1
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025:e0011923. [PMID: 39817754 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Li V, McKay FC, Tscharke DC, Smith C, Khanna R, Lechner-Scott J, Rawlinson WD, Lloyd AR, Taylor BV, Morahan JM, Steinman L, Giovannoni G, Bar-Or A, Levy M, Drosu N, Potter A, Caswell N, Smith L, Brady EC, Frost B, Hodgkinson S, Hardy TA, Broadley SA. Repurposing Licensed Drugs with Activity Against Epstein-Barr Virus for Treatment of Multiple Sclerosis: A Systematic Approach. CNS Drugs 2025:10.1007/s40263-024-01153-5. [PMID: 39792343 DOI: 10.1007/s40263-024-01153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS. METHODS A list of therapies with anti-EBV effects was developed from existing reviews. A detailed review of pre-clinical and clinical data was undertaken to assess these candidates for potential usefulness and possible harm in MS. A 'drug-CV' and a plain language version focusing on tolerability aspects was created for each candidate. We used validated criteria to score each candidate with an international scientific panel and people living with MS. RESULTS A preliminary list of 11 drug candidates was generated. Following review by the scientific and lived experience expert panels, six yielded the same highest score. A further review by the expert panel shortlisted four drugs (famciclovir, tenofovir alafenamide, maribavir and spironolactone) deemed to have the best balance of efficacy, safety and tolerability for use in MS. CONCLUSIONS Scientific and lived experience expert panel review of anti-EBV therapies selected four candidates with evidence for efficacy against EBV and acceptable safety and tolerability for potential use in phase III clinical trials for MS.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fiona C McKay
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia.
| | - David C Tscharke
- Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Corey Smith
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Rajiv Khanna
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jeannette Lechner-Scott
- University of Newcastle, School of Medicine and Public Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD), Microbiology NSW Health Pathology, Randwick, NSW, 2031, Australia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Julia M Morahan
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia
| | - Lawrence Steinman
- Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 9305-5101, USA
| | - Gavin Giovannoni
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Natalia Drosu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Andrew Potter
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia
| | - Nigel Caswell
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Lynne Smith
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Erin C Brady
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Bruce Frost
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Suzanne Hodgkinson
- School of Clinical Medicine, University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Hospital, University of Sydney, Concord West, NSW, 2039, Australia
| | - Simon A Broadley
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| |
Collapse
|
3
|
Pache F, Otto C, Wilken D, Lietzow T, Steinhagen K, Grage-Griebenow E, Schindler P, Niederschweiberer M, Wildemann B, Jarius S, Ruprecht K. Broad Analysis of Serum and Intrathecal Antimicrobial Antibodies in Multiple Sclerosis Underscores Unique Role of Epstein-Barr Virus. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200332. [PMID: 39602676 PMCID: PMC11616972 DOI: 10.1212/nxi.0000000000200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND OBJECTIVES There is a strong link between Epstein-Barr virus (EBV) and multiple sclerosis (MS), but the underlying mechanisms are unclear. Patients with MS typically have a polyspecific intrathecal production of immunoglobulin G (IgG), part of which is directed against various microbial antigens. In this study, we comprehensively analyzed seroprevalences and frequencies of an intrathecal IgG production to EBV compared with 10 other common microbes in patients with MS. METHODS Antibodies to EBV and to Borrelia burgdorferi, cytomegalovirus, herpes simplex virus type 1/2, measles virus, mumps virus, rubella virus, parvovirus B19, tick-borne encephalitis virus, Toxoplasma gondii, and varicella zoster virus (VZV) were determined in stored paired CSF and serum samples of 50 patients with MS. Intrathecal antimicrobial antibody production was assessed by calculating antibody indices (AIs) according to standard formula. RESULTS While 50 (100%) of 50 patients with MS were EBV seropositive, seroprevalences of all other 10 microbes were lower, ranging from 94% (VZV) to 6% (Borrelia burgdorferi). An intrathecal production of antimicrobial antibodies was detected in 102 (28%) of 370 AI determinations of patients who were seropositive to the respective antimicrobial antibodies but was practically absent in seronegative patients (2/187 [1%], p < 0.0001). The frequency of intrathecally produced antimicrobial antibodies among patients who were seropositive for the respective antibodies was roughly 40% for measles, rubella, mumps, and VZV and 70% for parvovirus B19. By contrast, the frequency of intrathecally produced EBV antibodies was low (10%) and, when related to their respective seroprevalences, lower than those of all other investigated microbes. DISCUSSION Despite the universal EBV seroprevalence, the frequency of intrathecally produced EBV antibodies in patients with MS is lower than that of other microbes, whose seroprevalences are lower than those of EBV. This seemingly paradoxical finding underscores the unique role of EBV in MS and could be explained by the hypothesis that B lineage cells responsible for intrathecal antibody production are primed during and through acute EBV infection to enter the CNS of patients with MS, that is, at a time point when EBV antibody-producing cells have not yet been generated and, therefore, are not yet available for entering the CNS.
Collapse
Affiliation(s)
- Florence Pache
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Carolin Otto
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Diana Wilken
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Tatjana Lietzow
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Katja Steinhagen
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Evelin Grage-Griebenow
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Patrick Schindler
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Moritz Niederschweiberer
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Brigitte Wildemann
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Sven Jarius
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| | - Klemens Ruprecht
- From the Department of Neurology (F.P., C.O., P.S., M.N., K.R.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute for Experimental Immunology (D.W., T.L., K.S., E.G.-G.), affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; and Molecular Neuroimmunology Group (B.W., S.J.), Department of Neurology, University of Heidelberg, Germany
| |
Collapse
|
4
|
Behrens M, Comabella M, Lünemann JD. EBV-specific T-cell immunity: relevance for multiple sclerosis. Front Immunol 2024; 15:1509927. [PMID: 39776919 PMCID: PMC11703957 DOI: 10.3389/fimmu.2024.1509927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Genetic and environmental factors jointly determine the susceptibility to develop multiple sclerosis (MS). Improvements in the design of epidemiological studies have helped to identify consistent environmental risk associations such as the increased susceptibility for MS following Epstein-Barr virus (EBV) infection, while biological mechanisms that drive the association between EBV and MS remain incompletely understood. An increased and broadened repertoire of antibody and T-cell immune responses to EBV-encoded antigens, especially to the dominant CD4+ T-cell EBV nuclear antigen 1 (EBNA1), is consistently observed in patients with MS, indicating that protective EBV-specific immune responses are deregulated in MS and potentially contribute to disease development. Exploitation of B-cell trajectories by EBV infection might promote survival of autoreactive B-cell species and proinflammatory B:T-cell interactions. In this review article, we illustrate evidence for a causal role of EBV infection in MS, discuss how EBV-targeting adaptive immune responses potentially modulate disease susceptibility and progression, and provide future perspectives on how novel model systems could be utilized to better define the role of EBV and viral pathogens in MS. Insights gained from these studies might facilitate the development of prevention strategies and more effective treatments for MS.
Collapse
Affiliation(s)
- Malina Behrens
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
5
|
Solares S, León J, García-Gutiérrez L. The Functional Interaction Between Epstein-Barr Virus and MYC in the Pathogenesis of Burkitt Lymphoma. Cancers (Basel) 2024; 16:4212. [PMID: 39766110 PMCID: PMC11674381 DOI: 10.3390/cancers16244212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The Epstein-Barr virus (EBV) is associated with a wide range of diseases, malignant and non-malignant. EBV was, in fact, the first virus described with cell transformation capacity, discovered by Epstein in 1964 in lymphoma samples from African children. Since then, EBV has been associated with several human tumors including nasopharyngeal carcinoma, gastric carcinoma, T-cell lymphoma, Hodgkin lymphoma, diffuse large B cell lymphoma, and Burkitt lymphoma among others. The molecular hallmark of Burkitt lymphoma (BL) is a chromosomal translocation that involves the MYC gene and immunoglobulin loci, resulting in the deregulated expression of MYC, an oncogenic transcription factor that appears deregulated in about half of human tumors. The role of MYC in lymphoma is well established, as MYC overexpression drives B cell proliferation through multiple mechanisms, foremost, the stimulation of the cell cycle. Indeed, MYC is found overexpressed or deregulated in several non-Hodgkin lymphomas. Most endemic and many sporadic BLs are associated with EBV infection. While some mechanisms by which EBV can contribute to BL have been reported, the mechanism that links MYC translocation and EBV infection in BL is still under debate. Here, we review the main EBV-associated diseases, with a special focus on BL, and we discuss the interaction of EBV and MYC translocation during B cell malignant transformation in BL.
Collapse
Affiliation(s)
| | | | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria, Departamento de Biología Molecular, Universidad de Cantabria-CSIC, Albert Einstein 22, 39011 Cantabria, Spain; (S.S.); (J.L.)
| |
Collapse
|
6
|
Lehikoinen J, Nurmi K, Ainola M, Clancy J, Nieminen JK, Jansson L, Vauhkonen H, Vaheri A, Smura T, Laakso SM, Eklund KK, Tienari PJ. Epstein-Barr Virus in the Cerebrospinal Fluid and Blood Compartments of Patients With Multiple Sclerosis and Controls. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200226. [PMID: 38608226 PMCID: PMC11087029 DOI: 10.1212/nxi.0000000000200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) infection is a major risk factor of multiple sclerosis (MS). We examined the presence of EBV DNA in the CSF and blood of patients with MS and controls. We analyzed whether EBV DNA is more common in the CSF of patients with MS than in controls and estimated the proportions of EBV-positive B cells in the CSF and blood. METHODS CSF supernatants and cells were collected at diagnostic lumbar punctures from 45 patients with MS and 45 HLA-DR15 matched controls with other conditions, all participants were EBV seropositive. Cellular DNA was amplified by Phi polymerase targeting both host and viral DNA, and representative samples were obtained in 28 cases and 28 controls. Nonamplified DNA from CSF cells (14 cases, 14 controls) and blood B cells (10 cases, 10 controls) were analyzed in a subset of participants. Multiple droplet digital PCR (ddPCR) runs were performed per sample to assess the cumulative EBV positivity rate. To detect viral RNA as a sign of activation, RNA sequencing was performed in blood CD4-positive, CD8-positive, and CD19-positive cells from 21 patients with MS and 3 controls. RESULTS One of the 45 patients with MS and none of the 45 controls were positive for EBV DNA in CSF supernatants (1 mL). CSF cellular DNA was analyzed in 8 independent ddPCRs: EBV DNA was detected at least once in 18 (64%) of the 28 patients with MS and in 15 (54%) of the 28 controls (p = 0.59, Fisher test). The cumulative EBV positivity increased steadily up to 59% in the successive ddPCRs, suggesting that all individuals would have reached EBV positivity in the CSF cells, if more DNA would have been analyzed. The estimated proportion of EBV-positive B cells was >1/10,000 in both the CSF and blood. We did not detect viral RNA, except from endogenous retroviruses, in the blood lymphocyte subpopulations. DISCUSSION EBV-DNA is equally detectable in the CSF cells of both patients with MS and controls with ddPCR, and the probabilistic approach indicates that the true positivity rate approaches 100% in EBV-positive individuals. The proportion of EBV-positive B cells seems higher than previously estimated.
Collapse
Affiliation(s)
- Joonas Lehikoinen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Katariina Nurmi
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Mari Ainola
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Jonna Clancy
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Janne K Nieminen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Lilja Jansson
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Hanna Vauhkonen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Antti Vaheri
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Teemu Smura
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Sini M Laakso
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Kari K Eklund
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Pentti J Tienari
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| |
Collapse
|
7
|
Gottlieb A, Pham HPT, Saltarrelli JG, Lindsey JW. Expanded T lymphocytes in the cerebrospinal fluid of multiple sclerosis patients are specific for Epstein-Barr-virus-infected B cells. Proc Natl Acad Sci U S A 2024; 121:e2315857121. [PMID: 38190525 PMCID: PMC10801919 DOI: 10.1073/pnas.2315857121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Epstein-Barr virus (EBV) infection has long been associated with multiple sclerosis (MS), but the role of EBV in the pathogenesis of MS is not clear. Our hypothesis is that a major fraction of the expanded clones of T lymphocytes in the cerebrospinal fluid (CSF) are specific for autologous EBV-infected B cells. We obtained blood and CSF samples from eight relapsing-remitting patients in the process of diagnosis. We stimulated cells from the blood with autologous EBV-infected lymphoblastoid cell lines (LCL), EBV, varicella zoster virus, influenza, and candida and sorted the responding cells with flow cytometry after 6 d. We sequenced the RNA for T cell receptors (TCR) from CSF, unselected blood cells, and the antigen-specific cells. We used the TCR Vβ CDR3 sequences from the antigen-specific cells to assign antigen specificity to the sequences from the CSF and blood. LCL-specific cells comprised 13.0 ± 4.3% (mean ± SD) of the total reads present in CSF and 13.3 ± 7.5% of the reads present in blood. The next most abundant antigen specificity was flu, which was 4.7 ± 1.7% of the reads in the CSF and 9.3 ± 6.6% in the blood. The prominence of LCL-specific reads was even more marked in the top 1% most abundant CSF clones with statistically significant 47% mean overlap with LCL. We conclude that LCL-specific sequences form a major portion of the TCR repertoire in both CSF and blood and that expanded clones specific for LCL are present in MS CSF. This has important implications for the pathogenesis of MS.
Collapse
Affiliation(s)
- Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX77030
| | - H. Phuong T. Pham
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Jerome G. Saltarrelli
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - J. William Lindsey
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| |
Collapse
|
8
|
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NEUROSCI 2023; 4:211-234. [PMID: 39483197 PMCID: PMC11523707 DOI: 10.3390/neurosci4030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease that causes demyelination of the white matter of the central nervous system. It is generally accepted that the etiology of MS is multifactorial and believed to be a complex interplay between genetic susceptibility, environmental factors, and infectious agents. While the exact cause of MS is still unknown, increasing evidence suggests that disease development is the result of interactions between genetically susceptible individuals and the environment that lead to immune dysregulation and CNS inflammation. Genetic factors are not sufficient on their own to cause MS, and environmental factors such as viral infections, smoking, and vitamin D deficiency also play important roles in disease development. Several pathogens have been implicated in the etiology of MS, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, Helicobacter pylori, Chlamydia pneumoniae, and Borrelia burgdorferi. Although vastly different, viruses and bacteria can manipulate host gene expression, causing immune dysregulation, myelin destruction, and neuroinflammation. This review emphasizes the pathogenic triggers that should be considered in MS progression.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
9
|
Hedström AK. Risk factors for multiple sclerosis in the context of Epstein-Barr virus infection. Front Immunol 2023; 14:1212676. [PMID: 37554326 PMCID: PMC10406387 DOI: 10.3389/fimmu.2023.1212676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Compelling evidence indicates that Epstein Barr virus (EBV) infection is a prerequisite for multiple sclerosis (MS). The disease may arise from a complex interplay between latent EBV infection, genetic predisposition, and various environmental and lifestyle factors that negatively affect immune control of the infection. Evidence of gene-environment interactions and epigenetic modifications triggered by environmental factors in genetically susceptible individuals supports this view. This review gives a short introduction to EBV and host immunity and discusses evidence indicating EBV as a prerequisite for MS. The role of genetic and environmental risk factors, and their interactions, in MS pathogenesis is reviewed and put in the context of EBV infection. Finally, possible preventive measures are discussed based on the findings presented.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Polak J, Wagnerberger JH, Torsetnes SB, Lindeman I, Høglund RAA, Vartdal F, Sollid LM, Lossius A. Single-cell transcriptomics combined with proteomics of intrathecal IgG reveal transcriptional heterogeneity of oligoclonal IgG-secreting cells in multiple sclerosis. Front Cell Neurosci 2023; 17:1189709. [PMID: 37362001 PMCID: PMC10285169 DOI: 10.3389/fncel.2023.1189709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The phenotypes of B lineage cells that produce oligoclonal IgG in multiple sclerosis have not been unequivocally determined. Here, we utilized single-cell RNA-seq data of intrathecal B lineage cells in combination with mass spectrometry of intrathecally synthesized IgG to identify its cellular source. We found that the intrathecally produced IgG matched a larger fraction of clonally expanded antibody-secreting cells compared to singletons. The IgG was traced back to two clonally related clusters of antibody-secreting cells, one comprising highly proliferating cells, and the other consisting of more differentiated cells expressing genes associated with immunoglobulin synthesis. These findings suggest some degree of heterogeneity among cells that produce oligoclonal IgG in multiple sclerosis.
Collapse
Affiliation(s)
- Justyna Polak
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johanna H. Wagnerberger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Ida Lindeman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Rune A. Aa. Høglund
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Frode Vartdal
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ludvig M. Sollid
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lossius
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
11
|
Debuysschere C, Nekoua MP, Hober D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms 2023; 11:1262. [PMID: 37317236 DOI: 10.3390/microorganisms11051262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Viral infections have been suspected of being involved in the pathogenesis of certain autoimmune diseases for many years. Epstein-Barr virus (EBV), a DNA virus belonging to the Herpesviridae family, is thought to be associated with the onset and/or the progression of multiple sclerosis (MS), systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and type 1 diabetes. The lifecycle of EBV consists of lytic cycles and latency programmes (0, I, II and III) occurring in infected B-cells. During this lifecycle, viral proteins and miRNAs are produced. This review provides an overview of the detection of EBV infection, focusing on markers of latency and lytic phases in MS. In MS patients, the presence of latency proteins and antibodies has been associated with lesions and dysfunctions of the central nervous system (CNS). In addition, miRNAs, expressed during lytic and latency phases, may be detected in the CNS of MS patients. Lytic reactivations of EBV can occur in the CNS of patients as well, with the presence of lytic proteins and T-cells reacting to this protein in the CNS of MS patients. In conclusion, markers of EBV infection can be found in MS patients, which argues in favour of a relationship between EBV and MS.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
12
|
Xie C, Zhong LY, Bu GL, Zhao GX, Yuan BY, Liu YT, Sun C, Zeng MS. Anti-EBV antibodies: Roles in diagnosis, pathogenesis, and antiviral therapy. J Med Virol 2023; 95:e28793. [PMID: 37212266 DOI: 10.1002/jmv.28793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Epstein-Barr virus (EBV) infection is prevalent in global population and associated with multiple malignancies and autoimmune diseases. During the infection, EBV-harbored or infected cell-expressing antigen could elicit a variety of antibodies with significant role in viral host response and pathogenesis. These antibodies have been extensively evaluated and found to be valuable in predicting disease diagnosis and prognosis, exploring disease mechanisms, and developing antiviral agents. In this review, we discuss the versatile roles of EBV antibodies as important biomarkers for EBV-related diseases, potential driving factors of autoimmunity, and promising therapeutic agents for viral infection and pathogenesis.
Collapse
Affiliation(s)
- Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou, China
| |
Collapse
|
13
|
Ortega-Hernandez OD, Martínez-Cáceres EM, Presas-Rodríguez S, Ramo-Tello C. Epstein-Barr Virus and Multiple Sclerosis: A Convoluted Interaction and the Opportunity to Unravel Predictive Biomarkers. Int J Mol Sci 2023; 24:ijms24087407. [PMID: 37108566 PMCID: PMC10138841 DOI: 10.3390/ijms24087407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Since the early 1980s, Epstein-Barr virus (EBV) infection has been described as one of the main risk factors for developing multiple sclerosis (MS), and recently, new epidemiological evidence has reinforced this premise. EBV seroconversion precedes almost 99% of the new cases of MS and likely predates the first clinical symptoms. The molecular mechanisms of this association are complex and may involve different immunological routes, perhaps all running in parallel (i.e., molecular mimicry, the bystander damage theory, abnormal cytokine networks, and coinfection of EBV with retroviruses, among others). However, despite the large amount of evidence available on these topics, the ultimate role of EBV in the pathogenesis of MS is not fully understood. For instance, it is unclear why after EBV infection some individuals develop MS while others evolve to lymphoproliferative disorders or systemic autoimmune diseases. In this regard, recent studies suggest that the virus may exert epigenetic control over MS susceptibility genes by means of specific virulence factors. Such genetic manipulation has been described in virally-infected memory B cells from patients with MS and are thought to be the main source of autoreactive immune responses. Yet, the role of EBV infection in the natural history of MS and in the initiation of neurodegeneration is even less clear. In this narrative review, we will discuss the available evidence on these topics and the possibility of harnessing such immunological alterations to uncover predictive biomarkers for the onset of MS and perhaps facilitate prognostication of the clinical course.
Collapse
Affiliation(s)
- Oscar-Danilo Ortega-Hernandez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Eva M Martínez-Cáceres
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| |
Collapse
|
14
|
Serafini B, Rosicarelli B, Veroni C, Aloisi F. Tissue-resident memory T cells in the multiple sclerosis brain and their relationship to Epstein-Barr virus infected B cells. J Neuroimmunol 2023; 376:578036. [PMID: 36753806 DOI: 10.1016/j.jneuroim.2023.578036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Presence of EBV infected B cells and EBV-specific CD8 T cells in the multiple sclerosis (MS) brain suggests a role for virus-driven immunopathology in brain inflammation. Tissue-resident memory (Trm) T cells differentiating in MS lesions could provide local protection against EBV reactivation. Using immunohistochemical techniques to analyse canonical tissue residency markers in postmortem brains from control and MS cases, we report that CD103 and/or CD69 are mainly expressed in a subset of CD8+ T cells that intermingle with and contact EBV infected B cells in the infiltrated MS white matter and meninges, including B-cell follicles. Some Trm-like cells were found to express granzyme B and PD-1, mainly in white matter lesions. In the MS brain, Trm cells could fail to constrain EBV infection while contributing to sustain inflammation.
Collapse
Affiliation(s)
- Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Barbara Rosicarelli
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
15
|
Thomas OG, Rickinson A, Palendira U. Epstein-Barr virus and multiple sclerosis: moving from questions of association to questions of mechanism. Clin Transl Immunology 2023; 12:e1451. [PMID: 37206956 PMCID: PMC10191779 DOI: 10.1002/cti2.1451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
The link between Epstein-Barr virus (EBV) and multiple sclerosis (MS) has puzzled researchers since it was first discovered over 40 years ago. Until that point, EBV was primarily viewed as a cancer-causing agent, but the culmination of evidence now shows that EBV has a pivotal role in development of MS. Early MS disease is characterised by episodic neuroinflammation and focal lesions in the central nervous system (CNS) that over time develop into progressive neurodegeneration and disability. Risk of MS is vanishingly low in EBV seronegative individuals, history of infectious mononucleosis (acute symptomatic primary infection with EBV) significantly increases risk and elevated antibody titres directed against EBV antigens are well-characterised in patients. However, the underlying mechanism - or mechanisms - responsible for this interplay remains to be fully elucidated; how does EBV-induced immune dysregulation either trigger or drive MS in susceptible individuals? Furthermore, deep understanding of virological and immunological events during primary infection and long-term persistence in B cells will help to answer the many questions that remain regarding MS pathogenesis. This review discusses the current evidence and mechanisms surrounding EBV and MS, which have important implications for the future of MS therapies and prevention.
Collapse
Affiliation(s)
- Olivia G Thomas
- Department of Clinical Neuroscience, Therapeutic Immune Design, Centre for Molecular MedicineKarolinska InstituteStockholmSweden
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of Birmingham, EdgbastonBirminghamUK
| | - Umaimainthan Palendira
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
16
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
17
|
Younger DS. Multiple sclerosis: Motor dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:119-147. [PMID: 37620066 DOI: 10.1016/b978-0-323-98817-9.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Multiple sclerosis is a chronic neurological disease characterized by inflammation and degeneration within the central nervous system. Over the course of the disease, most MS patients successively accumulate inflammatory lesions, axonal damage, and diffuse CNS pathology, along with an increasing degree of motor disability. While the pharmacological approach to MS targets inflammation to decrease relapse rates and relieve symptoms, disease-modifying therapy and immunosuppressive medications may not prevent the accumulation of pathology in most patients leading to long-term motor disability. This has been met with recent interest in promoting plasticity-guided concepts, enhanced by neurophysiological and neuroimaging approaches to address the preservation of motor function.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
18
|
Bhargava P, Hartung HP, Calabresi PA. Contribution of B cells to cortical damage in multiple sclerosis. Brain 2022; 145:3363-3373. [PMID: 35775595 DOI: 10.1093/brain/awac233] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
Multiple sclerosis is associated with lesions not just in the white matter, but also involving the cortex. Cortical involvement has been linked to greater disease severity and hence understanding the factor underlying cortical pathology could help identify new therapeutic strategies for multiple sclerosis. The critical role of B cells in multiple sclerosis has been clarified by multiple pivotal trials of B cell depletion in people with multiple sclerosis. The presence of B cell rich areas of meningeal inflammation in multiple sclerosis has been identified at all stages of multiple sclerosis. Leptomeningeal inflammation is associated with greater extent of cortical demyelination and neuronal loss and with greater disease severity. Recent studies have identified several potential mechanisms by which B cells may mediate cortical injury including antibody production, extracellular vesicles containing neurotoxic substances and production of pro-inflammatory cytokines. Additionally, B cells may indirectly mediate cortical damage through effects on T cells, macrophages or microglia. Several animal models replicate the meningeal inflammation and cortical injury noted in people with multiple sclerosis. Studies in these models have identified BTK inhibition and type II anti-CD20 antibodies as potential agents that can impact meningeal inflammation. Trials of anti-CD20 monoclonal antibodies in people with multiple sclerosis have unsuccessfully attempted to eliminate B cells in the leptomeninges. New strategies to target B cells in multiple sclerosis include BTK inhibition and cell-based therapies aimed at B cells infected with Epstein Barr virus. Future studies will clarify the mechanisms by which B cells mediate cortical injury and treatment strategies that can target B cells in the leptomeninges and CNS parenchyma.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Peter Hartung
- Department of Neurology, Heinrich-Heine University, Dusseldorf, Germany.,Brain and Mind Center, University of Sydney, Sydney, Australia.,Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS) that often progresses to severe disability. Previous studies have highlighted the role of T cells in disease pathophysiology; however, the success of B-cell-targeted therapies has led to an increased interest in how B cells contribute to disease immunopathology. In this review, we summarize evidence of B-cell involvement in MS disease mechanisms, starting with pathology and moving on to review aspects of B cell immunobiology potentially relevant to MS. We describe current theories of critical B cell contributions to the inflammatory CNS milieu in MS, namely (i) production of autoantibodies, (ii) antigen presentation, (iii) production of proinflammatory cytokines (bystander activation), and (iv) EBV involvement. In the second part of the review, we summarize medications that have targeted B cells in patients with MS and their current position in the therapeutic armamentarium based on clinical trials and real-world data. Covered therapeutic strategies include the targeting of surface molecules such as CD20 (rituximab, ocrelizumab, ofatumumab, ublituximab) and CD19 (inebilizumab), and molecules necessary for B-cell activation such as B cell activating factor (BAFF) (belimumab) and Bruton's Tyrosine Kinase (BTK) (evobrutinib). We finally discuss the use of B-cell-targeted therapeutics in pregnancy.
Collapse
|
20
|
Pachner AR. The Neuroimmunology of Multiple Sclerosis: Fictions and Facts. Front Neurol 2022; 12:796378. [PMID: 35197914 PMCID: PMC8858985 DOI: 10.3389/fneur.2021.796378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
There have been tremendous advances in the neuroimmunology of multiple sclerosis over the past five decades, which have led to improved diagnosis and therapy in the clinic. However, further advances must take into account an understanding of some of the complex issues in the field, particularly an appreciation of "facts" and "fiction." Not surprisingly given the incredible complexity of both the nervous and immune systems, our understanding of the basic biology of the disease is very incomplete. This lack of understanding has led to many controversies in the field. This review identifies some of these controversies and facts/fictions with relation to the basic neuroimmunology of the disease (cells and molecules), and important clinical issues. Fortunately, the field is in a healthy transition from excessive reliance on animal models to a broader understanding of the disease in humans, which will likely lead to many improved treatments especially of the neurodegeneration in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Andrew R. Pachner
- Dartmouth–Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
21
|
Berger JR, Kakara M. The Elimination of Circulating Epstein-Barr Virus Infected B Cells Underlies Anti-CD20 Monoclonal Antibody Activity in Multiple Sclerosis: A Hypothesis. Mult Scler Relat Disord 2022; 59:103678. [DOI: 10.1016/j.msard.2022.103678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/08/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
|
22
|
Hassani A, Reguraman N, Shehab S, Khan G. Primary Peripheral Epstein-Barr Virus Infection Can Lead to CNS Infection and Neuroinflammation in a Rabbit Model: Implications for Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:764937. [PMID: 34899715 PMCID: PMC8656284 DOI: 10.3389/fimmu.2021.764937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Epstein-Barr virus (EBV) is a common herpesvirus associated with malignant and non-malignant conditions. An accumulating body of evidence supports a role for EBV in the pathogenesis of multiple sclerosis (MS), a demyelinating disease of the CNS. However, little is known about the details of the link between EBV and MS. One obstacle which has hindered research in this area has been the lack of a suitable animal model recapitulating natural infection in humans. We have recently shown that healthy rabbits are susceptible to EBV infection, and viral persistence in these animals mimics latent infection in humans. We used the rabbit model to investigate if peripheral EBV infection can lead to infection of the CNS and its potential consequences. We injected EBV intravenously in one group of animals, and phosphate-buffered saline (PBS) in another, with and without immunosuppression. Histopathological changes and viral dynamics were examined in peripheral blood, spleen, brain, and spinal cord, using a range of molecular and histopathology techniques. Our investigations uncovered important findings that could not be previously addressed. We showed that primary peripheral EBV infection can lead to the virus traversing the CNS. Cell associated, but not free virus in the plasma, correlated with CNS infection. The infected cells within the brain were found to be B-lymphocytes. Most notably, animals injected with EBV, but not PBS, developed inflammatory cellular aggregates in the CNS. The incidence of these aggregates increased in the immunosuppressed animals. The cellular aggregates contained compact clusters of macrophages surrounded by reactive astrocytes and dispersed B and T lymphocytes, but not myelinated nerve fibers. Moreover, studying EBV infection over a span of 28 days, revealed that the peak point for viral load in the periphery and CNS coincides with increased occurrence of cellular aggregates in the brain. Finally, peripheral EBV infection triggered temporal changes in the expression of latent viral transcripts and cytokines in the brain. The present study provides the first direct in vivo evidence for the role of peripheral EBV infection in CNS pathology, and highlights a unique model to dissect viral mechanisms contributing to the development of MS.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Narendran Reguraman
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
23
|
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Front Immunol 2021; 12:757302. [PMID: 34790199 PMCID: PMC8592026 DOI: 10.3389/fimmu.2021.757302] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501β, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.
Collapse
Affiliation(s)
- Ute-Christiane Meier
- Institut für Laboratoriumsmedizin, Klinikum der Universität München, München, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
24
|
Sánchez P, Chan F, Hardy TA. Tumefactive demyelination: updated perspectives on diagnosis and management. Expert Rev Neurother 2021; 21:1005-1017. [PMID: 34424129 DOI: 10.1080/14737175.2021.1971077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Tumefactive demyelination (TD) can be a challenging scenario for clinicians due to difficulties distinguishing it from other conditions, such as neoplasm or infection; or with managing the consequences of acute lesions, and then deciding upon the most appropriate longer term treatment strategy. AREAS COVERED The authors review the literature regarding TD covering its clinic-radiological features, association with multiple sclerosis (MS), and its differential diagnosis with other neuroinflammatory and non-inflammatory mimicking disorders with an emphasis on atypical forms of demyelination including acute disseminated encephalomyelitis (ADEM), MOG antibody-associated demyelination (MOGAD) and neuromyelitis spectrum disorders (NMOSD). We also review the latest in the acute and long-term treatment of TD. EXPERT OPINION It is important that the underlying cause of TD be determined whenever possible to guide the management approach which differs between different demyelinating and other inflammatory conditions. Improved neuroimaging and advances in serum and CSF biomarkers should one day allow early and accurate diagnosis of TD leading to better outcomes for patients.
Collapse
Affiliation(s)
- Pedro Sánchez
- Department of Neurology, Alexianer St. Josefs-Krankenhaus, Potsdam, Germany
| | - Fiona Chan
- Department of Neurology, Concord Hospital, University of Sydney, NSW, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Hospital, University of Sydney, NSW, Australia.,Brain & Mind Centre, University of Sydney, Nsw, Australia
| |
Collapse
|
25
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
26
|
Jakhmola S, Upadhyay A, Jain K, Mishra A, Jha HC. Herpesviruses and the hidden links to Multiple Sclerosis neuropathology. J Neuroimmunol 2021; 358:577636. [PMID: 34174587 DOI: 10.1016/j.jneuroim.2021.577636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Herpesviruses like Epstein-Barr virus, human herpesvirus (HHV)-6, HHV-1, VZV, and human endogenous retroviruses, have an age-old clinical association with multiple sclerosis (MS). MS is an autoimmune disease of the nervous system wherein the myelin sheath deteriorates. The most popular mode of virus mediated immune system manipulation is molecular mimicry. Numerous herpesvirus antigens are similar to myelin proteins. Other mechanisms described here include the activity of cytokines and autoantibodies produced by the autoreactive T and B cells, respectively, viral déjà vu, epitope spreading, CD46 receptor engagement, impaired remyelination etc. Overall, this review addresses the host-parasite association of viruses with MS.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
27
|
Varvatsi D, Richter J, Tryfonos C, Pantzaris M, Christodoulou C. Association of Epstein-Barr virus latently expressed genes with multiple sclerosis. Mult Scler Relat Disord 2021; 52:103008. [PMID: 34010765 DOI: 10.1016/j.msard.2021.103008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite mounting evidence supporting an etiologic role for Epstein-Barr virus (EBV) in multiple sclerosis (MS), the exact mechanisms through which the virus may contribute to disease development are still unknown. The aim of this study was to analyze seven highly polymorphic EBV latently expressed genes in individuals diagnosed with MS in comparison to healthy controls (HC), to investigate the possible association of EBV variants with an individual's risk towards MS. METHODS B-lymphocytes were isolated from MS patients (n = 30) and HC (n = 33) for the isolation of EBV genomic DNA. Sanger sequencing was employed to analyze EBV latent gene regions. RESULTS A total of 26 variants were detected in our cohort, 17 of which were significantly associated with the MS group while nine were significantly associated with HC. Following the designation of EBV alleles based on these variants, MS risk was found to be significantly associated with the presence of the EBNA3B2.1 allele (p = 0.0008) and LMP1.1 allele (p = 0.01), whereas the EBNA1.3 allele (p = 0.005), EBNA2.1 allele (p = 0.001) as well as the EBNA3B2.2 allele (p = 0.0003) appeared to provide a protective role. CONCLUSIONS This study indicates a marked association between EBV genetic variants and MS, lending further support towards possible molecular mechanisms through which EBV may contribute to disease development.
Collapse
Affiliation(s)
- Despina Varvatsi
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371
| | - Jan Richter
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371.
| | - Christina Tryfonos
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371; Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371
| | - Christina Christodoulou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371
| |
Collapse
|
28
|
Silva BA, Miglietta E, Ferrari CC. Insights into the role of B cells in the cortical pathology of Multiple sclerosis: evidence from animal models and patients. Mult Scler Relat Disord 2021; 50:102845. [PMID: 33636613 DOI: 10.1016/j.msard.2021.102845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system (CNS) that affects both white and gray matter. Although it has been traditionally considered as a T cell mediated disease, the role of B cell in MS pathology has become a topic of great research interest. Cortical lesions, key feature of the progressive forms of MS, are involved in cognitive impairment and worsening of the patients' outcome. These lesions present pathognomonic hallmarks, such as: absence of blood-brain barrier (BBB) disruption, limited inflammatory events, reactive microglia, neurodegeneration, demyelination and meningeal inflammation. B cells located in the meninges, either as part of diffuse inflammation or as part of follicle-like structures, are strongly associated with cortical damage. The function of CD20-expressing B cells in MS is further highlighted by the success of specific therapies using anti-CD20 antibodies. The possible roles of B cells in pathology go beyond their ability to produce antibodies, as they also present antigens to T cells, secrete cytokines (both pathogenic and protective) within the CNS to modulate T and myeloid cell functions, and are involved in meningeal inflammation. Here, we will review the contributions of B cells to the pathogenesis of meningeal inflammation and cortical lesions in MS patients as well as in preclinical animal models.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Buenos Aires, Argentina; Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina; Centro Universitario de Esclerosis Múltiple, División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Esteban Miglietta
- Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Buenos Aires, Argentina; Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Ruprecht K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev Clin Immunol 2020; 16:1143-1157. [PMID: 33152255 DOI: 10.1080/1744666x.2021.1847642] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. While its exact etiology is unknown, it is generally believed that MS is caused by environmental triggers in genetically predisposed individuals. Strong and consistent evidence suggests a key role of Epstein-Barr virus (EBV), a B lymphotropic human gammaherpesvirus, in the etiology of MS. Areas covered: This review summarizes recent developments in the field of EBV and MS with a focus on potential mechanisms underlying the role of EBV in MS. PubMed was searched for the terms 'Epstein-Barr virus' and 'multiple sclerosis'. Expert opinion: The current evidence is compatible with the working hypothesis that MS is a rare complication of EBV infection. Under the premise of a causative role of EBV in MS, it needs to be postulated that EBV causes a specific, and likely persistent, change(s) that is necessarily required for the development of MS. However, although progress has been made, the nature of that change and thus the precise mechanism explaining the role of EBV in MS remain elusive. The mechanism of EBV in MS therefore is a pressing question, whose clarification may substantially advance the pathophysiological understanding, rational therapies, and prevention of MS.
Collapse
Affiliation(s)
- Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
| |
Collapse
|
30
|
Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol 2020; 11:587078. [PMID: 33391262 PMCID: PMC7773893 DOI: 10.3389/fimmu.2020.587078] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neurologic disease affecting myelinated nerves in the central nervous system (CNS). The disease often debuts as a clinically isolated syndrome, e.g., optic neuritis (ON), which later develops into relapsing-remitting (RR) MS, with temporal attacks or primary progressive (PP) MS. Characteristic features of MS are inflammatory foci in the CNS and intrathecal synthesis of immunoglobulins (Igs), measured as an IgG index, oligoclonal bands (OCBs), or specific antibody indexes. Major predisposing factors for MS are certain tissue types (e.g., HLA DRB1*15:01), vitamin D deficiency, smoking, obesity, and infection with Epstein-Barr virus (EBV). Many of the clinical signs of MS described above can be explained by chronic/recurrent EBV infection and current models of EBV involvement suggest that RRMS may be caused by repeated entry of EBV-transformed B cells to the CNS in connection with attacks, while PPMS may be caused by more chronic activity of EBV-transformed B cells in the CNS. In line with the model of EBV's role in MS, new treatments based on monoclonal antibodies (MAbs) targeting B cells have shown good efficacy in clinical trials both for RRMS and PPMS, while MAbs inhibiting B cell mobilization and entry to the CNS have shown efficacy in RRMS. Thus, these agents, which are now first line therapy in many patients, may be hypothesized to function by counteracting a chronic EBV infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Sá MJ, Soares Dos Reis R, Altintas A, Celius EG, Chien C, Comi G, Graus F, Hillert J, Hobart J, Khan G, Kissani N, Langdon D, Leite MI, Okuda DT, Palace J, Papais-Alvarenga RM, Mendes-Pinto I, Shi FD. State of the Art and Future Challenges in Multiple Sclerosis Research and Medical Management: An Insight into the 5th International Porto Congress of Multiple Sclerosis. Neurol Ther 2020; 9:281-300. [PMID: 32666470 PMCID: PMC7606370 DOI: 10.1007/s40120-020-00202-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
The 5th International Porto Congress of Multiple Sclerosis took place between the 14th and 16th of February 2019 in Porto, Portugal. Its intensive programme covered a wide-range of themes-including many of the hot topics, challenges, pitfalls and yet unmet needs in the field of multiple sclerosis (MS)-led by a number of well-acknowledged world experts. This meeting review summarizes the talks that took place during the congress, which focussed on issues in MS as diverse as the development and challenges of progressive MS, epidemiology, differential diagnosis, medical management, molecular research and imaging tools.
Collapse
Affiliation(s)
- María José Sá
- Department of Neurology, Centro Hospitalar Universitário de São João, Alameda Prof. Hernáni Monteiro, Porto, Portugal.
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, Porto, Portugal.
| | - Ricardo Soares Dos Reis
- Department of Neurology, Centro Hospitalar Universitário de São João, Alameda Prof. Hernáni Monteiro, Porto, Portugal.
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Ayse Altintas
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| | - Elisabeth Gulowsen Celius
- Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Chien
- NeuroCure Clinical Research Center, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giancarlo Comi
- Department of Neurology, University Vita-Salute San Raffaele, Milan, Italy
| | - Francesc Graus
- Department of Neurology, August Pi i Sunyer Biomedical Research Institute (IDIBAPS) Hospital Clínic, Barcelona, Spain
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jeremy Hobart
- Department of Neurology, University Hospitals Plymouth, Plymouth, UK
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Najib Kissani
- Neurology Department, Marrakech University Hospital Mohammed VI, Marrakech, Morocco
- Neuroscience Research Laboratory, Marrakesh Medical School, Cadi Ayyad University, Marrakech, Morocco
| | - Dawn Langdon
- Department of Psychology, Royal Holloway, University of London, London, UK
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | - Fu-Dong Shi
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
32
|
Abstract
B cells serve as a key weapon against infectious diseases. They also contribute to multiple autoimmune diseases, including multiple sclerosis (MS) where depletion of B cells is a highly effective therapy. We describe a comprehensive profile of central nervous system (CNS)-specific transcriptional B cell phenotypes in MS at single-cell resolution with paired immune repertoires. We reveal a polyclonal immunoglobulin M (IgM) and IgG1 cerebrospinal fluid B cell expansion polarized toward an inflammatory, memory and plasmablast/plasma cell phenotype, with differential up-regulation of specific proinflammatory pathways. We did not find evidence that CNS B cells harbor a neurotropic virus. These data support the targeting of activated resident B cells in the CNS as a potentially effective strategy for control of treatment-resistant chronic disease. Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood–brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein–Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype.
Collapse
|
33
|
van Langelaar J, Rijvers L, Smolders J, van Luijn MM. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front Immunol 2020; 11:760. [PMID: 32457742 PMCID: PMC7225320 DOI: 10.3389/fimmu.2020.00760] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Historically, multiple sclerosis (MS) has been viewed as being primarily driven by T cells. However, the effective use of anti-CD20 treatment now also reveals an important role for B cells in MS patients. The results from this treatment put forward T-cell activation rather than antibody production by B cells as a driving force behind MS. The main question of how their interaction provokes both B and T cells to infiltrate the CNS and cause local pathology remains to be answered. In this review, we highlight key pathogenic events involving B and T cells that most likely contribute to the pathogenesis of MS. These include (1) peripheral escape of B cells from T cell-mediated control, (2) interaction of pathogenic B and T cells in secondary lymph nodes, and (3) reactivation of B and T cells accumulating in the CNS. We will focus on the functional programs of CNS-infiltrating lymphocyte subsets in MS patients and discuss how these are defined by mechanisms such as antigen presentation, co-stimulation and cytokine production in the periphery. Furthermore, the potential impact of genetic variants and viral triggers on candidate subsets will be debated in the context of MS.
Collapse
Affiliation(s)
- Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Liza Rijvers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Marvin M. van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Soldan SS, Lieberman PM. Epstein-Barr Virus Infection in the Development of Neurological Disorders. ACTA ACUST UNITED AC 2020; 32:35-52. [PMID: 33897799 DOI: 10.1016/j.ddmod.2020.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epstein-Barr Virus (EBV) is a ubiquitous human herpesvirus that contributes to the etiology of diverse human cancers and auto-immune diseases. EBV establishes a relatively benign, long-term latent infection in over 90 percent of the adult population. Yet, it also increases risk for certain cancers and auto-immune disorders depending on complex viral, host, and environmental factors that are only partly understood. EBV latent infection is found predominantly in memory B-cells, but the natural infection cycle and pathological aberrations enable EBV to infect numerous other cell types, including oral, nasopharyngeal, and gastric epithelia, B-, T-, and NK-lymphoid cells, myocytes, adipocytes, astrocytes, and neurons. EBV infected cells, free virus, and gene products can also be found in the CNS. In addition to the direct effects of EBV on infected cells and tissue, the effect of chronic EBV infection on the immune system is also thought to contribute to pathogenesis, especially auto-immune disease. Here, we review properties of EBV infection that may shed light on its potential pathogenic role in neurological disorders.
Collapse
|
35
|
Epstein-Barr Virus-Specific CD8 T Cells Selectively Infiltrate the Brain in Multiple Sclerosis and Interact Locally with Virus-Infected Cells: Clue for a Virus-Driven Immunopathological Mechanism. J Virol 2019; 93:JVI.00980-19. [PMID: 31578295 PMCID: PMC6880158 DOI: 10.1128/jvi.00980-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
EBV establishes a lifelong and asymptomatic infection in most individuals and more rarely causes infectious mononucleosis and malignancies, like lymphomas. The virus is also strongly associated with MS, a chronic neuroinflammatory disease with unknown etiology. Infectious mononucleosis increases the risk of developing MS, and immune reactivity toward EBV is higher in persons with MS, indicating inadequate control of the virus. Previous studies have suggested that persistent EBV infection in the CNS stimulates an immunopathological response, causing bystander neural cell damage. To verify this, we need to identify the immune culprits responsible for the detrimental antiviral response in the CNS. In this study, we analyzed postmortem brains donated by persons with MS and show that CD8 cytotoxic T cells recognizing EBV enter the brain and interact locally with the virus-infected cells. This antiviral CD8 T cell-mediated immune response likely contributes to MS pathology. Epstein-Barr virus (EBV) is a ubiquitous herpesvirus strongly associated with multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS). However, the mechanisms linking EBV infection to MS pathology are uncertain. Neuropathological and immunological studies suggest that a persistent EBV infection in the CNS can stimulate a CD8 T-cell response aimed at clearing the virus but inadvertently causing CNS injury. Inasmuch as in situ demonstration of EBV-specific CD8 T cells and their effector function is missing, we searched for EBV-specific CD8 T cells in MS brain tissue using the pentamer technique. Postmortem brain samples from 12 donors with progressive MS and known HLA class I genotype were analyzed. Brain sections were stained with HLA-matched pentamers coupled with immunogenic peptides from EBV-encoded proteins, control virus (cytomegalovirus and influenza A virus) proteins, and myelin basic protein. CD8 T cells recognizing proteins expressed in the latent and lytic phases of the EBV life cycle were visualized in white matter lesions and/or meninges of 11/12 MS donors. The fraction (median value) of CD8 T cells recognizing individual EBV epitopes ranged from 0.5 to 2.5% of CNS-infiltrating CD8 T cells. Cytomegalovirus-specific CD8 T cells were detected at a lower frequency (≤0.3%) in brain sections from 4/12 MS donors. CNS-infiltrating EBV-specific CD8 T cells were CD107a positive, suggesting a cytotoxic phenotype, and stuck to EBV-infected cells. Together with local EBV dysregulation, selective enrichment of EBV-specific CD8 T cells in the MS brain supports the notion that skewed immune responses toward EBV contribute to inflammation causing CNS injury. IMPORTANCE EBV establishes a lifelong and asymptomatic infection in most individuals and more rarely causes infectious mononucleosis and malignancies, like lymphomas. The virus is also strongly associated with MS, a chronic neuroinflammatory disease with unknown etiology. Infectious mononucleosis increases the risk of developing MS, and immune reactivity toward EBV is higher in persons with MS, indicating inadequate control of the virus. Previous studies have suggested that persistent EBV infection in the CNS stimulates an immunopathological response, causing bystander neural cell damage. To verify this, we need to identify the immune culprits responsible for the detrimental antiviral response in the CNS. In this study, we analyzed postmortem brains donated by persons with MS and show that CD8 cytotoxic T cells recognizing EBV enter the brain and interact locally with the virus-infected cells. This antiviral CD8 T cell-mediated immune response likely contributes to MS pathology.
Collapse
|
36
|
Marcucci SB, Obeidat AZ. EBNA1, EBNA2, and EBNA3 link Epstein-Barr virus and hypovitaminosis D in multiple sclerosis pathogenesis. J Neuroimmunol 2019; 339:577116. [PMID: 31805475 DOI: 10.1016/j.jneuroim.2019.577116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/12/2023]
Abstract
A strong north-to-south gradient is observed in the distribution of multiple sclerosis (MS), hinting toward an environmental etiology. Vitamin D has been associated with a decreased incidence of MS and may explain, in part, the lower prevalence in tropical climates. However, the existence of MS epidemics implies the possibility of an infectious etiology. Epstein-Barr virus (EBV) infection precedes MS presentation in nearly all affected individuals. While the individual contribution of EBV, vitamin D deficiency, and specific risk genes to MS etiology is possible, their potential interaction is of great interest and may have a synergistic effect on the development of MS.
Collapse
Affiliation(s)
- Samuel B Marcucci
- University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, United States of America.
| | - Ahmed Z Obeidat
- Department of Neurology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, United States of America.
| |
Collapse
|
37
|
Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol 2019; 45:394-412. [PMID: 31145640 DOI: 10.1080/1040841x.2019.1614904] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exact aetiology of most autoimmune diseases remains unknown, nonetheless, several factors contributing to the induction or exacerbation of autoimmune reactions have been suggested. These include the genetic profile and lifestyle of the affected individual in addition to environmental triggers such as bacterial, parasitic, fungal and viral infections. Infections caused by viruses usually trigger a potent immune response that is necessary for the containment of the infection; however, in some cases, a failure in the regulation of this immune response may lead to harmful immune reactions directed against the host's antigens. The autoimmune attack can be carried out by different arms and components of the immune system and through different possible mechanisms including molecular mimicry, bystander activation, and epitope spreading among others. In this review, we examine the data available for the involvement of viral infections in triggering or exacerbating autoimmune diseases in addition to discussing the mechanisms by which these viral infections and the immune pathways they trigger possibly contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| |
Collapse
|
38
|
Evaluation of Epstein-Barr virus-specific antibodies in Cypriot multiple sclerosis patients. Mol Immunol 2019; 105:270-275. [DOI: 10.1016/j.molimm.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/15/2018] [Accepted: 12/09/2018] [Indexed: 02/02/2023]
|
39
|
Khachanova NV. [What do we know about the pathology of gray matter in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:18-22. [PMID: 30160663 DOI: 10.17116/jnevro201811808218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The emergence of modern methods of immunohistochemistry and further development of MRI has led to a deeper understanding of gray matter (GM) pathology in multiple sclerosis (MS). GM involvement can be extensive including both demyelination (cortical lesions) and neuroaxonal damage. The mechanisms of GM damage in MS remain insufficiently studied. There are two concepts: the lesion of GM is primary and is paralleled by changes in white matter (WM), or secondary, i.e. it is a consequence of the pathological process in WM. More research into GM pathology using the latest MRI techniques will contribute to the understanding of pathological changes in both cortical and subcortical GM.
Collapse
Affiliation(s)
- N V Khachanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
40
|
Kearns PKA, Casey HA, Leach JP. Hypothesis: Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons. Mult Scler Relat Disord 2018; 24:157-174. [PMID: 30015080 DOI: 10.1016/j.msard.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple Sclerosis is a chronic, progressive and debilitating neurological disease which, despite extensive study for over 100 years, remains of enigmatic aetiology. Drawn from the epidemiological evidence, there exists a consensus that there are environmental (possibly infectious) factors that contribute to disease pathogenesis that have not yet been fully elucidated. Here we propose a three-tiered hypothesis: 1) a clinic-epidemiological model of multiple sclerosis as a rare late complication of two sequential infections (with the temporal sequence of infections being important); 2) a proposal that the first event is helminthic infection with Enterobius Vermicularis, and the second is Epstein Barr Virus infection; and 3) a proposal for a testable biological mechanism, involving T-Cell exhaustion for Epstein-Barr Virus protein LMP2A. We believe that this model satisfies some of the as-yet unexplained features of multiple sclerosis epidemiology, is consistent with the clinical and neuropathological features of the disease and is potentially testable by experiment. This model may be generalizable to other autoimmune diseases.
Collapse
|
41
|
Moreno MA, Or-Geva N, Aftab BT, Khanna R, Croze E, Steinman L, Han MH. Molecular signature of Epstein-Barr virus infection in MS brain lesions. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e466. [PMID: 29892607 PMCID: PMC5994704 DOI: 10.1212/nxi.0000000000000466] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
Abstract
Objective We sought to confirm the presence and frequency of B cells and Epstein-Barr virus (EBV) (latent and lytic phase) antigens in archived MS and non-MS brain tissue by immunohistochemistry. Methods We quantified the type and location of B-cell subsets within active and chronic MS brain lesions in relation to viral antigen expression. The presence of EBV-infected cells was further confirmed by in situ hybridization to detect the EBV RNA transcript, EBV-encoded RNA-1 (EBER-1). Results We report the presence of EBV latent membrane protein 1 (LMP-1) in 93% of MS and 78% of control brains, with a greater percentage of MS brains containing CD138+ plasma cells and LMP-1–rich populations. Notably, 78% of chronic MS lesions and 33.3% of non-MS brains contained parenchymal CD138+ plasma cells. EBV early lytic protein, EBV immediate-early lytic gene (BZLF1), was also observed in 46% of MS, primarily in association with chronic lesions and 44% of non-MS brain tissue. Furthermore, 85% of MS brains revealed frequent EBER-positive cells, whereas non-MS brains seldom contained EBER-positive cells. EBV infection was detectable, by immunohistochemistry and by in situ hybridization, in both MS and non-MS brains, although latent virus was more prevalent in MS brains, while lytic virus was restricted to chronic MS lesions. Conclusions Together, our observations suggest an uncharacterized link between the EBV virus life cycle and MS pathogenesis.
Collapse
Affiliation(s)
- Monica A Moreno
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Noga Or-Geva
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Blake T Aftab
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Rajiv Khanna
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Ed Croze
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - May H Han
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Zéphir H. Progress in understanding the pathophysiology of multiple sclerosis. Rev Neurol (Paris) 2018; 174:358-363. [PMID: 29680179 DOI: 10.1016/j.neurol.2018.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 01/17/2023]
Abstract
Multiple sclerosis (MS) arises in people who have a genetic susceptibility to environmental factors and events, which ultimately trigger the disease. It is thought that peripheral immune cells are mobilized and enter the CNS through the impaired blood-brain barrier in the subarachnoid space, as acute lesions show large numbers of macrophages and CD8+ T cells and, to a lesser extent, CD4+ T cells, B cells and plasma cells. Demyelination is mostly localized to focal lesions in early relapsing-remitting (RR) MS, whereas other areas of white matter appear normal. Over time, T-cell and B-cell infiltration becomes more diffuse and axonal injury more widespread, leading to self-perpetuating atrophy in both white and gray matter. With disease progression, inflammatory processes are predominantly driven by the action of CNS resident microglia cells. In addition, there is evidence that meningeal lymphoid-like structures can form and contribute to late-stage inflammation. In general, however, despite dynamic changes over time in MS pathology, lesions do not appear to differ significantly in the different classic forms of MS already identified. While all treatments approved for MS management target inflammatory components of RRMS, the B-cell-depleting antibody ocrelizumab is the first such treatment approved recently for primary progressive (PP) MS. However, recent pathological and imaging findings have prompted reconsideration of the clinical phenotypes of MS patients proposed by Lublin's 2013 classification, including clinical and MRI signs of activity, and new imaging biomarkers of remyelination are now being investigated for new strategies of MS management.
Collapse
Affiliation(s)
- H Zéphir
- Pôle des Neurosciences et de l'Appareil Locomoteur, CHRU de Lille, LIRIC, U995, équipe 3, Université de Lille, 59037 Lille Cedex, France.
| |
Collapse
|
43
|
Agostini S, Mancuso R, Guerini FR, D'Alfonso S, Agliardi C, Hernis A, Zanzottera M, Barizzone N, Leone MA, Caputo D, Rovaris M, Clerici M. HLA alleles modulate EBV viral load in multiple sclerosis. J Transl Med 2018; 16:80. [PMID: 29587799 PMCID: PMC5870171 DOI: 10.1186/s12967-018-1450-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/15/2018] [Indexed: 11/10/2022] Open
Abstract
Background The etiopathology of multiple sclerosis (MS) is believed to include genetic and environmental factors. Human leukocyte antigen (HLA) alleles, in particular, are associated with disease susceptibility, whereas Epstein Barr Virus (EBV) infection has long been suspected to play a role in disease pathogenesis. The aim of the present study is to evaluate correlations between HLA alleles and EBV infection in MS. Methods HLA alleles, EBV viral load (VL) and serum anti-EBV antibody titers were evaluated in EBV-seropositive MS patients (N = 117) and age- and sex-matched healthy controls (HC; N = 89). Results Significantly higher DNA viral loads (p = 0.048) and EBNA-1 antibody titer (p = 0.0004) were seen in MS compared to HC. EBV VL was higher in HLA-B*07+ (p = 0.02) and HLA-DRB1*15+ (p = 0.02) MS patients, whereas it was lower in HLA-A*02+ (p = 0.04) subjects. EBV VL was highest in HLA-A*02−/B*07+/DRB1*15+ patients and lowest in HLA-A*A02+/B*07−/DRB1*15− individuals (p < 0.0001). HLA-B*07 resulted the most associated allele to EBV VL after multiple regression analysis considering altogether the three alleles, (p = 0.0001). No differences were observed in anti-EBV antibody titers in relationship with HLA distribution. Conclusions Host HLA-B*07 allele influence EBV VL in MS. As HLA-class I molecules present antigens to T lymphocytes and initiate immune response against viruses, these results could support a role for EBV in MS. Electronic supplementary material The online version of this article (10.1186/s12967-018-1450-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Agostini
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy.
| | - Roberta Mancuso
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy
| | - Franca R Guerini
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Cristina Agliardi
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy
| | - Ambra Hernis
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy
| | - Milena Zanzottera
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy
| | - Nadia Barizzone
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Maurizio A Leone
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Domenico Caputo
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy
| | - Marco Rovaris
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy
| | - Mario Clerici
- Don C. Gnocchi Foundation IRCCS - ONLUS, Piazzale Morandi 3, 20121, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Via Fratelli Cervi 93, 20090, Milan, Italy
| |
Collapse
|
44
|
Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One 2018; 13:e0192109. [PMID: 29394264 PMCID: PMC5796799 DOI: 10.1371/journal.pone.0192109] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory condition of the central nervous system (CNS). It is a major cause of neurological disability in young adults, particularly women. What triggers the destruction of myelin sheaths covering nerve fibres is unknown. Both genetic and infectious agents have been implicated. Of the infectious agents, Epstein-Barr virus (EBV), a common herpesvirus, has the strongest epidemiological and serological evidence. However, the presence of EBV in the CNS and demonstration of the underlying mechanism(s) linking EBV to the pathogenesis of MS remain to be elucidated. We aimed at understanding the contribution of EBV infection in the pathology of MS. We examined 1055 specimens (440 DNA samples and 615 brain tissues) from 101 MS and 21 non-MS cases for the presence of EBV using PCR and EBER-in situ hybridization (EBER-ISH). EBV was detected by PCR and/or EBER-ISH in 91/101 (90%) of MS cases compared to only 5/21 (24%) of non-MS cases with other neuropathologies. None of the samples were PCR positive for other common herpesviruses (HSV-1, CMV, HHV-6). By quantitative PCR, EBV viral load in MS brain was mainly low to moderate in most cases. However, in 18/101 (18%) of MS cases, widespread but scattered presence of EBV infected cells was noted in the affected tissues by EBER-ISH. Immunohistochemical analysis of EBV gene expression in the 18 heavily infected cases, revealed that the EBV latent protein EBNA1, and to a lesser extent the early lytic protein BZLF1 were expressed. Furthermore, using double-staining we show for the first time that astrocytes and microglia, in addition to B-cells can also be infected. To the best of our knowledge, this is the most comprehensive study demonstrating that EBV is present and transcriptionally active in the brain of most cases of MS and supports a role for the virus in MS pathogenesis. Further studies are required to address the mechanism of EBV involvement in MS pathology.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
| | - John R. Corboy
- Department of Neurology, University of Colorado School of Medicine, Rocky Mountain MS Center at University of Colorado, Aurora, United States of America
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
- * E-mail:
| |
Collapse
|
45
|
Veroni C, Serafini B, Rosicarelli B, Fagnani C, Aloisi F. Transcriptional profile and Epstein-Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J Neuroinflammation 2018; 15:18. [PMID: 29338732 PMCID: PMC5771146 DOI: 10.1186/s12974-017-1049-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Background It is debated whether multiple sclerosis (MS) might result from an immunopathological response toward an active Epstein-Barr virus (EBV) infection brought into the central nervous system (CNS) by immigrating B cells. Based on this model, a relationship should exist between the local immune milieu and EBV infection status in the MS brain. To test this hypothesis, we analyzed expression of viral and cellular genes in brain-infiltrating immune cells. Methods Twenty-three postmortem snap-frozen brain tissue blocks from 11 patients with progressive MS were selected based on good RNA quality and prominent immune cell infiltration. White matter perivascular and intrameningeal immune infiltrates, including B cell follicle-like structures, were isolated from brain sections using laser capture microdissection. Enhanced PCR-based methods were used to investigate expression of 75 immune-related genes and 6 EBV genes associated with latent and lytic infection. Data were analyzed using univariate and multivariate statistical methods. Results Genes related to T cell activation, cytotoxic cell-mediated (or type 1) immunity, B cell growth and differentiation, pathogen recognition, myeloid cell function, type I interferon pathway activation, and leukocyte recruitment were found expressed at different levels in most or all MS brain immune infiltrates. EBV genes were detected in brain samples from 9 of 11 MS patients with expression patterns suggestive of in situ activation of latent infection and, less frequently, entry into the lytic cycle. Comparison of data obtained in meningeal and white matter infiltrates revealed higher expression of genes related to interferonγ production, B cell differentiation, cell proliferation, lipid antigen presentation, and T cell and myeloid cell recruitment, as well as more widespread EBV infection in the meningeal samples. Multivariate analysis grouped genes expressed in meningeal and white matter immune infiltrates into artificial factors that were characterized primarily by genes involved in type 1 immunity effector mechanisms and type I interferon pathway activation. Conclusion These results confirm profound in situ EBV deregulation and suggest orchestration of local antiviral function in the MS brain, lending support to a model of MS pathogenesis that involves EBV as possible antigenic stimulus of the persistent immune response in the central nervous system. Electronic supplementary material The online version of this article (10.1186/s12974-017-1049-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Rosicarelli
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Corrado Fagnani
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
46
|
Ruprecht K, Wildemann B, Jarius S. Low intrathecal antibody production despite high seroprevalence of Epstein-Barr virus in multiple sclerosis: a review of the literature. J Neurol 2017; 265:239-252. [PMID: 29098417 DOI: 10.1007/s00415-017-8656-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) frequently have an intrathecal production of antibodies to different common viruses, which can be detected by elevated antiviral antibody indices (AIs). There is a strong and consistent association of MS and Epstein-Barr virus (EBV) infection. OBJECTIVE To systematically compare the frequencies of intrathecal antibody production to EBV, measles virus, rubella virus, varicella zoster virus (VZV) and herpes simplex virus (HSV) in patients with MS. METHODS Review of the English and German literature on the frequencies of intrathecal immunoglobulin (Ig)G antibody production, as defined by an elevated AI, to EBV, measles virus, rubella virus, VZV and HSV in adult and pediatric patients with MS. RESULTS In nine original studies identified, the frequencies of an intrathecal production of antibodies to Epstein-Barr nuclear antigen-1 (33/340, 9.7%), EBV viral capsid antigen (12/279, 4.3%) and antigens from EBV-infected cell lines (14/90, 15.6%) in adult patients with MS were clearly lower (p ≤ 0.03 for all pairwise comparisons) than the frequencies of an intrathecal production of antibodies to measles virus (612/922, 66.4%), rubella virus (521/922, 56.5%), VZV (470/922, 51%; data from 17 original studies) and HSV (78/291, 26.8%; data from 6 original studies). Though based on a lower number of original studies and patients, findings in children with MS were essentially similar. As in adults and children with MS the seroprevalence of EBV is higher than the seroprevalences of the other investigated viruses, the lower frequency of elevated EBV AIs became even more pronounced after correction of the frequencies of elevated antiviral AIs for the seroprevalences of the respective viruses. CONCLUSIONS Given the very high seroprevalence of EBV in MS, the frequency of intrathecally produced antibodies to EBV in patients with MS is paradoxically low compared to that of other common viruses. These findings are compatible with the recently proposed hypothesis that in individuals going on to develop MS antiviral antibody-producing cells may invade the brain predominantly at the time of and triggered by acute primary EBV infection, before anti-EBV IgG producing cells have yet occurred.
Collapse
Affiliation(s)
- Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
47
|
Deciphering the Role of B Cells in Multiple Sclerosis-Towards Specific Targeting of Pathogenic Function. Int J Mol Sci 2017; 18:ijms18102048. [PMID: 28946620 PMCID: PMC5666730 DOI: 10.3390/ijms18102048] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022] Open
Abstract
B cells, plasma cells and antibodies may play a key role in the pathogenesis of multiple sclerosis (MS). This notion is supported by various immunological changes observed in MS patients, such as activation and pro-inflammatory differentiation of peripheral blood B cells, the persistence of clonally expanded plasma cells producing immunoglobulins in the cerebrospinal fluid, as well as the composition of inflammatory central nervous system lesions frequently containing co-localizing antibody depositions and activated complement. In recent years, the perception of a respective pathophysiological B cell involvement was vividly promoted by the empirical success of anti-CD20-mediated B cell depletion in clinical trials; based on these findings, the first monoclonal anti-CD20 antibody—ocrelizumab—is currently in the process of being approved for treatment of MS. In this review, we summarize the current knowledge on the role of B cells, plasma cells and antibodies in MS and elucidate how approved and future treatments, first and foremost anti-CD20 antibodies, therapeutically modify these B cell components. We will furthermore describe regulatory functions of B cells in MS and discuss how the evolving knowledge of these therapeutically desirable B cell properties can be harnessed to improve future safety and efficacy of B cell-directed therapy in MS.
Collapse
|
48
|
Cencioni MT, Magliozzi R, Nicholas R, Ali R, Malik O, Reynolds R, Borsellino G, Battistini L, Muraro PA. Programmed death 1 is highly expressed on CD8 + CD57 + T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein-Barr virus. Immunology 2017; 152:660-676. [PMID: 28767147 DOI: 10.1111/imm.12808] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
Growing evidence points to a deregulated response to Epstein-Barr virus (EBV) in the central nervous system of patients with multiple sclerosis (MS) as a possible cause of disease. We have investigated the response of a subpopulation of effector CD8+ T cells to EBV in 36 healthy donors and in 35 patients with MS in active and inactive disease. We have measured the expression of markers of degranulation, the release of cytokines, cytotoxicity and the regulation of effector functions by inhibitory receptors, such as programmed death 1 (PD-1) and human inhibitor receptor immunoglobulin-like transcript 2 (ILT2). We demonstrate that polyfunctional cytotoxic CD8+ CD57+ T cells are able to kill EBV-infected cells in healthy donors. In contrast, an anergic exhaustion-like phenotype of CD8+ CD57+ T cells with high expression of PD-1 was observed in inactive patients with MS compared with active patients with MS or healthy donors. Detection of CD8+ CD57+ T cells in meningeal inflammatory infiltrates from post-mortem MS tissue confirmed the association of this cell phenotype with the disease pathological process. The overall results suggest that ineffective immune control of EBV in patietns with MS during remission may be one factor preceding and enabling the reactivation of the virus in the central nervous system and may cause exacerbation of the disease.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK
| | - Roberta Magliozzi
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Nicholas
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Rehiana Ali
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Omar Malik
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Richard Reynolds
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paolo A Muraro
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
49
|
Burnard S, Lechner-Scott J, Scott RJ. EBV and MS: Major cause, minor contribution or red-herring? Mult Scler Relat Disord 2017; 16:24-30. [DOI: 10.1016/j.msard.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
50
|
Lisak RP, Nedelkoska L, Benjamins JA, Schalk D, Bealmear B, Touil H, Li R, Muirhead G, Bar-Or A. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J Neuroimmunol 2017; 309:88-99. [DOI: 10.1016/j.jneuroim.2017.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/26/2022]
|