1
|
Li Q, Yakhkind A, Alexandrov AW, Alexandrov AV, Anderson CS, Dowlatshahi D, Frontera JA, Hemphill JC, Ganti L, Kellner C, May C, Morotti A, Parry-Jones A, Sheth KN, Steiner T, Ziai W, Goldstein JN, Mayer SA. Code ICH: A Call to Action. Stroke 2024; 55:494-505. [PMID: 38099439 DOI: 10.1161/strokeaha.123.043033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Intracerebral hemorrhage is the most serious type of stroke, leading to high rates of severe disability and mortality. Hematoma expansion is an independent predictor of poor functional outcome and is a compelling target for intervention. For decades, randomized trials aimed at decreasing hematoma expansion through single interventions have failed to meet their primary outcomes of statistically significant improvement in neurological outcomes. A wide range of evidence suggests that ultra-early bundled care, with multiple simultaneous interventions in the acute phase, offers the best hope of limiting hematoma expansion and improving functional recovery. Patients with intracerebral hemorrhage who fail to receive early aggressive care have worse outcomes, suggesting that an important treatment opportunity exists. This consensus statement puts forth a call to action to establish a protocol for Code ICH, similar to current strategies used for the management of acute ischemic stroke, through which early intervention, bundled care, and time-based metrics have substantially improved neurological outcomes. Based on current evidence, we advocate for the widespread adoption of an early bundle of care for patients with intracerebral hemorrhage focused on time-based metrics for blood pressure control and emergency reversal of anticoagulation, with the goal of optimizing the benefit of these already widely used interventions. We hope Code ICH will endure as a structural platform for continued innovation, standardization of best practices, and ongoing quality improvement for years to come.
Collapse
Affiliation(s)
- Qi Li
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Q.L.)
| | | | | | | | - Craig S Anderson
- The George Institute for Global Heath, University of New South Wales, Sydney, Australia (C.S.A.)
| | - Dar Dowlatshahi
- University of Ottawa and Ottawa Hospital Research Institute, Canada (D.D.)
| | | | | | - Latha Ganti
- University of Central Florida College of Medicine, Orlando (L.G.)
| | | | - Casey May
- The Ohio State University College of Pharmacy, Columbus (C.M.)
| | | | | | - Kevin N Sheth
- Yale University School of Medicine, New Haven, CT (K.N.S.)
| | | | - Wendy Ziai
- John Hopkins University School of Medicine, Baltimore, MD (W.Z.)
| | | | | |
Collapse
|
2
|
Guo Y, Yang Y, Wang M, Luo Y, Guo J, Cao F, Lu J, Zeng X, Miao X, Zaman A, Kang Y. The Combination of Whole-Brain Features and Local-Lesion Features in DSC-PWI May Improve Ischemic Stroke Outcome Prediction. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111847. [PMID: 36430982 PMCID: PMC9694195 DOI: 10.3390/life12111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Accurate and reliable outcome predictions can help evaluate the functional recovery of ischemic stroke patients and assist in making treatment plans. Given that recovery factors may be hidden in the whole-brain features, this study aims to validate the role of dynamic radiomics features (DRFs) in the whole brain, DRFs in local ischemic lesions, and their combination in predicting functional outcomes of ischemic stroke patients. First, the DRFs in the whole brain and the DRFs in local lesions of dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI) images are calculated. Second, the least absolute shrinkage and selection operator (Lasso) is used to generate four groups of DRFs, including the outstanding DRFs in the whole brain (Lasso (WB)), the outstanding DRFs in local lesions (Lasso (LL)), the combination of them (combined DRFs), and the outstanding DRFs in the combined DRFs (Lasso (combined)). Then, the performance of the four groups of DRFs is evaluated to predict the functional recovery in three months. As a result, Lasso (combined) in the four groups achieves the best AUC score of 0.971, which improves the score by 8.9% compared with Lasso (WB), and by 3.5% compared with Lasso (WB) and combined DRFs. In conclusion, the outstanding combined DRFs generated from the outstanding DRFs in the whole brain and local lesions can predict functional outcomes in ischemic stroke patients better than the single DRFs in the whole brain or local lesions.
Collapse
Affiliation(s)
- Yingwei Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yingjian Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Mingming Wang
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-94-047-2926 (Y.K.)
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY 10027, USA
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-94-047-2926 (Y.K.)
| | - Fengqiu Cao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiaxi Lu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
| | - Xueqiang Zeng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqiang Miao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Asim Zaman
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
| | - Yan Kang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-94-047-2926 (Y.K.)
| |
Collapse
|
3
|
Wang Q, Wang Y, Wang Y, Bi Q, Zhang Q, Wang F. Impact of improved stroke green channel process on the delay of intravenous thrombolysis in patients with acute cerebral infarction during the COVID-19 pandemic: An observational study. Front Neurol 2022; 13:998134. [PMID: 36226078 PMCID: PMC9549168 DOI: 10.3389/fneur.2022.998134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study analyzed the impact of the improved stroke green channel process on the delay of intravenous thrombolysis in patients with acute cerebral infarction under coronavirus disease 2019 (COVID-19) prevention and control measures.MethodsWe included 57 patients from the stroke center of the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine before the improvement of the stroke green channel process (March–July 2019), as well as 94 patients during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak (March–July 2020) and 68 patients during the Omicron variant outbreak (March–July 2022) after the improvement of stroke green channel process. The door-to-needle time (DNT), door-to-imaging time (DIT), and door-to-test completion time were compared among the three groups. We analyzed the impact of this process improvement in the emergency green channel during the pandemic on the delay of intravenous thrombolysis.ResultsThis study included a total of 229 patients with acute cerebral infarction who went through the green channel for intravenous thrombolysis (57 in the pre-pandemic group, 94 in the SARS-CoV-2 outbreak group, and 68 in the Omicron outbreak group). The percentages of patients undergoing intravenous thrombolysis in the pre-pandemic, SARS-CoV-2 outbreak, and Omicron outbreak groups differed significantly (19.32%, 22.27%, and 28.94%, respectively, P = 0.029). Compared to the pre-pandemic group, the National Institutes of Health Stroke Scale (NIHSS) score at admission was significantly higher in the Omicron outbreak group (7.71 ± 7.36 in the Omicron outbreak group vs. 5.00 ± 4.52 in the pre-pandemic group) (P = 0.026) but not in the SARS-CoV-2 outbreak group (4.79 ± 5.94 in the SARS-CoV-2 outbreak group vs. 5.00 ± 4.52 in the pre-pandemic group, P = 0.970). Significantly higher proportions of patients undergoing emergency intravenous thrombolysis came to the hospital by ambulance in the SARS-CoV-2 and Omicron outbreak groups compared to the pre-pandemic group (38.6% in the pre-pandemic group, 51.1% in the SARS-CoV-2 outbreak group, and 82.4% in the Omicron outbreak group, P < 0.001). Compared to the pre-pandemic group, the DIT was significantly higher in the SARS-CoV-2 outbreak group (22.42 ± 7.62 min in the SARS-CoV-2 outbreak group vs. 18.91 ± 8.23 min in the pre-pandemic group, P =0.031) but not the Omicron outbreak group (20.35 ± 10.38 min in the Omicron outbreak group vs. 18.91 ± 8.23 min in the pre-pandemic group, P = 0.543). The door-to-test completion time was significantly longer in the SARS-CoV-2 and Omicron outbreak groups compared to that in the pre-pandemic group (78.37 ± 25.17 min in the SARS-CoV-2 outbreak group, 92.60 ± 25.82 min in the Omicron outbreak group vs. 65.11 ± 22.35 min in the pre-pandemic group, P < 0.001); however, the DNT in the SARS-CoV-2 and Omicron outbreak groups did not differ significantly from those in the pre-pandemic group (both P > 0.05).ConclusionDuring the two periods of the COVID-19 outbreak (SARS-CoV-2 and Omicron), after the improvement of the green channel for intravenous thrombolysis, there might be some delay in in-hospital DIT during the SARS-CoV-2 outbreak, however, the in-hospital delay indicator DNT for intravenous thrombolysis were not affected.
Collapse
Affiliation(s)
- Qiwei Wang
- Departments of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Neurology, Shanghai General Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongpeng Wang
- Departments of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianqian Bi
- Departments of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Quanbin Zhang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Quanbin Zhang
| | - Feng Wang
- Departments of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Feng Wang
| |
Collapse
|
4
|
Marín-Prida J, Liberato JL, Llópiz-Arzuaga A, Stringhetta-Padovani K, Pavón-Fuentes N, Leopoldino AM, Cruz OG, González IH, Pérez ML, Espuny AC, Santos WFDSD, Uyemura SA, Pardo-Andreu GL, Pentón-Rol G. Novel Insights into the Molecular Mechanisms Involved in the Neuroprotective Effects of C-Phycocyanin Against Brain Ischemia in Rats. Curr Pharm Des 2022; 28:1187-1197. [PMID: 35524676 DOI: 10.2174/1381612828666220506145542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ischemic stroke produces a large health impact worldwide, with scarce therapeutic options. OBJECTIVE This study aimed to reveal the role of NADPH oxidase and neuroinflammatory genes on the cerebral anti-ischemic effects of C-Phycocyanin (C-PC), the chief biliprotein of Spirulina platensis. METHODS Rats with either focal cerebral ischemia/reperfusion (I/R) or acute brain hypoperfusion, received C-PC at different doses, or a vehicle, for up to 6 h post-stroke. Neurological, behavioral and histochemical parameters were assessed in I/R rats at 24 h. Cerebral gene expression and hippocampal neuron viability were evaluated in hypoperfused rats at acute (24 h) or chronic phases (30 days), respectively. A molecular docking analysis between NOX2 and C-PC-derived Phycocyanobilin (PCB) was also performed. RESULTS C-PC, obtained with a purity of 4.342, significantly reduced the infarct volume and neurologic deficit in a dose-dependent manner, and improved the exploratory activity of the I/R rats. This biliprotein inhibited NOX2 expression, a crucial NAPDH oxidase isoform in the brain, and the superoxide increase produced by the ischemic event. Moreover, C-PC-derived PCB showed a high binding affinity in silico with NOX2. C-PC downregulated the expression of pro-inflammatory genes (IFN-γ, IL-6, IL-17A, CD74, CCL12) and upregulated immune suppressive genes (Foxp3, IL-4, TGF-β) in hypoperfused brain areas. This compound also decreased chronic neuronal death in the hippocampus of hypoperfused rats. CONCLUSION These results suggest that the inhibition of cerebral NADPH oxidase and the improvement of neuroinflammation are key mechanisms mediating the neuroprotective actions of C-PC against brain ischemia.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana
| | - José Luiz Liberato
- Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Karina Stringhetta-Padovani
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | - Mariela León Pérez
- Isotopes Center, Ave. Monumental Km 3.5, San José de Las Lajas, Mayabeque, Cuba
| | - Antoni Camins Espuny
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | - Sergio Akira Uyemura
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Gilberto L Pardo-Andreu
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Giselle Pentón-Rol
- Center for Genetic Engineering and Biotechnology, Havana, Cuba.,Latin American School of Medicine, Playa, Havana, Cuba
| |
Collapse
|
5
|
Mosconi MG, Paciaroni M, Ageno W. Investigational drugs for ischemic stroke: what's in the clinical development pipeline for acute phase and prevention? Expert Opin Investig Drugs 2022; 31:645-667. [PMID: 35486110 DOI: 10.1080/13543784.2022.2072725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Stroke is a leading cause of disability and mortality and its burden expected to increase. The only approved drug for acute ischemic stroke is the intravenous thrombolytic alteplase. The risk of bleeding complications is one of the reasons for the undertreatment of eligible patients. Numerous drugs are currently being developed to improve safety-efficacy. AREAS COVERED We reviewed literature from January 1st, 2000, to 15th January 2022 for the development and testing of novel drugs with the aim of targeting treatment at prevention of ischemic stroke: PubMed, MEDLINE, Google Scholar, and ClinicalTrial.gov. EXPERT OPINION The pathophysiology of ischemic stroke involves multiple pathways causing cerebral artery obstruction and brain tissue ischemia. Data suggest that tenecteplase is a more promising fibrinolytic agent with a superior efficacy-safety profile, compared to the currently approved alteplase. Current guidelines consider a short-term cycle of mannitol or hypertonic saline to be advisable in patients with space-occupying hemispheric infarction. Regarding primary and secondary prevention, research is primarily focused on identifying mechanisms to improve the safety-efficacy profile using a "hemostasis-sparing" approach. Further evaluation on those agents that have already shown promise for their risk/benefit profiles, would benefit greatly a neurologist's capacity to successfully prevent and treat ischemic stroke patients.
Collapse
Affiliation(s)
- Maria Giulia Mosconi
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Maurizio Paciaroni
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|