliation(s)
- Jerry R. Mendell
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | | | - Craig M. McDonald
- Departments of Physical Medicine and Rehabilitation and Pediatrics, Lawrence J. Ellison Ambulatory Care Center, UC Davis Health, Sacramento, CA, United States
| | - Zarife Sahenk
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Kelly J. Lehman
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Linda P. Lowes
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Natalie F. Reash
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Megan A. Iammarino
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lindsay N. Alfano
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brenna Sabo
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | | | | | | | | | - Sarah Lewis
- Sarepta Therapeutics Inc, Cambridge, MA, United States
| | - Shufang Wang
- Sarepta Therapeutics Inc, Cambridge, MA, United States
| | | | - Teji Singh
- Sarepta Therapeutics Inc, Cambridge, MA, United States
| | | |
Collapse
|
16
|
Song Y, Xu HY, Xu K, Guo YK, Xie LJ, Peng F, Xu R, Fu H, Yuan WF, Zhou ZQ, Cheng BC, Fu C, Zhou H, Cai XT, Li XS. Clinical utilisation of multimodal quantitative magnetic resonance imaging in investigating muscular damage in Duchenne muscular dystrophy: a study on the association between gluteal muscle groups and motor function. Pediatr Radiol 2023; 53:1648-1658. [PMID: 36892624 PMCID: PMC10359373 DOI: 10.1007/s00247-023-05632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a neuromuscular disease characterised by progressive muscular weakness and atrophy. Currently, studies on DMD muscle function mostly focus on individual muscles; little is known regarding the effect of gluteal muscle group damage on motor function. OBJECTIVE To explore potential imaging biomarkers of hip and pelvic muscle groups for measuring muscular fat replacement and inflammatory oedema in DMD with multimodal quantitative magnetic resonance imaging (MRI). MATERIALS AND METHODS One hundred fifty-nine DMD boys and 32 healthy male controls were prospectively included. All subjects underwent MRI examination of the hip and pelvic muscles with T1 mapping, T2 mapping and Dixon sequences. Quantitatively measured parameters included longitudinal relaxation time (T1), transverse relaxation time (T2) and fat fraction. Investigations were all based on hip and pelvic muscle groups covering flexors, extensors, adductors and abductors. The North Star Ambulatory Assessment and stair climbing tests were used to measure motor function in DMD. RESULTS T1 of the extensors (r = 0.720, P < 0.01), flexors (r = 0.558, P < 0.01) and abductors (r = 0.697, P < 0.001) were positively correlated with the North Star Ambulatory Assessment score. In contrast, T2 of the adductors (r = -0.711, P < 0.01) and fat fraction of the extensors (r = -0.753, P < 0.01) were negatively correlated with the North Star Ambulatory Assessment score. Among them, T1 of the abductors (b = 0.013, t = 2.052, P = 0.042), T2 of the adductors (b = -0.234, t = -2.554, P = 0.012) and fat fraction of the extensors (b = -0.637, t = - 4.096, P < 0.001) significantly affected the North Star Ambulatory Assessment score. Moreover, T1 of the abductors was highly predictive for identifying motor dysfunction in DMD, with an area under the curve of 0.925. CONCLUSION Magnetic resonance biomarkers of hip and pelvic muscle groups (particularly T1 values of the abductor muscles) have the potential to be used as independent risk factors for motor dysfunction in DMD.
Collapse
Affiliation(s)
- Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin-Jun Xie
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Peng
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei-Feng Yuan
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Qi Zhou
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo-Chao Cheng
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Zhou
- Department of Rehabilitation, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Tang Cai
- Department of Rehabilitation, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue-Sheng Li
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Johansson C, Hunt H, Signorelli M, Edfors F, Hober A, Svensson AS, Tegel H, Forstström B, Aartsma-Rus A, Niks E, Spitali P, Uhlén M, Szigyarto CAK. Orthogonal proteomics methods warrant the development of Duchenne muscular dystrophy biomarkers. Clin Proteomics 2023; 20:23. [PMID: 37308827 DOI: 10.1186/s12014-023-09412-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Molecular components in blood, such as proteins, are used as biomarkers to detect or predict disease states, guide clinical interventions and aid in the development of therapies. While multiplexing proteomics methods promote discovery of such biomarkers, their translation to clinical use is difficult due to the lack of substantial evidence regarding their reliability as quantifiable indicators of disease state or outcome. To overcome this challenge, a novel orthogonal strategy was developed and used to assess the reliability of biomarkers and analytically corroborate already identified serum biomarkers for Duchenne muscular dystrophy (DMD). DMD is a monogenic incurable disease characterized by progressive muscle damage that currently lacks reliable and specific disease monitoring tools. METHODS Two technological platforms are used to detect and quantify the biomarkers in 72 longitudinally collected serum samples from DMD patients at 3 to 5 timepoints. Quantification of the biomarkers is achieved by detection of the same biomarker fragment either through interaction with validated antibodies in immuno-assays or through quantification of peptides by Parallel Reaction Monitoring Mass Spectrometry assay (PRM-MS). RESULTS Five, out of ten biomarkers previously identified by affinity-based proteomics methods, were confirmed to be associated with DMD using the mass spectrometry-based method. Two biomarkers, carbonic anhydrase III and lactate dehydrogenase B, were quantified with two independent methods, sandwich immunoassays and PRM-MS, with Pearson correlations of 0.92 and 0.946 respectively. The median concentrations of CA3 and LDHB in DMD patients was elevated in comparison to those in healthy individuals by 35- and 3-fold, respectively. Levels of CA3 vary between 10.26 and 0.36 ng/ml in DMD patients whereas those of LDHB vary between 15.1 and 0.8 ng/ml. CONCLUSIONS These results demonstrate that orthogonal assays can be used to assess the analytical reliability of biomarker quantification assays, providing a means to facilitate the translation of biomarkers to clinical practice. This strategy also warrants the development of the most relevant biomarkers, markers that can be reliably quantified with different proteomics methods.
Collapse
Affiliation(s)
- Camilla Johansson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Helian Hunt
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Mirko Signorelli
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Andreas Hober
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Anne-Sophie Svensson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hanna Tegel
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Björn Forstström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Cristina Al-Khalili Szigyarto
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
18
|
Sarkozy A, Quinlivan R, Bourke JP, Ferlini A. 263rd ENMC International Workshop: Focus on female carriers of dystrophinopathy: refining recommendations for prevention, diagnosis, surveillance, and treatment. Hoofddorp, The Netherlands, 13-15 May 2022. Neuromuscul Disord 2023; 33:274-284. [PMID: 36804616 DOI: 10.1016/j.nmd.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Affiliation(s)
- Anna Sarkozy
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, Institute of Child Health, London, UK.
| | - Rosaline Quinlivan
- Queen Square Centre for Neuromuscular Diseases, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - John P Bourke
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK and John Walton Muscular Dystrophy Research Centre, Newcastle University.
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Science, University of Ferrara, Italy.
| |
Collapse
|
19
|
Comi GP, Niks EH, Vandenborne K, Cinnante CM, Kan HE, Willcocks RJ, Velardo D, Magri F, Ripolone M, van Benthem JJ, van de Velde NM, Nava S, Ambrosoli L, Cazzaniga S, Bettica PU. Givinostat for Becker muscular dystrophy: A randomized, placebo-controlled, double-blind study. Front Neurol 2023; 14:1095121. [PMID: 36793492 PMCID: PMC9923355 DOI: 10.3389/fneur.2023.1095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Objective No treatments are approved for Becker muscular dystrophy (BMD). This study investigated the efficacy and safety of givinostat, a histone deacetylase pan-inhibitor, in adults with BMD. Methods Males aged 18-65 years with a diagnosis of BMD confirmed by genetic testing were randomized 2:1 to 12 months treatment with givinostat or placebo. The primary objective was to demonstrate statistical superiority of givinostat over placebo for mean change from baseline in total fibrosis after 12 months. Secondary efficacy endpoints included other histological parameters, magnetic resonance imaging and spectroscopy (MRI and MRS) measures, and functional evaluations. Results Of 51 patients enrolled, 44 completed treatment. At baseline, there was greater disease involvement in the placebo group than givinostat, based on total fibrosis (mean 30.8 vs. 22.8%) and functional endpoints. Mean total fibrosis did not change from baseline in either group, and the two groups did not differ at Month 12 (least squares mean [LSM] difference 1.04%; p = 0.8282). Secondary histology parameters, MRS, and functional evaluations were consistent with the primary. MRI fat fraction in whole thigh and quadriceps did not change from baseline in the givinostat group, but values increased with placebo, with LSM givinostat-placebo differences at Month 12 of -1.35% (p = 0.0149) and -1.96% (p = 0.0022), respectively. Adverse events, most mild or moderate, were reported by 88.2% and 52.9% patients receiving givinostat and placebo. Conclusion The study failed to achieve the primary endpoint. However, there was a potential signal from the MRI assessments suggesting givinostat could prevent (or slow down) BMD disease progression.
Collapse
Affiliation(s)
- Giacomo P. Comi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy,*Correspondence: Giacomo P. Comi ✉
| | - Erik H. Niks
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands,Duchenne Center Netherlands, Netherlands
| | | | | | - Hermien E. Kan
- Duchenne Center Netherlands, Netherlands,Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, Netherlands
| | | | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jules J. van Benthem
- Department of Orthopedics, Rehabilitation and Physiotherapy, Leiden University Medical Center, Leiden, Netherlands
| | - Nienke M. van de Velde
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands,Duchenne Center Netherlands, Netherlands
| | - Simone Nava
- Radiology Department, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | | | | | | |
Collapse
|
20
|
Gerhalter T, Müller C, Maron E, Thielen M, Schätzl T, Mähler A, Schütte T, Boschmann M, Herzer R, Spuler S, Gazzerro E. "suMus," a novel digital system for arm movement metrics and muscle energy expenditure. Front Physiol 2023; 14:1057592. [PMID: 36776973 PMCID: PMC9909604 DOI: 10.3389/fphys.2023.1057592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Objective: In the field of non-treatable muscular dystrophies, promising new gene and cell therapies are being developed and are entering clinical trials. Objective assessment of therapeutic effects on motor function is mandatory for economical and ethical reasons. Main shortcomings of existing measurements are discontinuous data collection in artificial settings as well as a major focus on walking, neglecting the importance of hand and arm movements for patients' independence. We aimed to create a digital tool to measure muscle function with an emphasis on upper limb motility. Methods: suMus provides a custom-made App running on smartwatches. Movement data are sent to the backend of a suMus web-based platform, from which they can be extracted as CSV data. Fifty patients with neuromuscular diseases assessed the pool of suMus activities in a first orientation phase. suMus performance was hence validated in four upper extremity exercises based on the feedback of the orientation phase. We monitored the arm metrics in a cohort of healthy volunteers using the suMus application, while completing each exercise at low frequency in a metabolic chamber. Collected movement data encompassed average acceleration, rotation rate as well as activity counts. Spearman rank tests correlated movement data with energy expenditure from the metabolic chamber. Results: Our novel application "suMus," sum of muscle activity, collects muscle movement data plus Patient-Related-Outcome-Measures, sends real-time feedback to patients and caregivers and provides, while ensuring data protection, a long-term follow-up of disease course. The application was well received from the patients during the orientation phase. In our pilot study, energy expenditure did not differ between overnight fasted and non-fasted participants. Acceleration ranged from 1.7 ± 0.7 to 3.2 ± 0.5 m/sec2 with rotation rates between 0.9 ± 0.5 and 2.0 ± 3.4 rad/sec. Acceleration and rotation rate as well as derived activity counts correlated with energy expenditure values measured in the metabolic chamber for one exercise (r = 0.58, p < 0.03). Conclusion: In the analysis of slow frequency movements of upper extremities, the integration of the suMus application with smartwatch sensors characterized motion parameters, thus supporting a use in clinical trial outcome measures. Alternative methodologies need to complement indirect calorimetry in validating accelerometer-derived energy expenditure data.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Muscle Research Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | - Teresa Schätzl
- Muscle Research Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja Mähler
- Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Till Schütte
- Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Clinical Study Center (CSC), Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Simone Spuler
- Muscle Research Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,*Correspondence: Simone Spuler, ; Elisabetta Gazzerro,
| | - Elisabetta Gazzerro
- Muscle Research Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,*Correspondence: Simone Spuler, ; Elisabetta Gazzerro,
| |
Collapse
|
21
|
Monforte M, Attarian S, Vissing J, Diaz-Manera J, Tasca G. 265th ENMC International Workshop: Muscle imaging in Facioscapulohumeral Muscular Dystrophy (FSHD): relevance for clinical trials. 22-24 April 2022, Hoofddorp, The Netherlands. Neuromuscul Disord 2023; 33:65-75. [PMID: 36369218 DOI: 10.1016/j.nmd.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, CHU La Timone Aix-Marseille Hospital University Marseille, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome 00168, Italy.
| |
Collapse
|
22
|
Ricotti V, Kadirvelu B, Selby V, Festenstein R, Mercuri E, Voit T, Faisal AA. Wearable full-body motion tracking of activities of daily living predicts disease trajectory in Duchenne muscular dystrophy. Nat Med 2023; 29:95-103. [PMID: 36658421 PMCID: PMC9873561 DOI: 10.1038/s41591-022-02045-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/14/2022] [Indexed: 01/21/2023]
Abstract
Artificial intelligence has the potential to revolutionize healthcare, yet clinical trials in neurological diseases continue to rely on subjective, semiquantitative and motivation-dependent endpoints for drug development. To overcome this limitation, we collected a digital readout of whole-body movement behavior of patients with Duchenne muscular dystrophy (DMD) (n = 21) and age-matched controls (n = 17). Movement behavior was assessed while the participant engaged in everyday activities using a 17-sensor bodysuit during three clinical visits over the course of 12 months. We first defined new movement behavioral fingerprints capable of distinguishing DMD from controls. Then, we used machine learning algorithms that combined the behavioral fingerprints to make cross-sectional and longitudinal disease course predictions, which outperformed predictions derived from currently used clinical assessments. Finally, using Bayesian optimization, we constructed a behavioral biomarker, termed the KineDMD ethomic biomarker, which is derived from daily-life behavioral data and whose value progresses with age in an S-shaped sigmoid curve form. The biomarker developed in this study, derived from digital readouts of daily-life movement behavior, can predict disease progression in patients with muscular dystrophy and can potentially track the response to therapy.
Collapse
Affiliation(s)
- Valeria Ricotti
- National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre/University College London Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Balasundaram Kadirvelu
- Brain & Behaviour Lab, Department of Bioengineering, Imperial College London, London, UK
- Brain & Behaviour Lab, Department of Computing, Imperial College London, London, UK
- Behaviour Analytics Lab, Data Science Institute, Imperial College London, London, UK
| | - Victoria Selby
- National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre/University College London Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Richard Festenstein
- Gene Control Mechanisms & Disease Group Department of Brain Sciences, Imperial College London, London, UK
- Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery (University College London Hospitals), London, UK
- Medical Research Council London Institute of Medical Sciences, London, UK
| | - Eugenio Mercuri
- Università Cattolica del Sacro Cuore, Rome, Italy
- Policlinico Universitario Agostino Gemelli University Hospital, Rome, Italy
| | - Thomas Voit
- National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre/University College London Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - A Aldo Faisal
- Brain & Behaviour Lab, Department of Bioengineering, Imperial College London, London, UK.
- Brain & Behaviour Lab, Department of Computing, Imperial College London, London, UK.
- Behaviour Analytics Lab, Data Science Institute, Imperial College London, London, UK.
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Chair in Digital Health, Faculty of Life Sciences, University of Bayreuth, Bayreuth, Germany.
- Brain & Behaviour Lab, Institute of Artificial & Human Intelligence, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
23
|
Barnard AM, Hammers DW, Triplett WT, Kim S, Forbes SC, Willcocks RJ, Daniels MJ, Senesac CR, Lott DJ, Arpan I, Rooney WD, Wang RT, Nelson SF, Sweeney HL, Vandenborne K, Walter GA. Evaluating Genetic Modifiers of Duchenne Muscular Dystrophy Disease Progression Using Modeling and MRI. Neurology 2022; 99:e2406-e2416. [PMID: 36240102 PMCID: PMC9687406 DOI: 10.1212/wnl.0000000000201163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder with a well-characterized disease phenotype but considerable interindividual heterogeneity that is not well understood. The aim of this study was to evaluate the effects of dystrophin variations and genetic modifiers of DMD on rate and age of muscle replacement by fat. METHODS One hundred seventy-five corticosteroid treated participants from the ImagingDMD natural history study underwent repeated magnetic resonance spectroscopy (MRS) of the vastus lateralis (VL) and soleus (SOL) to determine muscle fat fraction (FF). MRS was performed annually in most instances; however, some individuals had additional visits at 3 or 6 monthss intervals. FF changes over time were modeled using nonlinear mixed effects to estimate disease trajectories based on the age that the VL or SOL reached half-maximum change in FF (mu) and the time required for FF change (sigma). Computed mu and sigma values were evaluated for dystrophin variations that have demonstrated the ability to lead to a mild phenotype as well as compared between different genetic polymorphism groups. RESULTS Participants with dystrophin gene deletions amenable to exon 8 skipping (n = 4) had minimal increases in SOL FF and had an increase in VL mu value by 4.4 years compared with a reference cohort (p = 0.039). Participants with nonsense variations within exons that may produce milder phenotypes (n = 11) also had minimal increases in SOL and VL FFs. No differences in estimated FF trajectories were seen for individuals amenable to exon 44 skipping (n = 10). Modeling of the SPP1, LTBP4, and thrombospondin-1 (THBS1) genetic modifiers did not result in significant differences in muscle FF trajectories between genotype groups (p > 0.05); however, trends were noted for the polymorphisms associated with long-range regulation of LTBP4 and THBS1 that deserve further follow-up. DISCUSSION The results of this study link the historically mild phenotypes seen in individuals amenable to exon 8 skipping and with certain nonsense variations with alterations in trajectories of lower extremity muscle replacement by fat.
Collapse
Affiliation(s)
- Alison M Barnard
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - David W Hammers
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - William T Triplett
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Sarah Kim
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Sean C Forbes
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Rebecca J Willcocks
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Michael J Daniels
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Claudia R Senesac
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Donovan J Lott
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Ishu Arpan
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - William D Rooney
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Richard T Wang
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Stanley F Nelson
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - H Lee Sweeney
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Krista Vandenborne
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Glenn A Walter
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville.
| |
Collapse
|
24
|
De Wel B, Huysmans L, Peeters R, Goosens V, Ghysels S, Byloos K, Putzeys G, D'Hondt A, De Bleecker JL, Dupont P, Maes F, Claeys KG. Prospective Natural History Study in 24 Adult Patients With LGMDR12 Over 2 Years of Follow-up: Quantitative MRI and Clinical Outcome Measures. Neurology 2022; 99:e638-e649. [PMID: 35577579 DOI: 10.1212/wnl.0000000000200708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Limb-girdle muscular dystrophy autosomal recessive type 12 (LGMDR12) is a rare hereditary muscular dystrophy for which outcome measures are currently lacking. We evaluated quantitative MRI and clinical outcome measures to track disease progression to determine which tests could be useful in future clinical trials to evaluate potential therapies. METHODS We prospectively measured the following outcome measures in all participants at baseline and after 1 and 2 years: 6-minute walk distance (6MWD), 10-meter walk test (10MWT), the Medical Research Council (MRC) sum scores, Biodex isometric dynamometry, serum creatine kinase, and 6-point Dixon MRI of the thighs. RESULTS We included 24 genetically confirmed, adult patients with LGMDR12 and 24 age-matched and sex-matched healthy controls. Patients with intermediate-stage thigh muscle fat replacement at baseline (proton density fat fraction [PDFF] 20%-70%) already showed an increase in PDFF in 8 of the 14 evaluated thigh muscles after 1 year. The standardized response mean demonstrated a high responsiveness to change in PDFF for 6 individual muscles over 2 years in this group. However, in patients with early-stage (<20%) or end-stage (>70%) muscle fat replacement, PDFF did not increase significantly over 2 years of follow-up. Biodex isometric dynamometry showed a significant decrease in muscle strength in all patients in the right and left hamstrings (-6.2 Nm, p < 0.002 and -4.6 Nm, p < 0.009, respectively) and right quadriceps muscles (-9 Nm, p = 0.044) after 1 year of follow-up, whereas the 6MWD, 10MWT, and MRC sum scores were not able to detect a significant decrease in muscle function/strength even after 2 years. There was a moderately strong correlation between total thigh PDFF and clinical outcome measures at baseline. DISCUSSION Thigh muscle PDFF imaging is a sensitive outcome measure to track progressive muscle fat replacement in selected patients with LGMDR12 even after 1 year of follow-up and correlates with clinical outcome measures. Biodex isometric dynamometry can reliably capture the loss of muscle strength over the course of 1 year in patients with LGMDR12 and should be included as an outcome measure in future clinical trials as well.
Collapse
Affiliation(s)
- Bram De Wel
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Lotte Huysmans
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Ronald Peeters
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Veerle Goosens
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Stefan Ghysels
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Kris Byloos
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Guido Putzeys
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Ann D'Hondt
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Jan L De Bleecker
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Patrick Dupont
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Frederik Maes
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium
| | - Kristl G Claeys
- From the Departments of Neurology (B.D.W., A.D.H., K.G.C.) and Radiology (R.P., V.G., S.G., K.B., G.P.), and Medical Imaging Research Centre (L.H., F.M.), University Hospitals Leuven; Laboratories for Muscle Diseases and Neuropathies (B.D.W., K.G.C.) and Cognitive Neurology (P.D.), Department of Neurosciences, and Department ESAT-PSI (L.H., F.M.), KU Leuven; Leuven Brain Institute (LBI) (B.D.W., K.G.C., P.D.); and Department of Neurology (J.L.D.B.), University Hospital Gent, Belgium.
| |
Collapse
|
25
|
Sherlock SP, Palmer J, Wagner KR, Abdel-Hamid HZ, Bertini E, Tian C, Mah JK, Kostera-Pruszczyk A, Muntoni F, Guglieri M, Brandsema JF, Mercuri E, Butterfield RJ, McDonald CM, Charnas L, Marraffino S. Quantitative magnetic resonance imaging measures as biomarkers of disease progression in boys with Duchenne muscular dystrophy: a phase 2 trial of domagrozumab. J Neurol 2022; 269:4421-4435. [PMID: 35396602 PMCID: PMC9294028 DOI: 10.1007/s00415-022-11084-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/14/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, neuromuscular disorder caused by mutations in the DMD gene that results in a lack of functional dystrophin protein. Herein, we report the use of quantitative magnetic resonance imaging (MRI) measures as biomarkers in the context of a multicenter phase 2, randomized, placebo-controlled clinical trial evaluating the myostatin inhibitor domagrozumab in ambulatory boys with DMD (n = 120 aged 6 to < 16 years). MRI scans of the thigh to measure muscle volume, muscle volume index (MVI), fat fraction, and T2 relaxation time were obtained at baseline and at weeks 17, 33, 49, and 97 as per protocol. These quantitative MRI measurements appeared to be sensitive and objective biomarkers for evaluating disease progression, with significant changes observed in muscle volume, MVI, and T2 mapping measures over time. To further explore the utility of quantitative MRI measures as biomarkers to inform longer term functional changes in this cohort, a regression analysis was performed and demonstrated that muscle volume, MVI, T2 mapping measures, and fat fraction assessment were significantly correlated with longer term changes in four-stair climb times and North Star Ambulatory Assessment functional scores. Finally, less favorable baseline measures of MVI, fat fraction of the muscle bundle, and fat fraction of lean muscle were significant risk factors for loss of ambulation over a 2-year monitoring period. These analyses suggest that MRI can be a valuable tool for use in clinical trials and may help inform future functional changes in DMD.Trial registration: ClinicalTrials.gov identifier, NCT02310763; registered December 2014.
Collapse
Affiliation(s)
| | | | - Kathryn R Wagner
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hoda Z Abdel-Hamid
- Division of Child Neurology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Enrico Bertini
- Unit of Neuromuscular Disease, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cuixia Tian
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jean K Mah
- Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | | | - Eugenio Mercuri
- Pediatric Neurology, Catholic University, Rome, Italy
- Centro Nemo, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | | | | | | | | |
Collapse
|
26
|
Veeger TTJ, van de Velde NM, Keene KR, Niks EH, Hooijmans MT, Webb AG, de Groot JH, Kan HE. Baseline fat fraction is a strong predictor of disease progression in Becker muscular dystrophy. NMR IN BIOMEDICINE 2022; 35:e4691. [PMID: 35032073 PMCID: PMC9286612 DOI: 10.1002/nbm.4691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In Becker muscular dystrophy (BMD), muscle weakness progresses relatively slowly, with a highly variable rate among patients. This complicates clinical trials, as clinically relevant changes are difficult to capture within the typical duration of a trial. Therefore, predictors for disease progression are needed. We assessed if temporal increase of fat fraction (FF) in BMD follows a sigmoidal trajectory and whether fat fraction at baseline (FFbase) could therefore predict FF increase after 2 years (ΔFF). Thereafter, for two different MR-based parameters, we tested the additional predictive value to FFbase. We used 3-T Dixon data from the upper and lower leg, and multiecho spin-echo MRI and 7-T 31 P MRS datasets from the lower leg, acquired in 24 BMD patients (age: 41.4 [SD 12.8] years). We assessed the pattern of increase in FF using mixed-effects modelling. Subsequently, we tested if indicators of muscle damage like standard deviation in water T2 (stdT2 ) and the phosphodiester (PDE) over ATP ratio at baseline had additional value to FFbase for predicting ∆FF. The association between FFbase and ΔFF was described by the derivative of a sigmoid function and resulted in a peak ΔFF around 0.45 FFbase (fourth-order polynomial term: t = 3.7, p < .001). StdT2 and PDE/ATP were not significantly associated with ∆FF if FFbase was included in the model. The relationship between FFbase and ∆FF suggests a sigmoidal trajectory of the increase in FF over time in BMD, similar to that described for Duchenne muscular dystrophy. Our results can be used to identify muscles (or patients) that are in the fast progressing stage of the disease, thereby facilitating the conduct of clinical trials.
Collapse
Affiliation(s)
- Thom T. J. Veeger
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Nienke M. van de Velde
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Kevin R. Keene
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Erik H. Niks
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Melissa T. Hooijmans
- Department of Radiology & Nuclear MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Andrew G. Webb
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| |
Collapse
|
27
|
Mellion ML, Widholm P, Karlsson M, Ahlgren A, Tawil R, Wagner KR, Statland JM, Wang L, Shieh PB, van Engelen BGM, Kools J, Ronco L, Odueyungbo A, Jiang J, Han JJ, Hatch M, Towles J, Leinhard OD, Cadavid D. Quantitative Muscle Analysis in FSHD Using Whole-Body Fat-Referenced MRI: Composite Scores for Longitudinal and Cross-Sectional Analysis. Neurology 2022; 99:e877-e889. [PMID: 35750498 DOI: 10.1212/wnl.0000000000200757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Facioscapulohumeral muscular dystrophy (FSHD) is a rare, debilitating disease characterized by progressive muscle weakness. MRI is a sensitive assessment of disease severity and progression. We developed a quantitative whole-body (WB) musculoskeletal MRI (WB-MSK-MRI) protocol analyzing muscles in their entirety. This study aimed to assess WB-MSK-MRI as a potential imaging biomarker providing reliable measurements of muscle health that capture disease heterogeneity and clinically meaningful composite assessments correlating with severity and more responsive to change in clinical trials. METHODS Participants 18 to 65 years, genetically confirmed FSHD1, clinical severity 2 to 4 (Ricci's scale, range 0-5), and ≥1 short tau inversion recovery (STIR)-positive lower extremity muscle eligible for needle biopsy enrolled at 6 sites; imaged twice 4 - 12 weeks apart. Volumetric analysis of muscle fat infiltration (MFI), muscle fat fraction (MFF), and lean muscle volume (LMV) in 18 (36 total) muscles from bilateral shoulder, proximal arm, trunk, and legs was performed after automated atlas-based segmentation followed by manual verification. A WB composite score, including muscles at highest risk for progression, and functional cross-sectional composites for correlation with relevant functional outcomes including timed up and go (TUG), FSHD-TUG, and reachable workspace (RWS) were developed. RESULTS Seventeen participants;16 follow-up MRIs performed at 52 days (range 36 to 85). Functional cross-sectional composites (MFF and MFI) showed moderate to strong correlations: TUG (rho=0.71, rho=0.83), FSHD-TUG (rho=0.73, rho=0.73), and RWS (left arm: rho=-0.71, rho=-0.53; right arm: rho=-0.61, rho=-0.65). WB composite variability:LMVtot, coefficient of variation (CV) 1.9% and 3.4%; MFFtot, within-subject standard deviation (Sw) 0.5% and 1.5%; MFItot, (Sw), 0.3% and 0.4% for normal and intermediate muscles respectively. CV and Sw were higher in intermediate (MFI≥0.10; MFF<0.50) than in normal (MFI<0.10, MFF<0.50) muscles. DISCUSSION We developed a WB-MSK-MRI protocol and composite measures that capture disease heterogeneity and assess muscle involvement as it correlates with FSHD-relevant clinical endpoints. Functional composites robustly correlate with functional assessments. Stability of the WB composite shows it could be an assessment of change in therapeutic clinical trials. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that quantitative WB-MSK-MRI findings associate with FSHD1 severity measured using established functional assessments.
Collapse
Affiliation(s)
| | - Per Widholm
- AMRA Medical AB, Linköping, Sweden.,Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | | | | | - Rabi Tawil
- University of Rochester Medical Center, Rochester, NY
| | - Kathryn R Wagner
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Leo Wang
- University of Washington, Seattle, WA
| | | | | | - Joost Kools
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Jay J Han
- University of California-Irvine, Orange, CA
| | - Maya Hatch
- University of California-Irvine, Orange, CA
| | | | | | | |
Collapse
|
28
|
Batra A, Barnard AM, Lott DJ, Willcocks RJ, Forbes SC, Chakraborty S, Daniels MJ, Arbogast J, Triplett W, Henricson EK, Dayan JG, Schmalfuss C, Sweeney L, Byrne BJ, McDonald CM, Vandenborne K, Walter GA. Longitudinal changes in cardiac function in Duchenne muscular dystrophy population as measured by magnetic resonance imaging. BMC Cardiovasc Disord 2022; 22:260. [PMID: 35681116 PMCID: PMC9185987 DOI: 10.1186/s12872-022-02688-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/19/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The lack of dystrophin in cardiomyocytes in Duchenne muscular dystrophy (DMD) is associated with progressive decline in cardiac function eventually leading to death by 20-40 years of age. The aim of this prospective study was to determine rate of progressive decline in left ventricular (LV) function in Duchenne muscular dystrophy (DMD) over 5 years. METHODS Short axis cine and grid tagged images of the LV were acquired in individuals with DMD (n = 59; age = 5.3-18.0 years) yearly, and healthy controls at baseline (n = 16, age = 6.0-18.3 years) on a 3 T MRI scanner. Grid-tagged images were analyzed for composite circumferential strain (ℇcc%) and ℇcc% in six mid LV segments. Cine images were analyzed for left ventricular ejection fraction (LVEF), LV mass (LVM), end-diastolic volume (EDV), end-systolic volume (ESV), LV atrioventricular plane displacement (LVAPD), and circumferential uniformity ratio estimate (CURE). LVM, EDV, and ESV were normalized to body surface area for a normalized index of LVM (LVMI), EDV (EDVI) and ESV (ESVI). RESULTS At baseline, LV ℇcc% was significantly worse in DMD compared to controls and five of the six mid LV segments demonstrated abnormal strain in DMD. Longitudinal measurements revealed that ℇcc% consistently declined in individuals with DMD with the inferior segments being more affected. LVEF progressively declined between 3 to 5 years post baseline visit. In a multivariate analysis, the use of cardioprotective drugs trended towards positively impacting cardiac measures while loss of ambulation and baseline age were associated with negative impact. Eight out of 17 cardiac parameters reached a minimal clinically important difference with a threshold of 1/3 standard deviation. CONCLUSION The study shows a worsening of circumferential strain in dystrophic myocardium. The findings emphasize the significance of early and longitudinal assessment of cardiac function in DMD and identify early biomarkers of cardiac dysfunction to help design clinical trials to mitigate cardiac pathology. This study provides valuable non-invasive and non-contrast based natural history data of cardiac changes which can be used to design clinical trials or interpret the results of current trials aimed at mitigating the effects of decreased cardiac function in DMD.
Collapse
Affiliation(s)
- Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Alison M Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Rebecca J Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | | | - Michael J Daniels
- Department of Statistics, University of Florida, Gainesville, FL, 32610, USA
| | - Jannik Arbogast
- Department of Physiology and Functional Genomics, University of Florida, 1600 SW Archer RD, M552, P.O. Box 1002754, Gainesville, FL, 32610, USA
| | - William Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Erik K Henricson
- Department of Physical Medicine and Rehabilitation, University of California, Davis, Sacramento, CA, 95817, USA
| | | | - Carsten Schmalfuss
- Department of Medicine, Cardiology, University of Florida, Gainesville, FL, 32610, USA
| | - Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Craig M McDonald
- Department of Physical Medicine and Rehabilitation, University of California, Davis, Sacramento, CA, 95817, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, 1600 SW Archer RD, M552, P.O. Box 1002754, Gainesville, FL, 32610, USA.
| |
Collapse
|
29
|
Reyngoudt H, Smith FE, Caldas de Almeida Araújo E, Wilson I, Fernández-Torrón R, James MK, Moore UR, Díaz-Manera J, Marty B, Azzabou N, Gordish H, Rufibach L, Hodgson T, Wallace D, Ward L, Boisserie JM, Le Louër J, Hilsden H, Sutherland H, Canal A, Hogrel JY, Jacobs M, Stojkovic T, Bushby K, Mayhew A, Straub V, Carlier PG, Blamire AM. Three-year quantitative magnetic resonance imaging and phosphorus magnetic resonance spectroscopy study in lower limb muscle in dysferlinopathy. J Cachexia Sarcopenia Muscle 2022; 13:1850-1863. [PMID: 35373496 PMCID: PMC9178361 DOI: 10.1002/jcsm.12987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Natural history studies in neuromuscular disorders are vital to understand the disease evolution and to find sensitive outcome measures. We performed a longitudinal assessment of quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31 P MRS) outcome measures and evaluated their relationship with function in lower limb skeletal muscle of dysferlinopathy patients. METHODS Quantitative MRI/31 P MRS data were obtained at 3 T in two different sites in 54 patients and 12 controls, at baseline, and three annual follow-up visits. Fat fraction (FF), contractile cross-sectional area (cCSA), and muscle water T2 in both global leg and thigh segments and individual muscles and 31 P MRS indices in the anterior leg compartment were assessed. Analysis included comparisons between patients and controls, assessments of annual changes using a linear mixed model, standardized response means (SRM), and correlations between MRI and 31 P MRS markers and functional markers. RESULTS Posterior muscles in thigh and leg showed the highest FF values. FF at baseline was highly heterogeneous across patients. In ambulant patients, median annual increases in global thigh and leg segment FF values were 4.1% and 3.0%, respectively (P < 0.001). After 3 years, global thigh and leg FF increases were 9.6% and 8.4%, respectively (P < 0.001). SRM values for global thigh FF were over 0.8 for all years. Vastus lateralis muscle showed the highest SRM values across all time points. cCSA decreased significantly after 3 years with median values of 11.0% and 12.8% in global thigh and global leg, respectively (P < 0.001). Water T2 values in ambulant patients were significantly increased, as compared with control values (P < 0.001). The highest water T2 values were found in the anterior part of thigh and leg. Almost all 31 P MRS indices were significantly different in patients as compared with controls (P < 0.006), except for pHw , and remained, similar as to water T2 , abnormal for the whole study duration. Global thigh water T2 at baseline was significantly correlated to the change in FF after 3 years (ρ = 0.52, P < 0.001). There was also a significant relationship between the change in functional score and change in FF after 3 years in ambulant patients (ρ = -0.55, P = 0.010). CONCLUSIONS This multi-centre study has shown that quantitative MRI/31 P MRS measurements in a heterogeneous group of dysferlinopathy patients can measure significant changes over the course of 3 years. These data can be used as reference values in view of future clinical trials in dysferlinopathy or comparisons with quantitative MRI/S data obtained in other limb-girdle muscular dystrophy subtypes.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Fiona E Smith
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ericky Caldas de Almeida Araújo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Ian Wilson
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Roberto Fernández-Torrón
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Neuromuscular Area, Biodonostia Health Research Institute, Neurology Service, Donostia University Hospital, Donostia-San Sebastian, Spain
| | - Meredith K James
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ursula R Moore
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Neuromuscular Disorders Unit, Neurology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Heather Gordish
- Center for Translational Science, Division of Biostatistics and Study Methodology, Children's National Health System, Washington, DC, USA.,Pediatrics, Epidemiology and Biostatistics, George Washington University, Washington, DC, USA
| | | | - Tim Hodgson
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dorothy Wallace
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Ward
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jean-Marc Boisserie
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Julien Le Louër
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Heather Hilsden
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Helen Sutherland
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Aurélie Canal
- Neuromuscular Physiology and Evaluation Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Marni Jacobs
- Center for Translational Science, Division of Biostatistics and Study Methodology, Children's National Health System, Washington, DC, USA.,Pediatrics, Epidemiology and Biostatistics, George Washington University, Washington, DC, USA
| | - Tanya Stojkovic
- Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital (AP-HP), Paris, France
| | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anna Mayhew
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Andrew M Blamire
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Suslov V, Suslova G, Lytaev S. MRI Assessment of Motor Capabilities in Patients with Duchenne Muscular Dystrophy According to the Motor Function Measure Scale. Tomography 2022; 8:948-960. [PMID: 35448710 PMCID: PMC9025497 DOI: 10.3390/tomography8020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The research was aimed on the study of motor capabilities on the Motor Function Measure (MFM) scale in ambulant and non-ambulant patients with Duchenne muscular dystrophy, and to conduct a correlation analysis between the results of the MFM scale and Magnetic Resonance Imaging (MRI) data. A total of 46 boys who had genetically confirmed Duchenne muscular dystrophy (age from 2.1 to 16.7 years) and were in clinical rehabilitation were investigated. An assessment was performed according to the Motor Function Measure scale (subsections D1, D2, D3, and the total score), an MRI obtaining T1-VI of the muscles of the pelvic girdle was conducted, and the thighs and lower legs were further assessed in terms of the severity of fibrous-fat degeneration according to the Mercuri scale. In ambulant patients, the ability to stand up and move (D1) was 74.4%, axial and proximal motor functions (D2)—97.6%, distal motor functions (D3)—96.2%, and total score was 87.9%. In non-ambulant patients, the ability to stand up and move (D1) was 1.7%, axial and proximal motor functions (D2)—47%, distal motor functions (D3)—67.5%, and the total score—33.1%. A high inverse correlation (r = −0.7, p < 0.05) of the MRI data of the pelvic girdle and thighs with tasks D1, as well as a noticeable inverse correlation with tasks D2 (r = −0.6, p < 0.05) of the scale MFM, were revealed in the ambulant group of patients. In the non-ambulant group of patients, the MRI data of the lower legs muscles were characterized by a high inverse correlation (r = −0.7, p < 0.05) with tasks D3 and a noticeable inverse correlation (r = −0.6, p < 0.05) with tasks D1 of the MFM scale. Conclusion: The Motor Function Measure scale allows effective assessment of the motor capabilities of patients with Duchenne muscular dystrophy at different stages of the disease, which is confirmed by visualization of fibro-fatty muscle replacement.
Collapse
Affiliation(s)
- Vasily Suslov
- Department of Rehabilitation, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia;
- Correspondence: ; Tel.: +7-911-2297049
| | - Galina Suslova
- Department of Rehabilitation, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia;
| | - Sergey Lytaev
- Department of Normal Physiology, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia;
| |
Collapse
|
31
|
Abdulhady H, Sakr HM, Elsayed NS, El-Sobky TA, Fahmy N, Saadawy AM, Elsedfy H. Ambulatory Duchenne muscular dystrophy children: cross-sectional correlation between function, quantitative muscle ultrasound and MRI. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2022; 41:1-14. [PMID: 35465338 PMCID: PMC9004336 DOI: 10.36185/2532-1900-063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 01/24/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive genetic muscle disease. Quantitative muscle ultrasound (US), muscle MRI, and functional tools are important to delineate characteristics of muscle involvement. We aimed to establish correlations between clinical/functional and above-named imaging tools respecting their diagnostic and prognostic role in DMD children. A cross-sectional retrospective study of 27 steroid-naive, ambulant male children/adolescents with genetically-confirmed DMD (mean age, 8.8 ± 3.3 years). Functional performance was assessed using motor function measure (MFM) which assess standing/transfer (D1), proximal (D2) and distal (D3) motor function, and six-minute walk test (6MWT). Imaging evaluation included quantitative muscle MRI which measured muscle fat content in a specific location of right rectus femoris by mDixon sequence. Quantitative muscle US measured right rectus femoris muscle brightness in standardized US image as an indicator of muscle fat content. We found a highly significant positive correlation between the mean MFM total score and 6MWT (R = 0.537, p = 0.007), and a highly significant negative correlation between fat content by muscle US and MFM total score (R = -0.603, p = 0.006) and its D1 subscore (R =-0.712, p = 0.001), and a significant negative correlation between fat content by US and 6MWT (R = -0.529, p = 0.02), and a significant positive correlation between muscle fat content by mDixon MRI and patient's age (R = 0.617, p = 0.01). Quantitative muscle US correlates significantly with clinical/functional assessment tools as MFM and 6MWT, and augments their role in disease-tracking of DMD. Quantitative muscle US has the potential to act as a substitute to functional assessment tools.
Collapse
Affiliation(s)
- Hala Abdulhady
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hossam M. Sakr
- Department of Diagnostic and Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt,Correspondence Hossam M. Sakr Department of Diagnostic and Interventional Radiology and Molecular Imaging Faculty of Medicine, Ain Shams University, Abbassia square, 11381 Cairo, Egypt. E-mail:
| | - Nermine S. Elsayed
- Department of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer A. El-Sobky
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagia Fahmy
- Neuromuscular Unit, Department of Neuropsychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr M. Saadawy
- Department of Diagnostic and Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba Elsedfy
- Department of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
32
|
Mensch A, Nägel S, Zierz S, Kraya T, Stoevesandt D. Bildgebung der Muskulatur bei Neuromuskulären Erkrankungen
– von der Initialdiagnostik bis zur Verlaufsbeurteilung. KLIN NEUROPHYSIOL 2022. [DOI: 10.1055/a-1738-5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie bildgebende Diagnostik hat sich zu einem integralen Element der Betreuung von
PatientInnen mit neuromuskulären Erkrankungen entwickelt. Als
wesentliches Diagnostikum ist hierbei die Magnetresonanztomografie als breit
verfügbares und vergleichsweise standardisiertes Untersuchungsverfahren
etabliert, wobei die Sonografie der Muskulatur bei hinreichend erfahrenem
Untersucher ebenfalls geeignet ist, wertvolle diagnostische Informationen zu
liefern. Das CT hingegen spielt eine untergeordnete Rolle und sollte nur bei
Kontraindikationen für eine MRT in Erwägung gezogen werden.
Zunächst wurde die Bildgebung bei Muskelerkrankungen primär in
der Initialdiagnostik unter vielfältigen Fragestellungen eingesetzt. Das
Aufkommen innovativer Therapiekonzepte bei verschiedenen neuromuskulären
Erkrankungen machen neben einer möglichst frühzeitigen
Diagnosestellung insbesondere auch eine multimodale Verlaufsbeurteilung zur
Evaluation des Therapieansprechens notwendig. Auch hier wird die Bildgebung der
Muskulatur als objektiver Parameter des Therapieerfolges intensiv diskutiert und
in Forschung wie Praxis zunehmend verwendet.
Collapse
Affiliation(s)
- Alexander Mensch
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Steffen Nägel
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Stephan Zierz
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Torsten Kraya
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
- Klinik für Neurologie, Klinikum St. Georg,
Leipzig
| | - Dietrich Stoevesandt
- Universitätsklinik und Poliklinik für Radiologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| |
Collapse
|
33
|
Barnard AM, Lott DJ, Batra A, Triplett WT, Willcocks RJ, Forbes SC, Rooney WD, Daniels MJ, Smith BK, Vandenborne K, Walter GA. Characterizing Expiratory Respiratory Muscle Degeneration in Duchenne Muscular Dystrophy Using MRI. Chest 2022; 161:753-763. [PMID: 34536384 PMCID: PMC9160975 DOI: 10.1016/j.chest.2021.08.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Expiratory muscle weakness and impaired airway clearance are early signs of respiratory dysfunction in Duchenne muscular dystrophy (DMD), a degenerative muscle disorder in which muscle cells are damaged and replaced by fibrofatty tissue. Little is known about expiratory muscle pathology and its relationship to cough and airway clearance capacity; however, the level of muscle replacement by fat can be estimated using MRI and expressed as a fat fraction (FF). RESEARCH QUESTION How does abdominal expiratory muscle fatty infiltration change over time in DMD and relate to clinical expiratory function? STUDY DESIGN AND METHODS Individuals with DMD underwent longitudinal MRI of the abdomen to determine FF in the internal oblique, external oblique, and rectus abdominis expiratory muscles. FF data were used to estimate a model of expiratory muscle degeneration by using nonlinear mixed effects and a cumulative distribution function. FVC, maximal inspiratory and expiratory pressures, and peak cough flow were collected as clinical correlates to MRI. RESULTS Forty individuals with DMD (aged 6-18 years at baseline) participated in up to five visits over 36 months. Modeling estimated the internal oblique progresses most quickly and reached 50% replacement by fat at a mean patient age of 13.0 years (external oblique, 14.0 years; rectus abdominis, 16.2 years). Corticosteroid-untreated individuals (n = 4) reached 50% muscle replacement by fat 3 to 4 years prior to treated individuals. Individuals with mild clinical dystrophic phenotypes (n = 3) reached 50% muscle replacement by fat 4 to 5 years later than corticosteroid-treated individuals. Internal and external oblique FFs near 50% were associated with maximal expiratory pressures < 60 cm H2O and peak cough flows < 270 L/min. INTERPRETATION These data improve understanding of the early phase of respiratory compromise in DMD, which typically presents as airway clearance dysfunction prior to the onset of hypoventilation, and links expiratory muscle fatty infiltration to pulmonary function measures.
Collapse
Affiliation(s)
- Alison M Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | | | | | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | | | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | | | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL.
| |
Collapse
|
34
|
Rebecca JW, Alison MB, Ryan JW, Claudia RS, Donovan JL, Ann TH, Kirsten LZ, Sean CF, William DR, Dah-Jyuu W, Erika LF, Gihan IT, Michael JD, William TT, Glenn AW, Krista V. Development of Contractures in DMD in Relation to MRI-Determined Muscle Quality and Ambulatory Function. J Neuromuscul Dis 2022; 9:289-302. [PMID: 35124659 DOI: 10.3233/jnd-210731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Joint contractures are common in boys and men with Duchenne muscular dystrophy (DMD), and management of contractures is an important part of care. The optimal methods to prevent and treat contractures are controversial, and the natural history of contracture development is understudied in glucocorticoid treated individuals at joints beyond the ankle. OBJECTIVE To describe the development of contractures over time in a large cohort of individuals with DMD in relation to ambulatory ability, functional performance, and muscle quality measured using magnetic resonance imaging (MRI) and spectroscopy (MRS). METHODS In this longitudinal study, range of motion (ROM) was measured annually at the hip, knee, and ankle, and at the elbow, forearm, and wrist at a subset of visits. Ambulatory function (10 meter walk/run and 6 minute walk test) and MR-determined muscle quality (transverse relaxation time (T2) and fat fraction) were measured at each visit. RESULTS In 178 boys with DMD, contracture prevalence and severity increased with age. Among ambulatory participants, more severe contractures (defined as greater loss of ROM) were significantly associated with worse ambulatory function, and across all participants, more severe contractures significantly associated with higher MRI T2 or MRS FF (ρ: 0.40-0.61 in the lower extremity; 0.20-0.47 in the upper extremity). Agonist/antagonist differences in MRI T2 were not strong predictors of ROM. CONCLUSIONS Contracture severity increases with disease progression (increasing age and muscle involvement and decreasing functional ability), but is only moderately predicted by muscle fatty infiltration and MRI T2, suggesting that other changes in the muscle, tendon, or joint contribute meaningfully to contracture formation in DMD.
Collapse
Affiliation(s)
| | | | - J Wortman Ryan
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - T Harrington Ann
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Arcadia University, Glennside, PA, USA
| | - L Zilke Kirsten
- Shriners Hospitals for Children -Portland, OR, USA.,Oregon Health and Science University, Portland, OR, USA
| | | | | | - Wang Dah-Jyuu
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Zi Y, Zhang B, Liu L, Cao X, Zeng W, Li X, Zhang G, Wan J, Shi L, Wu H. Fat content in lumbar paravertebral muscles: Quantitative and qualitative analysis using dual-energy CT in correlation to MR imaging. Eur J Radiol 2022; 148:110150. [PMID: 35032847 DOI: 10.1016/j.ejrad.2021.110150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aims to assess the diagnostic performance of dual-energy computed tomography (DECT) on lumbar paravertebral muscles fat infiltration (PMFI) in participants with low back pain (LBP). METHOD In this prospective study, 21 participants with LBP were performed with noncontrast DECT scans within 1 week after magnetic resonance (MR) examinations. The assessment was based on the selected region of interest obtained from the paravertebral L1/L2-L5/S1 muscle. On visual evaluation, PMFI was assessed at DECT virtual monoenergetic images (80 keV) with Goutallier classification system using MR results as a reference. Quantitative parameters fat fraction, CT number, ΔCT number (difference of CT number at 140 and 80 keV), and optimal cutoff values above the indicators between MR adjacent grades were measured. RESULTS In this study, 582 ROIs from 21 participants (mean age, 60 ± 16 years old; 15 females) were evaluated. Sensitivity, specificity, and accuracy of readers 1 and 2 at severe grade (grades 3 and 4) were 67% and 85% (22 and 28 of 33), 99% and 99% (159 and 160 of 161), and 93% and 97% (181 and 188 of 194), respectively. Interobserver reliability was high with κ = 0.85 (p < 0.001). For DECT quantification parameters, significance was all represented between five grades (all p < 0.01). The area under the curve of indicators for discrimination between severe (grades 3 and 4) and normal and moderate (grades 0, 1, and 2) grades were > 0.80 (p < 0.001). CONCLUSIONS DECT was a promising qualitative and quantitative imaging technique to assess lumbar PMFI in participants with LBP and could provide accurate quantification for different fat infiltration (FI) degrees. Moreover, visual DECT assessment could excellently distinguish severe from normal and moderate FI of MR grades.
Collapse
Affiliation(s)
- Yunyan Zi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, Guangdong, PR China; Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China.
| | - Baoshuai Zhang
- Institutes for Life Science, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Lin Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China; Medical College, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Ximing Cao
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China.
| | - Weibin Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, PR China.
| | - Xiuhui Li
- Department of Information Media Industry, Guangzhou Public Utility Technician College, Guangzhou 510030, Guangdong, PR China.
| | - Guangfeng Zhang
- Department of Rheumatism, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China.
| | - Jiayu Wan
- Institutes for Life Science, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Lei Shi
- CT Collaboration, Siemens Healthcare Ltd, Guangzhou 510080, Guangdong, PR China.
| | - Haijun Wu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China.
| |
Collapse
|
36
|
Comi GP, Niks EH, Cinnante CM, Kan HE, Vandenborne K, Willcocks RJ, Velardo D, Ripolone M, van Benthem JJ, van de Velde NM, Nava S, Ambrosoli L, Cazzaniga S, Bettica PU. Characterization of patients with Becker muscular dystrophy by histology, magnetic resonance imaging, function, and strength assessments. Muscle Nerve 2021; 65:326-333. [PMID: 34918368 PMCID: PMC9302983 DOI: 10.1002/mus.27475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
Introduction/Aims Becker muscular dystrophy (BMD) is characterized by variable disease severity and progression, prompting the identification of biomarkers for clinical trials. We used data from an ongoing phase II study to provide a comprehensive characterization of a cohort of patients with BMD, and to assess correlations between histological and magnetic resonance imaging (MRI) markers with muscle function and strength. Methods Eligible patients were ambulatory males with BMD, aged 18 to 65 years (200 to 450 meters on 6‐minute walk test). The following data were obtained: function test results, strength, fat‐fraction quantification using chemical shift‐encoded MRI (whole thigh and quadriceps), and fibrosis and muscle fiber area (MFA) of the brachial biceps. Results Of 70 patients screened, 51 entered the study. There was substantial heterogeneity between patients in muscle morphology (histology and MRI), with high fat replacement. Total fibrosis correlated significantly and mostly moderately with all functional endpoints, including both upper arm strength assessments (left and right elbow flexion rho −.574 and −.588, respectively [both P < .0001]), as did MRI fat fraction (whole thigh and quadriceps), for example, with four‐stair‐climb velocity −.554 and −.550, respectively (both P < .0001). Total fibrosis correlated significantly and moderately with both MRI fat fraction assessments (.500 [P = .0003] and .423 [.0024], respectively). Discussion In this BMD cohort, micro‐ and macroscopic morphological muscle parameters correlated moderately with each other and with functional parameters, potentially supporting the use of MRI fat fraction and histology as surrogate outcome measures in patients with BMD, although additional research is required to validate this.
Collapse
Affiliation(s)
- Giacomo P Comi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Duchenne Center Netherlands, The Netherlands
| | - Claudia M Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Hermien E Kan
- Duchenne Center Netherlands, The Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Krista Vandenborne
- ImagingDMD and Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Rebecca J Willcocks
- ImagingDMD and Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jules J van Benthem
- Department of Orthopedics, Rehabilitation and Physiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke M van de Velde
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Duchenne Center Netherlands, The Netherlands
| | - Simone Nava
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | |
Collapse
|
37
|
Brogna C, Cristiano L, Verdolotti T, Norcia G, Ficociello L, Ruiz R, Coratti G, Fanelli L, Forcina N, Petracca G, Chieppa F, Tartaglione T, Colosimo C, Pane M, Mercuri E. Longitudinal Motor Functional Outcomes and Magnetic Resonance Imaging Patterns of Muscle Involvement in Upper Limbs in Duchenne Muscular Dystrophy. Medicina (B Aires) 2021; 57:medicina57111267. [PMID: 34833484 PMCID: PMC8624281 DOI: 10.3390/medicina57111267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: The aim of this study was to evaluate longitudinal changes using both upper limb muscle Magnetic Resonance Imaging (MRI) at shoulder, arm and forearm levels and Performance of upper limb (PUL) in ambulant and non-ambulant Duchenne Muscular Dystrophy (DMD) patients. We also wished to define whether baseline muscle MRI could help to predict functional changes after one year. Materials and Methods: Twenty-seven patients had both baseline and 12month muscle MRI and PUL assessments one year later. Results: Ten were ambulant (age range 5–16 years), and 17 non ambulant (age range 10–30 years). Increased abnormalities equal or more than 1.5 point on muscle MRI at follow up were found on all domains: at shoulder level 12/27 patients (44%), at arm level 4/27 (15%) and at forearm level 6/27 (22%). Lower follow up PUL score were found in 8/27 patients (30%) at shoulder level, in 9/27 patients (33%) at mid-level whereas no functional changes were found at distal level. There was no constant association between baseline MRI scores and follow up PUL scores at arm and forearm levels but at shoulder level patients with moderate impairment on the baseline MRI scores between 16 and 34 had the highest risk of decreased function on PUL over a year. Conclusions: Our results confirmed that the integrated use of functional scales and imaging can help to monitor functional and MRI changes over time.
Collapse
Affiliation(s)
- Claudia Brogna
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy;
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
| | - Lara Cristiano
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Tommaso Verdolotti
- Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (T.V.); (L.F.); (C.C.)
| | - Giulia Norcia
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
| | - Luana Ficociello
- Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (T.V.); (L.F.); (C.C.)
| | - Roberta Ruiz
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Giorgia Coratti
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Lavinia Fanelli
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
| | - Nicola Forcina
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
| | - Giorgia Petracca
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Fabrizia Chieppa
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermatologico Italiano, IRCCS, 00167 Rome, Italy;
| | - Cesare Colosimo
- Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (T.V.); (L.F.); (C.C.)
- Institute of Radiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marika Pane
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Eugenio Mercuri
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy;
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
- Correspondence: ; Tel.: +39-06-30155340; Fax: +39-06-30154363
| |
Collapse
|
38
|
Lindsay A, Trewin AJ, Sadler KJ, Laird C, Della Gatta PA, Russell AP. Sensitivity to behavioral stress impacts disease pathogenesis in dystrophin-deficient mice. FASEB J 2021; 35:e22034. [PMID: 34780665 DOI: 10.1096/fj.202101163rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kate J Sadler
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Claire Laird
- Researcher Development, Deakin Research, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
39
|
Gómez-Andrés D, Oulhissane A, Quijano-Roy S. Two decades of advances in muscle imaging in children: from pattern recognition of muscle diseases to quantification and machine learning approaches. Neuromuscul Disord 2021; 31:1038-1050. [PMID: 34736625 DOI: 10.1016/j.nmd.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Muscle imaging has progressively gained popularity in the neuromuscular field. Together with detailed clinical examination and muscle biopsy, it has become one of the main tools for deep phenotyping and orientation of etiological diagnosis. Even in the current era of powerful new generation sequencing, muscle MRI has arisen as a tool for prioritization of certain genetic entities, supporting the pathogenicity of variants of unknown significance and facilitating diagnosis in cases with an initially inconclusive genetic study. Although the utility of muscle imaging is increasingly clear, it has not reached its full potential in clinical practice. Pattern recognition is known for a number of diseases and will certainly be enhanced by the use of machine learning approaches. For instance, MRI heatmap representations might be confronted with molecular results by obtaining a probabilistic diagnosis based in each disease "MRI fingerprints". Muscle ultrasound as a screening tool and quantified techniques such as Dixon MRI seem still underdeveloped. In this paper, we aim to appraise the advances in recent years in pediatric muscle imaging and try to define areas of uncertainty and potential advances that might become standardized to be widely used in the future.
Collapse
Affiliation(s)
- David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, ERN-RND - EURO-NMD, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; European Network for Reference Centers on Neuromuscular Disorders (Euro-NMD ERN)
| | - Amal Oulhissane
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France
| | - Susana Quijano-Roy
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France; UMR 1179, Laboratoire handicap neuromusculaire: physiopathologie biothérapie pharmacologie appliquées (END-ICAP), UFR Simone Veil, Montigny Le Bretonneux, France; French Network of Neuromuscular Reference Centers (FILNEMUS), France.
| |
Collapse
|
40
|
Veeger TTJ, van Zwet EW, al Mohamad D, Naarding KJ, van de Velde NM, Hooijmans MT, Webb AG, Niks EH, de Groot JH, Kan HE. Muscle architecture is associated with muscle fat replacement in Duchenne and Becker muscular dystrophies. Muscle Nerve 2021; 64:576-584. [PMID: 34383334 PMCID: PMC9290788 DOI: 10.1002/mus.27399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION/AIMS Duchenne and Becker muscular dystrophies (DMD and BMD, respectively) are characterized by fat replacement of different skeletal muscles in a specific temporal order. Given the structural role of dystrophin in skeletal muscle mechanics, muscle architecture could be important in the progressive pathophysiology of muscle degeneration. Therefore, the aim of this study was to assess the role of muscle architecture in the progression of fat replacement in DMD and BMD. METHODS We assessed the association between literature-based leg muscle architectural characteristics and muscle fat fraction from 22 DMD and 24 BMD patients. Dixon-based magnetic resonance imaging estimates of fat fractions at baseline and 12 (only DMD) and 24 months were related to fiber length and physiological cross-sectional area (PCSA) using age-controlled linear mixed modeling. RESULTS DMD and BMD muscles with long fibers and BMD muscles with large PCSAs were associated with increased fat fraction. The effect of fiber length was stronger in muscles with larger PCSA. DISCUSSION Muscle architecture may explain the pathophysiology of muscle degeneration in dystrophinopathies, in which proximal muscles with a larger mass (fiber length × PCSA) are more susceptible, confirming the clinical observation of a temporal proximal-to-distal progression. These results give more insight into the mechanical role in the pathophysiology of muscular dystrophies. Ultimately, this new information can be used to help support the selection of current and the development of future therapies.
Collapse
Affiliation(s)
- Thom T. J. Veeger
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik W. van Zwet
- Department of BiostatisticsLeiden University Medical CenterLeidenThe Netherlands
| | - Diaa al Mohamad
- Department of BiostatisticsLeiden University Medical CenterLeidenThe Netherlands
| | - Karin J. Naarding
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Melissa T. Hooijmans
- Department of Radiology & Nuclear MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Andrew G. Webb
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik H. Niks
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Hermien E. Kan
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
41
|
Naarding KJ, van der Holst M, van Zwet EW, van de Velde NM, de Groot IJM, Verschuuren JJGM, Kan HE, Niks EH. Association of Elbow Flexor MRI Fat Fraction With Loss of Hand-to-Mouth Movement in Patients With Duchenne Muscular Dystrophy. Neurology 2021; 97:e1737-e1742. [PMID: 34493619 PMCID: PMC8605612 DOI: 10.1212/wnl.0000000000012724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To study the potential of quantitative MRI (qMRI) fat fraction (FF) as a biomarker in nonambulant patients with Duchenne muscular dystrophy (DMD), we assessed the additive predictive value of elbow flexor FF to age at loss of hand-to-mouth movement. METHODS Nonambulant patients with DMD (age ≥8 years) were included. Four-point Dixon MRI scans of the right upper arm were performed at baseline and at the 12-, 18-, or 24-month follow-up. Elbow flexor FFs were determined from 5 central slices. Loss of hand-to-mouth movement was determined at study visits and by phone calls every 4 months. FFs were fitted to a sigmoidal curve by use of a mixed model with random slope to predict individual trajectories. The added predictive value of elbow flexor FF to age at loss of hand-to-mouth movement was calculated from a Cox model with the predicted FF as a time-varying covariate, yielding a hazard ratio. RESULTS Forty-eight MRIs of 20 patients with DMD were included. The hazard ratio of a percent-point increase in elbow flexor FF for the time to loss of hand-to-mouth movement was 1.12 (95% confidence interval 1.04-1.21; p = 0.002). This corresponded to a 3.13-fold increase in the instantaneous risk of loss of hand-to-mouth movement in patients with a 10-percent points higher elbow flexor FF at any age. DISCUSSION In this prospective study, elbow flexor FF predicted loss of hand-to-mouth movement independently of age. qMRI-measured elbow flexor FF can be used as a surrogate endpoint or stratification tool for clinical trials in nonambulant patients with DMD. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that qMRI FF of elbow flexor muscles in patients with DMD predicts loss of hand-to-mouth movement independently of age.
Collapse
Affiliation(s)
- Karin J Naarding
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Menno van der Holst
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik W van Zwet
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nienke M van de Velde
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Imelda J M de Groot
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan J G M Verschuuren
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hermien E Kan
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik H Niks
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
42
|
Sakr HM, Fahmy N, Elsayed NS, Abdulhady H, El-Sobky TA, Saadawy AM, Beroud C, Udd B. Whole-body muscle MRI characteristics of LAMA2-related congenital muscular dystrophy children: An emerging pattern. Neuromuscul Disord 2021; 31:814-823. [PMID: 34481707 DOI: 10.1016/j.nmd.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
Merosin-deficient or LAMA2-related congenital muscular dystrophy (CMD) belongs to a group of muscle diseases with an overlapping diagnostic spectrum. MRI plays an important role in the diagnosis and disease-tracking of muscle diseases. Whole-body MRI is ideal for describing patterns of muscle involvement. We intended to analyze the pattern of muscle involvement in merosin-deficient CMD children employing whole-body muscle MRI. Ten children with merosin-deficient CMD underwent whole-body muscle MRI. Eight of which were genetically-confirmed. We used a control group of other hereditary muscle diseases, which included 13 children (mean age was 13 SD +/- 5.5 years), (8 boys and 5 girls) for comparative analysis. Overall, 37 muscles were graded for fatty infiltration using Mercuri scale modified by Fischer et al. The results showed a fairly consistent pattern of muscle fatty infiltration in index group, which differs from that in control group. There was a statistically significant difference between the two groups in regard to the fatty infiltration of the neck, serratus anterior, intercostal, rotator cuff, deltoid, triceps, forearm, gluteus maximus, gluteus medius, gastrocnemius and soleus muscles. Additionally, the results showed relative sparing of the brachialis, biceps brachii, gracilis, sartorius, semitendinosus and extensor muscles of the ankle in index group, and specific texture abnormalities in other muscles. There is evidence to suggest that whole-body muscle MRI can become a useful contributor to the differential diagnosis of children with merosin deficient CMD. The presence of a fairly characteristic pattern of involvement was demonstrated. MRI findings should be interpreted in view of the clinical and molecular context to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Hossam M Sakr
- Department of Diagnostic & Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nagia Fahmy
- Department of Neuropsychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nermine S Elsayed
- Centre of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala Abdulhady
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer A El-Sobky
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr M Saadawy
- Department of Diagnostic & Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Bjarne Udd
- Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
43
|
Lilien C, Reyngoudt H, Seferian AM, Gidaro T, Annoussamy M, Chê V, Decostre V, Ledoux I, Le Louër J, Guemas E, Muntoni F, Hogrel JY, Carlier PG, Servais L. Upper limb disease evolution in exon 53 skipping eligible patients with Duchenne muscular dystrophy. Ann Clin Transl Neurol 2021; 8:1938-1950. [PMID: 34453498 PMCID: PMC8528463 DOI: 10.1002/acn3.51417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To understand the natural disease upper limb progression over 3 years of ambulatory and non-ambulatory patients with Duchenne muscular dystrophy (DMD) using functional assessments and quantitative magnetic resonance imaging (MRI) and to exploratively identify prognostic factors. METHODS Forty boys with DMD (22 non-ambulatory and 18 ambulatory) with deletions in dystrophin that make them eligible for exon 53-skipping therapy were included. Clinical assessments, including Brooke score, motor function measure (MFM), hand grip and key pinch strength, and upper limb distal coordination and endurance (MoviPlate), were performed every 6 months and quantitative MRI of fat fraction (FF) and lean muscle cross sectional area (flexor and extensor muscles) were performed yearly. RESULTS In the whole population, there were strong nonlinear correlations between outcome measures. In non-ambulatory patients, annual changes over the course of 3 years were detected with high sensitivity standard response mean (|SRM| ≥0.8) for quantitative MRI-based FF, hand grip and key pinch, and MFM. Boys who presented with a FF<20% and a grip strength >27% were able to bring a glass to their mouth and retained this ability in the following 3 years. Ambulatory patients with grip strength >35% of predicted value and FF <10% retained ambulation 3 years later. INTERPRETATION We demonstrate that continuous decline in upper limb strength, function, and MRI measured muscle structure can be reliably measured in ambulatory and non-ambulatory boys with DMD with high SRM and strong correlations between outcomes. Our results suggest that a combination of grip strength and FF can be used to predict important motor milestones.
Collapse
Affiliation(s)
- Charlotte Lilien
- Institut de Myologie, Paris, France.,Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Harmen Reyngoudt
- Institut de Myologie, Paris, France.,CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | | | | | | | | | | | - Julien Le Louër
- Institut de Myologie, Paris, France.,CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | | | - Pierre Georges Carlier
- Institut de Myologie, Paris, France.,Université Paris-Saclay, CEA, DRF, Service Hospitalier Frederic Joliot, Orsay, France
| | - Laurent Servais
- Institut de Myologie, Paris, France.,Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom.,Division of Child Neurology Reference Center for Neuromuscular Disease, Centre Hospitalier Régional de Références des Maladies Neuromusculaires, Department of Paediatrics, University Hospital Liège & University of La Citadelle, Liège, Belgium
| | | |
Collapse
|
44
|
Marty B, Reyngoudt H, Boisserie JM, Le Louër J, C A Araujo E, Fromes Y, Carlier PG. Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders. Radiology 2021; 300:652-660. [PMID: 34254855 DOI: 10.1148/radiol.2021204028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Quantitative MRI is increasingly proposed in clinical trials related to neuromuscular disorders (NMDs). Purpose To investigate the potential of an MR fingerprinting sequence for water and fat fraction (FF) quantification (MRF T1-FF) for providing markers of fatty replacement and disease activity in patients with NMDs and to establish the sensitivity of water T1 as a marker of disease activity compared with water T2 mapping. Materials and Methods Data acquired between March 2018 and March 2020 from the legs of patients with NMDs were retrospectively analyzed. The MRI examination comprised fat-suppressed T2-weighted imaging, mapping of the FF measured with the three-point Dixon technique (FFDixon), water T2 mapping, and MRF T1-FF, from which the FF measured with MRF T1-FF (FFMRF) and water T1 were derived. Data from the legs of healthy volunteers were prospectively acquired between January and July 2020 to derive abnormality thresholds for FF, water T2, and water T1 values. Kruskal-Wallis tests and receiver operating characteristic curve analysis were performed, and linear models were used. Results A total of 73 patients (mean age ± standard deviation, 47 years ± 12; 45 women) and 15 healthy volunteers (mean age, 33 years ± 8; three women) were evaluated. A linear correlation was observed between FFMRF and FFDixon (R2 = 0.97, P < .001). Water T1 values were higher in muscles with high signal intensity at fat-suppressed T2-weighted imaging than in muscles with low signal intensity (mean value, 1281 msec [95% CI: 1165, 1604] vs 1198 msec [95% CI: 1099, 1312], respectively; P < .001), and a correlation was found between water T1 and water T2 distribution metrics (R2 = 0.66 and 0.79 for the median and 90th percentile values, respectively; P < .001). Water T1 classified the patients' muscles as abnormal based on quantitative water T2, with high sensitivity (93%; 68 of 73 patients) and specificity (80%; 53 of 73 patients) (area under the receiver operating characteristic curve, 0.92 [95% CI: 0.83, 0.97]; P < .001). Conclusion Water-fat separation in MR fingerprinting is robust for deriving quantitative imaging markers of intramuscular fatty replacement and disease activity in patients with neuromuscular disorders. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Benjamin Marty
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Harmen Reyngoudt
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Jean-Marc Boisserie
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Julien Le Louër
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Ericky C A Araujo
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Yves Fromes
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Pierre G Carlier
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| |
Collapse
|
45
|
van de Velde NM, Hooijmans MT, Sardjoe Mishre ASD, Keene KR, Koeks Z, Veeger TTJ, Alleman I, van Zwet EW, Beenakker JWM, Verschuuren JJGM, Kan HE, Niks EH. Selection Approach to Identify the Optimal Biomarker Using Quantitative Muscle MRI and Functional Assessments in Becker Muscular Dystrophy. Neurology 2021; 97:e513-e522. [PMID: 34162720 PMCID: PMC8356376 DOI: 10.1212/wnl.0000000000012233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To identify the best quantitative fat–water MRI biomarker for disease progression of leg muscles in Becker muscular dystrophy (BMD) by applying a stepwise approach based on standardized response mean (SRM) over 24 months, correlations with baseline ambulatory tests, and reproducibility. Methods Dixon fat–water imaging was performed at baseline (n = 24) and 24 months (n = 20). Fat fractions (FF) were calculated for 3 center slices and the whole muscles for 19 muscles and 6 muscle groups. Contractile cross-sectional area (cCSA) was obtained from the center slice. Functional assessments included knee extension and flexion force and 3 ambulatory tests (North Star Ambulatory Assessment [NSAA], 10-meter run, 6-minute walking test). MRI measures were selected using SRM (≥0.8) and correlation with all ambulatory tests (ρ ≤ −0.8). Measures were evaluated based on intraclass correlation coefficient (ICC) and SD of the difference. Sample sizes were calculated assuming 50% reduction in disease progression over 24 months in a clinical trial with 1:1 randomization. Results Median whole muscle FF increased between 0.2% and 2.6% without consistent cCSA changes. High SRMs and strong functional correlations were found for 8 FF but no cCSA measures. All measures showed excellent ICC (≥0.999) and similar SD of the interrater difference. Whole thigh 3 center slices FF was the best biomarker (SRM 1.04, correlations ρ ≤ −0.81, ICC 1.00, SD 0.23%, sample size 59) based on low SD and acquisition and analysis time. Conclusion In BMD, median FF of all muscles increased over 24 months. Whole thigh 3 center slices FF reduced the sample size by approximately 40% compared to NSAA.
Collapse
Affiliation(s)
- Nienke M van de Velde
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Melissa T Hooijmans
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Aashley S D Sardjoe Mishre
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Kevin R Keene
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Zaïda Koeks
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Thom T J Veeger
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Iris Alleman
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Erik W van Zwet
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Jan-Willem M Beenakker
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Jan J G M Verschuuren
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Hermien E Kan
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Erik H Niks
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands.
| |
Collapse
|
46
|
Plasma lipidomic analysis shows a disease progression signature in mdx mice. Sci Rep 2021; 11:12993. [PMID: 34155298 PMCID: PMC8217252 DOI: 10.1038/s41598-021-92406-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disorder affecting paediatric patients. The disease course is characterized by loss of muscle mass, which is rapidly substituted by fibrotic and adipose tissue. Clinical and preclinical models have clarified the processes leading to muscle damage and myofiber degeneration. Analysis of the fat component is however emerging as more evidence shows how muscle fat fraction is associated with patient performance and prognosis. In this article we aimed to study whether alterations exist in the composition of lipids in plasma samples obtained from mouse models. Analysis of plasma samples was performed in 4 mouse models of DMD and wild-type mice by LC–MS. Longitudinal samplings of individual mice covering an observational period of 7 months were obtained to cover the different phases of the disease. We report clear elevation of glycerolipids and glycerophospholipids families in dystrophic mice compared to healthy mice. Triacylglycerols were the strongest contributors to the signatures in mice. Annotation of individual lipids confirmed the elevation of lipids belonging to these families as strongest discriminants between healthy and dystrophic mice. A few sphingolipids (such as ganglioside GM2, sphingomyelin and ceramide), sterol lipids (such as cholesteryl oleate and cholesteryl arachidonate) and a fatty acyl (stearic acid) were also found to be affected in dystrophic mice. Analysis of serum and plasma samples show how several lipids are affected in dystrophic mice affected by muscular dystrophy. This study sets the basis to further investigations to understand how the lipid signature relates to the disease biology and muscle performance.
Collapse
|
47
|
Sherlock SP, Zhang Y, Binks M, Marraffino S. Quantitative muscle MRI biomarkers in Duchenne muscular dystrophy: cross-sectional correlations with age and functional tests. Biomark Med 2021; 15:761-773. [PMID: 34155911 PMCID: PMC8253163 DOI: 10.2217/bmm-2020-0801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
Aim: Using baseline data from a clinical trial of domagrozumab in Duchenne muscular dystrophy, we evaluated the correlation between functional measures and quantitative MRI assessments of thigh muscle. Patients & methods: Analysis included timed functional tests, knee extension/strength and North Star Ambulatory Assessment. Patients (n = 120) underwent examinations of one thigh, with MRI sequences to enable measurements of muscle volume (MV), MV index, mean T2 relaxation time via T2-mapping and fat fraction. Results: MV was moderately correlated with strength assessments. MV index, fat fraction and T2-mapping measures had moderate correlations (r ∼ 0.5) to all functional tests, North Star Ambulatory Assessment and age. Conclusion: The moderate correlation between functional tests, age and baseline MRI measures supports MRI as a biomarker in Duchenne muscular dystrophy clinical trials. Trial registration: ClinicalTrials.gov, NCT02310763; registered 4 November 2014.
Collapse
Affiliation(s)
| | - Yao Zhang
- Pfizer Inc, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
48
|
Naarding KJ, Keene KR, Sardjoe Mishre ASD, Veeger TTJ, van de Velde NM, Prins AJ, Burakiewicz J, Verschuuren JJGM, van der Holst M, Niks EH, Kan HE. Preserved thenar muscles in non-ambulant Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2021; 12:694-703. [PMID: 33963807 PMCID: PMC8200430 DOI: 10.1002/jcsm.12711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Clinical trials in Duchenne muscular dystrophy (DMD) focus primarily on ambulant patients. Results cannot be extrapolated to later disease stages due to a decline in targeted muscle tissue. In non-ambulant DMD patients, hand function is relatively preserved and crucial for daily-life activities. We used quantitative MRI (qMRI) to establish whether the thenar muscles could be valuable to monitor treatment effects in non-ambulant DMD patients. METHODS Seventeen non-ambulant DMD patients (range 10.2-24.1 years) and 13 healthy controls (range 9.5-25.4 years) underwent qMRI of the right hand at 3 T at baseline. Thenar fat fraction (FF), total volume (TV), and contractile volume (CV) were determined using 4-point Dixon, and T2water was determined using multiecho spin-echo. Clinical assessments at baseline (n = 17) and 12 months (n = 13) included pinch strength (kg), performance of the upper limb (PUL) 2.0, DMD upper limb patient reported outcome measure (PROM), and playing a video game for 10 min using a game controller. Group differences and correlations were assessed with non-parametric tests. RESULTS Total volume was lower in patients compared with healthy controls (6.9 cm3 , 5.3-9.0 cm3 vs. 13.0 cm3 , 7.6-15.8 cm3 , P = 0.010). CV was also lower in patients (6.3 cm3 , 4.6-8.3 cm3 vs. 11.9 cm3 , 6.9-14.6 cm3 , P = 0.010). FF was slightly elevated (9.7%, 7.3-11.4% vs. 7.7%, 6.6-8.4%, P = 0.043), while T2water was higher (31.5 ms, 30.0-32.6 ms vs. 28.1 ms, 27.8-29.4 ms, P < 0.001). Pinch strength and PUL decreased over 12 months (2.857 kg, 2.137-4.010 to 2.243 kg, 1.930-3.339 kg, and 29 points, 20-36 to 23 points, 17-30, both P < 0.001), while PROM did not (49 points, 36-57 to 44 points, 30-54, P = 0.041). All patients were able to play for 10 min at baseline or follow-up, but some did not comply with the study procedures regarding this endpoint. Pinch strength correlated with TV and CV in patients (rho = 0.72 and rho = 0.68) and controls (both rho = 0.89). PUL correlated with TV, CV, and T2water (rho = 0.57, rho = 0.51, and rho = -0.59). CONCLUSIONS Low thenar FF, increased T2water , correlation of muscle size with strength and function, and the decrease in strength and function over 1 year indicate that the thenar muscles are a valuable and quantifiable target for therapy in later stages of DMD. Further studies are needed to relate these data to the loss of a clinically meaningful milestone.
Collapse
Affiliation(s)
- Karin J Naarding
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Duchenne Center, Leiden, Netherlands
| | - Kevin R Keene
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, LUMC, Leiden, Netherlands
| | | | - Thom T J Veeger
- C.J. Gorter Center for High Field MRI, Department of Radiology, LUMC, Leiden, Netherlands
| | - Nienke M van de Velde
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Duchenne Center, Leiden, Netherlands
| | - Arina J Prins
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Duchenne Center, Leiden, Netherlands
| | - Jedrzej Burakiewicz
- C.J. Gorter Center for High Field MRI, Department of Radiology, LUMC, Leiden, Netherlands
| | - Jan J G M Verschuuren
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Duchenne Center, Leiden, Netherlands
| | - Menno van der Holst
- Duchenne Center, Leiden, Netherlands.,Department of Orthopedics, Rehabilitation and Physiotherapy, Leiden University Medical Center, Leiden, Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Duchenne Center, Leiden, Netherlands
| | - Hermien E Kan
- Duchenne Center, Leiden, Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, LUMC, Leiden, Netherlands
| |
Collapse
|
49
|
Bolsterlee B, Bye EA, Eguchi J, Thom J, Herbert RD. MRI-based Measurement of Effects of Strength Training on Intramuscular Fat in People with and without Spinal Cord Injury. Med Sci Sports Exerc 2021; 53:1270-1275. [PMID: 33986231 DOI: 10.1249/mss.0000000000002568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The accurate quantification of the proportion of fat in human muscles could help monitor disease status and test effectiveness of interventions in people with neurological conditions whose skeletal muscles are frequently infiltrated with fat. METHODS We compared two commonly used magnetic resonance imaging methods to quantify fat in muscles. Measurements were obtained before and after 6 or 8 wk of strength training in a total of 116 muscles spanning the range of intramuscular fat proportions observed in able-bodied young adults and people with spinal cord injury. RESULTS We successfully measured fat proportions in all muscles using the mDixon method but were unable to obtain plausible measurements with the T1-weighted method from muscles of able-bodied individuals or from the leaner 23% of muscles of people with spinal cord injury (muscles with less than approximately 8% fat). In muscles with more fat, measurements obtained with the two methods agreed well (intraclass correlation coefficient, 0.88; mean absolute difference, 5%). We also found that, compared with the T1-weighted method, the mDixon method provides a more detailed characterization of fat infiltration in muscle and a less variable measurement of the effect of training on the proportion of fat. The mDixon method showed that 6 or 8 wk of strength training did not appreciably change the proportion of intramuscular fat in either people with spinal cord injury or able-bodied people. CONCLUSION On the basis of these findings, we recommend the use of mDixon methods in preference to T1-weighted methods to determine the effectiveness of interventions aimed at reducing intramuscular fat.
Collapse
|
50
|
Ogier AC, Hostin MA, Bellemare ME, Bendahan D. Overview of MR Image Segmentation Strategies in Neuromuscular Disorders. Front Neurol 2021; 12:625308. [PMID: 33841299 PMCID: PMC8027248 DOI: 10.3389/fneur.2021.625308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
Neuromuscular disorders are rare diseases for which few therapeutic strategies currently exist. Assessment of therapeutic strategies efficiency is limited by the lack of biomarkers sensitive to the slow progression of neuromuscular diseases (NMD). Magnetic resonance imaging (MRI) has emerged as a tool of choice for the development of qualitative scores for the study of NMD. The recent emergence of quantitative MRI has enabled to provide quantitative biomarkers more sensitive to the evaluation of pathological changes in muscle tissue. However, in order to extract these biomarkers from specific regions of interest, muscle segmentation is mandatory. The time-consuming aspect of manual segmentation has limited the evaluation of these biomarkers on large cohorts. In recent years, several methods have been proposed to make the segmentation step automatic or semi-automatic. The purpose of this study was to review these methods and discuss their reliability, reproducibility, and limitations in the context of NMD. A particular attention has been paid to recent deep learning methods, as they have emerged as an effective method of image segmentation in many other clinical contexts.
Collapse
Affiliation(s)
- Augustin C Ogier
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
| | - Marc-Adrien Hostin
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | | | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| |
Collapse
|