1
|
Kaestner E, Stasenko A, Schadler A, Roth R, Hewitt K, Reyes A, Qiu D, Bonilha L, Voets N, Hu R, Willie J, Pedersen N, Shih J, Ben-Haim S, Gross R, Drane D, McDonald CR. Impact of white matter networks on risk for memory decline following resection versus ablation in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 2024; 95:663-670. [PMID: 38212059 PMCID: PMC11187680 DOI: 10.1136/jnnp-2023-332682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND With expanding neurosurgical options in epilepsy, it is important to characterise each options' risk for postoperative cognitive decline. Here, we characterise how patients' preoperative white matter (WM) networks relates to postoperative memory changes following different epilepsy surgeries. METHODS Eighty-nine patients with temporal lobe epilepsy with T1-weighted and diffusion-weighted imaging as well as preoperative and postoperative verbal memory scores (prose recall) underwent either anterior temporal lobectomy (ATL: n=38) or stereotactic laser amygdalohippocampotomy (SLAH; n=51). We computed laterality indices (ie, asymmetry) for volume of the hippocampus and fractional anisotropy (FA) of two deep WM tracts (uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF)). RESULTS Preoperatively, left-lateralised FA of the ILF was associated with higher prose recall (p<0.01). This pattern was not observed for the UF or hippocampus (ps>0.05). Postoperatively, right-lateralised FA of the UF was associated with less decline following left ATL (p<0.05) but not left SLAH (p>0.05), while right-lateralised hippocampal asymmetry was associated with less decline following both left ATL and SLAH (ps<0.05). After accounting for preoperative memory score, age of onset and hippocampal asymmetry, the association between UF and memory decline in left ATL remained significant (p<0.01). CONCLUSIONS Asymmetry of the hippocampus is an important predictor of risk for memory decline following both surgeries. However, asymmetry of UF integrity, which is only severed during ATL, is an important predictor of memory decline after ATL only. As surgical procedures and pre-surgical mapping evolve, understanding the role of frontal-temporal WM in memory networks could help to guide more targeted surgical approaches to mitigate cognitive decline.
Collapse
Affiliation(s)
- Erik Kaestner
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Alena Stasenko
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Adam Schadler
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Rebecca Roth
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelsey Hewitt
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anny Reyes
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Deqiang Qiu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina System, Columbia, South Carolina, USA
| | | | - Ranliang Hu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Jon Willie
- Neurosurgery, Washington University in St Louis, St Louis, Missouri, USA
| | | | - Jerry Shih
- Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Sharona Ben-Haim
- Neurosurgery, University of California, San Diego, La Jolla, California, USA
| | - Robert Gross
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel Drane
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Carrie R McDonald
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
- Psychiatry, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Stasenko A, Lin C, Bonilha L, Bernhardt BC, McDonald CR. Neurobehavioral and Clinical Comorbidities in Epilepsy: The Role of White Matter Network Disruption. Neuroscientist 2024; 30:105-131. [PMID: 35193421 PMCID: PMC9393207 DOI: 10.1177/10738584221076133] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epilepsy is a common neurological disorder associated with alterations in cortical and subcortical brain networks. Despite a historical focus on gray matter regions involved in seizure generation and propagation, the role of white matter (WM) network disruption in epilepsy and its comorbidities has sparked recent attention. In this review, we describe patterns of WM alterations observed in focal and generalized epilepsy syndromes and highlight studies linking WM disruption to cognitive and psychiatric comorbidities, drug resistance, and poor surgical outcomes. Both tract-based and connectome-based approaches implicate the importance of extratemporal and temporo-limbic WM disconnection across a range of comorbidities, and an evolving literature reveals the utility of WM patterns for predicting outcomes following epilepsy surgery. We encourage new research employing advanced analytic techniques (e.g., machine learning) that will further shape our understanding of epilepsy as a network disorder and guide individualized treatment decisions. We also address the need for research that examines how neuromodulation and other treatments (e.g., laser ablation) affect WM networks, as well as research that leverages larger and more diverse samples, longitudinal designs, and improved magnetic resonance imaging acquisitions. These steps will be critical to ensuring generalizability of current research and determining the extent to which neuroplasticity within WM networks can influence patient outcomes.
Collapse
Affiliation(s)
- Alena Stasenko
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Christine Lin
- School of Medicine, University of California, San Diego, CA, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Boris C Bernhardt
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, CA, USA
- Center for Multimodal Imaging and Genetics (CMIG), University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Na X, Glasier CM, Andres A, Ou X. Maternal Diet Quality during Pregnancy Is Associated with Neonatal Brain White Matter Development. Nutrients 2023; 15:5114. [PMID: 38140373 PMCID: PMC10745593 DOI: 10.3390/nu15245114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Maternal diet and nutrient intake are important for fetal growth and development. In this study, we aim to evaluate whether there are associations between maternal diet quality and the offspring's brain white matter development. Healthy pregnant women's (N = 44) nutrition intake was assessed by the Healthy Eating Index-2015 (HEI-2015) during the first, second, and third trimesters, respectively. Correlations between MRI diffusion tensor imaging measured fractional anisotropy (FA) of the neonatal brain and the HEI-2015 scores were evaluated using voxel-wise analysis with appropriate multiple comparisons correction and post hoc analysis based on regions of interest. Significant correlations were found between sodium scores at the first trimester of pregnancy and mean neonatal FA values in parietal white matter (R = 0.39, p = 0.01), anterior corona radiata (R = 0.43, p = 0.006), posterior limb of internal capsule (R = 0.53, p < 0.001), external capsule (R = 0.44, p = 0.004), and temporal white matter (R = 0.50, p = 0.001) of the left hemisphere. No other correlations were identified. In conclusion, the relationships between the maternal sodium intake score and the neonatal white matter microstructural development indicate sodium intake patterns better aligned with the Dietary Guidelines for Americans during early pregnancy are associated with greater white matter development in the offspring's brain.
Collapse
Affiliation(s)
- Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Charles M. Glasier
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Stasenko A, Kaestner E, Arienzo D, Schadler AJ, Helm JL, Shih JJ, Ben-Haim S, McDonald CR. Preoperative white matter network organization and memory decline after epilepsy surgery. J Neurosurg 2023; 139:1576-1587. [PMID: 37178024 PMCID: PMC10640663 DOI: 10.3171/2023.4.jns23347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Risk for memory decline is a common concern for individuals with temporal lobe epilepsy (TLE) undergoing surgery. Global and local network abnormalities are well documented in TLE. However, it is less known whether network abnormalities predict postsurgical memory decline. The authors examined the role of preoperative global and local white matter network organization and risk of postoperative memory decline in TLE. METHODS One hundred one individuals with TLE (n = 51 with left TLE and 50 with right TLE) underwent preoperative T1-weighted MRI, diffusion MRI, and neuropsychological memory testing in a prospective longitudinal study. Fifty-six age- and sex-matched controls completed the same protocol. Forty-four patients (22 with left TLE and 22 with right TLE) subsequently underwent temporal lobe surgery and postoperative memory testing. Preoperative structural connectomes were generated via diffusion tractography and analyzed using measures of global and local (i.e., medial temporal lobe [MTL]) network organization. Global metrics measured network integration and specialization. The local metric was calculated as an asymmetry of the mean local efficiency between the ipsilateral and contralateral MTLs (i.e., MTL network asymmetry). RESULTS Higher preoperative global network integration and specialization were associated with higher preoperative verbal memory function in patients with left TLE. Higher preoperative global network integration and specialization, as well as greater leftward MTL network asymmetry, predicted greater postoperative verbal memory decline for patients with left TLE. No significant effects were observed in right TLE. Accounting for preoperative memory score and hippocampal volume asymmetry, MTL network asymmetry uniquely explained 25%-33% of the variance in verbal memory decline for left TLE and outperformed hippocampal volume asymmetry and global network metrics. MTL network asymmetry alone produced good diagnostic classification of memory decline in left TLE (i.e., an area under the receiver operating characteristic curve of 0.80-0.84 and correct classification of 65%-76% of cases with cross-validation). CONCLUSIONS These preliminary data suggest that global white matter network disruption contributes to verbal memory impairment preoperatively and predicts postsurgical verbal memory outcomes in left TLE. However, a leftward asymmetry of MTL white matter network organization may confer the highest risk for verbal memory decline. Although this requires replication in a larger sample, the authors demonstrate the importance of characterizing preoperative local white matter network properties within the to-be-operated hemisphere and the reserve capacity of the contralateral MTL network, which may eventually be useful in presurgical planning.
Collapse
Affiliation(s)
- Alena Stasenko
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Donatello Arienzo
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Adam J. Schadler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Jonathan L. Helm
- Department of Psychology, San Diego State University, San Diego, California
| | - Jerry J. Shih
- Neurosciences, University of California, San Diego, California
| | | | - Carrie R. McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
- Radiation Medicine & Applied Sciences, University of California, San Diego, California
| |
Collapse
|
5
|
Audrain S, Barnett A, Mouseli P, McAndrews MP. Leveraging the resting brain to predict memory decline after temporal lobectomy. Epilepsia 2023; 64:3061-3072. [PMID: 37643922 DOI: 10.1111/epi.17767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Predicting memory morbidity after temporal lobectomy in patients with temporal lobe epilepsy (TLE) relies on indices of preoperative temporal lobe structural and functional integrity. However, epilepsy is increasingly considered a network disorder, and memory a network phenomenon. We assessed the utility of functional network measures to predict postoperative memory changes. METHODS Seventy-two adults with TLE (37 left/35 right) underwent preoperative resting-state functional magnetic resonance imaging and pre- and postoperative neuropsychological assessment. We compared functional connectivity throughout the memory network of each patient to a healthy control template (n = 19) to identify differences in global organization. A second metric indicated the degree of integration of the to-be-resected temporal lobe with the rest of the memory network. We included these measures in a linear regression model alongside standard clinical variables as predictors of memory change after surgery. RESULTS Left TLE patients with more atypical memory networks, and with greater functional integration of the to-be-resected region with the rest of the memory network preoperatively, experienced the greatest decline in verbal memory after surgery. Together, these two measures explained 44% of variance in verbal memory change, outperforming standard clinical and demographic variables. None of the variables examined was associated with visuospatial memory change in patients with right TLE. SIGNIFICANCE Resting-state connectivity provides valuable information concerning both the integrity of to-be-resected tissue and functional reserve across memory-relevant regions outside of the to-be-resected tissue. Intrinsic functional connectivity has the potential to be useful for clinical decision-making regarding memory outcomes in left TLE, and more work is needed to identify the factors responsible for differences seen in right TLE.
Collapse
Affiliation(s)
- Sam Audrain
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alexander Barnett
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Pedram Mouseli
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Stasenko A, Kaestner E, Arienzo D, Schadler AJ, Helm JL, Shih J, Ben-Haim S, McDonald CR. White matter network organization predicts memory decline after epilepsy surgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.14.524071. [PMID: 36711617 PMCID: PMC9882113 DOI: 10.1101/2023.01.14.524071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The authors have withdrawn their manuscript owing to a substantial change in data analysis and findings/conclusions. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|