1
|
Hernández-Vega AM, Llorente I, Sánchez-Hernández R, Segura Y, Tusié-Luna T, Morales-Buenrostro LE, García-Villegas R, Islas LD, Rosenbaum T. Identification and Properties of TRPV4 Mutant Channels Present in Polycystic Kidney Disease Patients. FUNCTION 2024; 5:zqae031. [PMID: 38984987 PMCID: PMC11384909 DOI: 10.1093/function/zqae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Polycystic kidney disease (PKD), a disease characterized by the enlargement of the kidney through cystic growth is the fourth leading cause of end-stage kidney disease world-wide. Transient receptor potential Vanilloid 4 (TRPV4), a calcium-permeable TRP, channel participates in kidney cell physiology and since TRPV4 forms complexes with another channel whose malfunction is associated to PKD, TRPP2 (or PKD2), we sought to determine whether patients with PKD, exhibit previously unknown mutations in TRPV4. Here, we report the presence of mutations in the TRPV4 gene in patients diagnosed with PKD and determine that they produce gain-of-function (GOF). Mutations in the sequence of the TRPV4 gene have been associated to a broad spectrum of neuropathies and skeletal dysplasias but not PKD, and their biophysical effects on channel function have not been elucidated. We identified and examined the functional behavior of a novel E6K mutant and of the previously known S94L and A217S mutant TRVP4 channels. The A217S mutation has been associated to mixed neuropathy and/or skeletal dysplasia phenotypes, however, the PKD carriers of these variants had not been diagnosed with these reported clinical manifestations. The presence of certain mutations in TRPV4 may influence the progression and severity of PKD through GOF mechanisms. PKD patients carrying TRVP4 mutations are putatively more likely to require dialysis or renal transplant as compared to those without these mutations.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yayoi Segura
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis E Morales-Buenrostro
- Departmento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina. Universidad Nacional Autónoma de México,Ciudad de México 04510, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Sullivan JM, Bagnell AM, Alevy J, Avila EM, Mihaljević L, Saavedra-Rivera PC, Kong L, Huh JS, McCray BA, Aisenberg WH, Zuberi AR, Bogdanik L, Lutz CM, Qiu Z, Quinlan KA, Searson PC, Sumner CJ. Gain-of-function mutations of TRPV4 acting in endothelial cells drive blood-CNS barrier breakdown and motor neuron degeneration in mice. Sci Transl Med 2024; 16:eadk1358. [PMID: 38776392 PMCID: PMC11316273 DOI: 10.1126/scitranslmed.adk1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.
Collapse
Affiliation(s)
- Jeremy M. Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Anna M. Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jonathan Alevy
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jennifer S. Huh
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - William H. Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | | | | | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Katharina A. Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Lugo E, Graulau E, Ramos Cortes E, Carlo S, Ramírez N. Homozygous TRPV4 Mutation Broadens the Phenotypic Spectrum of Congenital Spinal Muscular Atrophy and Arthrogryposis: A Case Report. Cureus 2023; 15:e43413. [PMID: 37706131 PMCID: PMC10495693 DOI: 10.7759/cureus.43413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) mutations are known to cause inherited axonal neuropathies and skeletal dysplasia. TRPV4 mutations are associated with distal hereditary motor neuropathies (dHMN), which distinctly involve motor deficits. A 1 ½-year-old boy presented at the clinic with diminished lower limb movement and ambulatory limitations. The patient was born with bilateral knee arthrogryposis and bilateral talipes equinovarus, which required surgical intervention. A gross neurologic exam was unremarkable, with normal vision and hearing. A bone survey radiograph showed no evidence of skeletal dysplasia. Genetic tests revealed a homozygous mutation in the TRPV4 gene (c.281C>T; p.S94L), leading to the diagnosis of congenital spinal muscular atrophy and arthrogryposis (CSMAA). Hence, this presents the first case of CSMAA caused by a TRPV4 mutation (p.S94L), with a different presentation from the one previously described in the literature, thus broadening the phenotypic variability and clinical spectrum of TRPV4 mutations.
Collapse
Affiliation(s)
- Elyette Lugo
- Medicine, Universidad Central del Caribe, Bayamón, PRI
| | - Eric Graulau
- Medicine, Ponce Health Sciences University, Ponce, PRI
| | - Edwardo Ramos Cortes
- Physical Medicine and Rehabilitation, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| | - Simón Carlo
- Biochemistry/Pediatrics/Psychiatry, Ponce Health Sciences University, Ponce, PRI
- Pediatrics, Mayagüez Medical Center, Mayagüez, PRI
| | - Norman Ramírez
- Medicine, Universidad Central del Caribe, Bayamón, PRI
- Pediatric Orthopedic Surgery, Mayagüez Medical Center, Mayagüez, PRI
- Medicine, Ponce Health Sciences University, Ponce, PRI
| |
Collapse
|
4
|
Chen H, Sun C, Zheng Y, Yin J, Gao M, Zhao C, Lin J. A TRPV4 mutation caused Charcot-Marie-Tooth disease type 2C with scapuloperoneal muscular atrophy overlap syndrome and scapuloperoneal spinal muscular atrophy in one family: a case report and literature review. BMC Neurol 2023; 23:250. [PMID: 37391745 DOI: 10.1186/s12883-023-03260-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/25/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease 2C (CMT2C) and scapuloperoneal spinal muscular atrophy (SPSMA) are different clinical phenotypes of TRPV4 mutation. The mutation of p.R316C has been reported to cause CMT2C and SPSMA separately. CASE PRESENTATION Here, we reported a Chinese family harboring the same p.R316C variant, but with an overlap syndrome and different clinical manifestations. A 58-year-old man presented with severe scapula muscle atrophy, resulting in sloping shoulders. He also exhibited distinct muscle atrophy in his four limbs, particularly in the lower limbs. The sural nerve biopsy revealed severe loss of myelinated nerve fibers with scattered regenerating clusters and pseudo-onion bulbs. Nerve conduction study showed axon damage in both motor and sensory nerves. Sensory nerve action potentials could not be evoked in bilateral sural or superficial peroneal nerves. He was diagnosed with Charcot-Marie-Tooth disease type 2C and scapuloperoneal muscular atrophy overlap syndrome, whereas his 27-year-old son was born with clubfoot and clinodactyly. Electromyogram examination indicated chronic neurogenic changes and anterior horn cells involvement. Although there was no obvious weakness or sensory symptoms, early SPSMA could be considered for him. CONCLUSIONS A literature review of the clinical characteristics in CMT2C and SPSMA patients with TRPV4 mutation suggested that our case was distinct due to the overlap syndrome and phenotype variation. Altogether, this case broadened the phenotype spectrum and provided the nerve biopsy pathological details of TRPV4-related neuropathies.
Collapse
Affiliation(s)
- Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Yongsheng Zheng
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Junxiong Yin
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China.
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China.
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China.
| |
Collapse
|
5
|
Zambon AA, Pini V, Bosco L, Falzone YM, Munot P, Muntoni F, Previtali SC. Early onset hereditary neuronopathies: an update on non-5q motor neuron diseases. Brain 2022; 146:806-822. [PMID: 36445400 PMCID: PMC9976982 DOI: 10.1093/brain/awac452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hereditary motor neuropathies (HMN) were first defined as a group of neuromuscular disorders characterized by lower motor neuron dysfunction, slowly progressive length-dependent distal muscle weakness and atrophy, without sensory involvement. Their cumulative estimated prevalence is 2.14/100 000 and, to date, around 30 causative genes have been identified with autosomal dominant, recessive,and X-linked inheritance. Despite the advances of next generation sequencing, more than 60% of patients with HMN remain genetically uncharacterized. Of note, we are increasingly aware of the broad range of phenotypes caused by pathogenic variants in the same gene and of the considerable clinical and genetic overlap between HMN and other conditions, such as Charcot-Marie-Tooth type 2 (axonal), spinal muscular atrophy with lower extremities predominance, neurogenic arthrogryposis multiplex congenita and juvenile amyotrophic lateral sclerosis. Considering that most HMN present during childhood, in this review we primarily aim to summarize key clinical features of paediatric forms, including recent data on novel phenotypes, to help guide differential diagnosis and genetic testing. Second, we describe newly identified causative genes and molecular mechanisms, and discuss how the discovery of these is changing the paradigm through which we approach this group of conditions.
Collapse
Affiliation(s)
- Alberto A Zambon
- Correspondence to: Alberto A. Zambon Neuromuscular Repair Unit InSpe and Division of Neuroscience IRCCS Ospedale San Raffaele, Milan, Italy E-mail:
| | - Veronica Pini
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Luca Bosco
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Yuri M Falzone
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Pinki Munot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 1EH, UK
| | - Stefano C Previtali
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
6
|
Lv S, Zhao J, Liu L, Wang C, Yue H, Zhang H, Li S, Zhang Z. Exploring and expanding the phenotype and genotype diversity in seven Chinese families with spondylo-epi-metaphyseal dysplasia. Front Genet 2022; 13:960504. [PMID: 36118854 PMCID: PMC9473317 DOI: 10.3389/fgene.2022.960504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Spondylo-epi-metaphyseal dysplasia (SEMD) is a heterogeneous group of disorders with different modes of inheritance and is characterized by disproportionate or proportionate short stature. To date, more than 30 disease-causing genes have been identified, and different types of SEMD exhibit greatly overlapping clinical features, which usually complicate the diagnosis. This study was performed to expand the clinical and molecular spectrum of SEMD among Chinese subjects and to explore their potential phenotype–genotype relations. We enrolled seven families including 11 affected patients with SEMD, and their clinical, radiographic, and genetic data were carefully analyzed. All the seven probands showed different degrees of short stature, and each of them exhibited additional specific skeletal manifestations; four probands had extraosseous manifestations. X-rays of the seven probands showed common features of SEMD, including vertebral deformities, irregular shape of the epiphysis, and disorganization of the metaphysis. Seven variants were identified in TRPV4 (c.694C> T, p.Arg232Cys), COL2A1 (c.654 + 1G > C; c.3266_3268del, p.Gly1089del), CCN6 (c.396 T> G, p.Cys132Trp; c.721 T>C, p.Cys241Arg), SBDS (c.258 + 2T> C), and ACAN (c.1508C> A, p.Thr503Lys) genes, and two of them were novel. Two families with TRPV4 variants showed considerable intrafamily and interfamily heterogeneities. In addition, we reported one case of SEMD with a severe phenotype caused by ACAN gene mutation. Our study expands the phenotype and genetic spectrum of SEMD and provides evidence for the phenotype–genotype relations, aiding future molecular and clinical diagnosis as well as procreative management of SEMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shanshan Li
- *Correspondence: Shanshan Li, ; Zhenlin Zhang,
| | | |
Collapse
|
7
|
Taga A, Peyton MA, Goretzki B, Gallagher TQ, Ritter A, Harper A, Crawford TO, Hellmich UA, Sumner CJ, McCray BA. TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol 2022; 9:375-391. [PMID: 35170874 PMCID: PMC8935273 DOI: 10.1002/acn3.51523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Distinct dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) typically cause nonoverlapping diseases of either the neuromuscular or skeletal systems. However, accumulating evidence suggests that some patients develop mixed phenotypes that include elements of both neuromuscular and skeletal disease. We sought to define the genetic and clinical features of these patients. METHODS We report a 2-year-old with a novel R616G mutation in TRPV4 with a severe neuropathy phenotype and bilateral vocal cord paralysis. Interestingly, a different substitution at the same residue, R616Q, has been reported in families with isolated skeletal dysplasia. To gain insight into clinical features and potential genetic determinants of mixed phenotypes, we perform in-depth analysis of previously reported patients along with functional and structural assessment of selected mutations. RESULTS We describe a wide range of neuromuscular and skeletal manifestations and highlight specific mutations that are more frequently associated with overlap syndromes. We find that mutations causing severe, mixed phenotypes have an earlier age of onset and result in more marked elevations of intracellular calcium, increased cytotoxicity, and reduced sensitivity to TRPV4 antagonism. Structural analysis of the two mutations with the most dramatic gain of ion channel function suggests that these mutants likely cause constitutive channel opening through disruption of the TRPV4 S5 transmembrane domain. INTERPRETATION These findings demonstrate that the degree of baseline calcium elevation correlates with development of mixed phenotypes and sensitivity to pharmacologic channel inhibition, observations that will be critical for the design of future clinical trials for TRPV4 channelopathies.
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Margo A Peyton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, 60438, Germany
| | - Thomas Q Gallagher
- Departments of Otolaryngology - Head & Neck Surgery & Pediatrics, Eastern Virginia Medical School, and Department of Pediatric Otolaryngology, Children's Hospital of the King's Daughters, Norfolk, Virginia, 23508, USA
| | - Ann Ritter
- Department of Neurosurgery, Virginia Commonwealth University Health System, Richmond, Virginia, 23298, USA
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University Health System, Richmond, Virginia, 23298, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, 60438, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
8
|
Role of TRPV4 in skeletal function and its mutant-mediated skeletal disorders. CURRENT TOPICS IN MEMBRANES 2022; 89:221-246. [DOI: 10.1016/bs.ctm.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Sun X, Kato H, Sato H, Torio M, Han X, Zhang Y, Hirofuji Y, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K. Impaired neurite development and mitochondrial dysfunction associated with calcium accumulation in dopaminergic neurons differentiated from the dental pulp stem cells of a patient with metatropic dysplasia. Biochem Biophys Rep 2021; 26:100968. [PMID: 33748438 PMCID: PMC7960789 DOI: 10.1016/j.bbrep.2021.100968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid member 4 (TRPV4) is a Ca2+ permeable nonselective cation channel, and mutations in the TRPV4 gene cause congenital skeletal dysplasias and peripheral neuropathies. Although TRPV4 is widely expressed in the brain, few studies have assessed the pathogenesis of TRPV4 mutations in the brain. We aimed to elucidate the pathological associations between a specific TRPV4 mutation and neurodevelopmental defects using dopaminergic neurons (DNs) differentiated from dental pulp stem cells (DPSCs). DPSCs were isolated from a patient with metatropic dysplasia and multiple neuropsychiatric symptoms caused by a gain-of-function TRPV4 mutation, c.1855C>T (p.L619F). The mutation was corrected by CRISPR/Cas9 to obtain isogenic control DPSCs. Mutant DPSCs differentiated into DNs without undergoing apoptosis; however, neurite development was significantly impaired in mutant vs. control DNs. Mutant DNs also showed accumulation of mitochondrial Ca2+ and reactive oxygen species, low adenosine triphosphate levels despite a high mitochondrial membrane potential, and lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial content. These results suggested that the persistent Ca2+ entry through the constitutively activated TRPV4 might perturb the adaptive coordination of multiple mitochondrial functions, including oxidative phosphorylation, redox control, and biogenesis, required for dopaminergic circuit development in the brain. Thus, certain mutations in TRPV4 that are associated with skeletal dysplasia might have pathogenic effects on brain development, and mitochondria might be a potential therapeutic target to alleviate the neuropsychiatric symptoms of TRPV4-related diseases.
Collapse
Key Words
- ATP, adenosine triphosphate
- DN, dopaminergic neuron
- DPSC, dental pulp stem cell
- Dental pulp stem cells
- Dopaminergic neuron
- MD, metatropic dysplasia
- MPP, mitochondrial membrane potential
- Metatropic dysplasia
- Mitochondria
- NURR1, nuclear receptor related 1
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
- ROS, reactive oxygen species
- RPL13A, 60S ribosomal protein L13a
- Reactive oxygen species
- SOD, superoxide dismutase
- TRPV4, transient receptor potential vanilloid member 4
- Transient receptor potential vanilloid 4
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Michiko Torio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
10
|
Ragamin A, Gomes CC, Bindels-de Heus K, Sandoval R, Bassenden AV, Dib L, Kok F, Alves J, Mathijssen I, Medici-Van den Herik E, Eveleigh R, Gayden T, Pullens B, Berghuis A, van Slegtenhorst M, Wilke M, Jabado N, Mancini GMS, Gomez RS. De novo TRPV4 Leu619Pro variant causes a new channelopathy characterised by giant cell lesions of the jaws and skull, skeletal abnormalities and polyneuropathy. J Med Genet 2021; 59:305-312. [PMID: 33685999 PMCID: PMC8867273 DOI: 10.1136/jmedgenet-2020-107427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pathogenic germline variants in Transient Receptor Potential Vanilloid 4 Cation Channel (TRPV4) lead to channelopathies, which are phenotypically diverse and heterogeneous disorders grossly divided in neuromuscular disorders and skeletal dysplasia. We recently reported in sporadic giant cell lesions of the jaws (GCLJs) novel, somatic, heterozygous, gain-of-function mutations in TRPV4, at Met713. METHODS Here we report two unrelated women with a de novo germline p.Leu619Pro TRPV4 variant and an overlapping systemic disorder affecting all organs individually described in TRPV4 channelopathies. RESULTS From an early age, both patients had several lesions of the nervous system including progressive polyneuropathy, and multiple aggressive giant cell-rich lesions of the jaws and craniofacial/skull bones, and other skeletal lesions. One patient had a relatively milder disease phenotype possibly due to postzygotic somatic mosaicism. Indeed, the TRPV4 p.Leu619Pro variant was present at a lower frequency (variant allele frequency (VAF)=21.6%) than expected for a heterozygous variant as seen in the other proband, and showed variable regional frequency in the GCLJ (VAF ranging from 42% to 10%). In silico structural analysis suggests that the gain-of-function p.Leu619Pro alters the ion channel activity leading to constitutive ion leakage. CONCLUSION Our findings define a novel polysystemic syndrome due to germline TRPV4 p.Leu619Pro and further extend the spectrum of TRPV4 channelopathies. They further highlight the convergence of TRPV4 mutations on different organ systems leading to complex phenotypes which are further mitigated by possible post-zygotic mosaicism. Treatment of this disorder is challenging, and surgical intervention of the GCLJ worsens the lesions, suggesting the future use of MEK inhibitors and TRPV4 antagonists as therapeutic modalities for unmet clinical needs.
Collapse
Affiliation(s)
- Aviel Ragamin
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carolina C Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Karen Bindels-de Heus
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Renata Sandoval
- Oncogenetics, Hospital Sírio-Libanês, Brasília, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | | | - Luciano Dib
- Post Graduation Program, School of Dentistry, Paulista University (UNIP), Sao Paulo, Brazil
| | - Fernando Kok
- Department of Neurology, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Julieta Alves
- Division of Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Irene Mathijssen
- Department of Plastic and Reconstructive Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Robert Eveleigh
- Canadian Centre for Computational Genomics (C3G), Montreal, Québec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Tenzin Gayden
- Department of Human Genetics, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Bas Pullens
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Albert Berghuis
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nada Jabado
- Department of Human Genetics, McGill University Faculty of Medicine, Montreal, Québec, Canada.,Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Quebec, Canada
| | - Grazia Maria Simonetta Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
12
|
Hwang SM, Lee JY, Park CK, Kim YH. The Role of TRP Channels and PMCA in Brain Disorders: Intracellular Calcium and pH Homeostasis. Front Cell Dev Biol 2021; 9:584388. [PMID: 33585474 PMCID: PMC7876282 DOI: 10.3389/fcell.2021.584388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Brain disorders include neurodegenerative diseases (NDs) with different conditions that primarily affect the neurons and glia in the brain. However, the risk factors and pathophysiological mechanisms of NDs have not been fully elucidated. Homeostasis of intracellular Ca2+ concentration and intracellular pH (pHi) is crucial for cell function. The regulatory processes of these ionic mechanisms may be absent or excessive in pathological conditions, leading to a loss of cell death in distinct regions of ND patients. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where disrupted Ca2+ homeostasis leads to cell death. The capability of TRP channels to restore or excite the cell through Ca2+ regulation depending on the level of plasma membrane Ca2+ ATPase (PMCA) activity is discussed in detail. As PMCA simultaneously affects intracellular Ca2+ regulation as well as pHi, TRP channels and PMCA thus play vital roles in modulating ionic homeostasis in various cell types or specific regions of the brain where the TRP channels and PMCA are expressed. For this reason, the dysfunction of TRP channels and/or PMCA under pathological conditions disrupts neuronal homeostasis due to abnormal Ca2+ and pH levels in the brain, resulting in various NDs. This review addresses the function of TRP channels and PMCA in controlling intracellular Ca2+ and pH, which may provide novel targets for treating NDs.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Ji Yeon Lee
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
13
|
TRPing to the Point of Clarity: Understanding the Function of the Complex TRPV4 Ion Channel. Cells 2021; 10:cells10010165. [PMID: 33467654 PMCID: PMC7830798 DOI: 10.3390/cells10010165] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The transient receptor potential vanilloid 4 channel (TRPV4) belongs to the mammalian TRP superfamily of cation channels. TRPV4 is ubiquitously expressed, activated by a disparate array of stimuli, interacts with a multitude of proteins, and is modulated by a range of post-translational modifications, the majority of which we are only just beginning to understand. Not surprisingly, a great number of physiological roles have emerged for TRPV4, as have various disease states that are attributable to the absence, or abnormal functioning, of this ion channel. This review will highlight structural features of TRPV4, endogenous and exogenous activators of the channel, and discuss the reported roles of TRPV4 in health and disease.
Collapse
|
14
|
Sanford E, Jones MC, Brigger M, Hammer M, Giudugli L, Kingsmore SF, Dimmock D, Bainbridge MN. Postmortem diagnosis of PPA2-associated sudden cardiac death from dried blood spot in a neonate presenting with vocal cord paralysis. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005611. [PMID: 33028643 PMCID: PMC7552926 DOI: 10.1101/mcs.a005611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023] Open
Abstract
Biallelic variants in inorganic pyrophosphatase 2 (PPA2) are known to cause infantile sudden cardiac failure (OMIM #617222), but relatively little is known about phenotypic variability of these patients prior to their death. We report a 5-wk-old male with bilateral vocal cord paralysis and hypertension who had a sudden unexpected cardiac death. Subsequently, molecular autopsy via whole-genome sequencing from newborn dried blood spot identified compound heterozygous mutations in PPA2, with a paternally inherited, pathogenic missense variant (c.514G > A; p.Glu172Lys) and a novel, maternally inherited missense variant of uncertain significance (c.442A > T; p.Thr148Ser). This report expands the presenting phenotype of patients with PPA2 variants. It also highlights the utility of dried blood spots for postmortem molecular diagnosis.
Collapse
Affiliation(s)
- Erica Sanford
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA.,Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Marilyn C Jones
- Division of Genetics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew Brigger
- Department of Otolaryngology, Rady Children's Hospital, San Diego, California 92123, USA
| | - Monia Hammer
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Lucia Giudugli
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Stephen F Kingsmore
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - David Dimmock
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew N Bainbridge
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
Guarino BD, Paruchuri S, Thodeti CK. The role of TRPV4 channels in ocular function and pathologies. Exp Eye Res 2020; 201:108257. [PMID: 32979394 DOI: 10.1016/j.exer.2020.108257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Transient potential receptor vanilloid 4 (TRPV4) is an ion channel responsible for sensing osmotic and mechanical signals, which in turn regulates calcium signaling across cell membranes. TRPV4 is widely expressed throughout the body, and plays an important role in normal physiological function, as well as different pathologies, however, its role in the eye is not well known. In the eye, TRPV4 is expressed in various tissues, such as the retina, corneal epithelium, ciliary body, and the lens. In this review, we provide an overview on TRPV4 structure, activation, mutations, and summarize the current knowledge of TRPV4 function and signaling mechanisms in various locations throughout the eye, as well as its role in ocular diseases, such as glaucoma and diabetic retinopathy. Based on the available data, we highlight the therapeutic potential of TRPV4 as well as the shortcomings of current research. Finally, we provide future perspectives on the implications of targeting TRPV4 to treat various ocular pathologies.
Collapse
Affiliation(s)
- Brianna D Guarino
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | | | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
16
|
Kanemaru K, Ogawa G, Mochizuki H, Nakazato M, Shiomi K. A Sporadic Case of Charcot-Marie-Tooth Disease Type 2 with Left Vocal Fold Palsy due to Mitofusin 2 Mutation. Intern Med 2019; 58:2091-2093. [PMID: 30996168 PMCID: PMC6701995 DOI: 10.2169/internalmedicine.2318-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A 33-year-old Japanese woman was referred for hoarseness. She had been diagnosed with Charcot-Marie-Tooth disease at age 3 and bilateral optic atrophy at age 15. Laryngoscopy revealed left vocal fold palsy. These findings suggested Charcot-Marie-Tooth disease type 2; the diagnosis was confirmed by a mitofusin 2 mutation analysis. Her symptoms remained stable for almost 10 years. Although vocal fold palsy and optic atrophy have been previously reported in patients with mitofusin 2 mutations, detailed clinical information and clinical course have never been documented. These data might contribute to the elucidation of the pathological conditions associated with mitofusin 2 mutations.
Collapse
Affiliation(s)
- Kazuki Kanemaru
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Go Ogawa
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Hitoshi Mochizuki
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazutake Shiomi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
17
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|
18
|
Nadol JB, Hedley-Whyte ET, Amr SS, O Apos Malley JT, Kamakura T. Histopathology of the Inner Ear in Charcot-Marie-Tooth Syndrome Caused by a Missense Variant (p.Thr65Ala) in the MPZ Gene. Audiol Neurootol 2019; 23:326-334. [PMID: 30677751 DOI: 10.1159/000495176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) syndrome is a clinically and genetically heterogeneous group of neuropathies affecting both peripheral motor and sensory nerves. Progressive sensorineural hearing loss, vestibular abnormalities, and dysfunction of other cranial nerves have been described. This is the second case report of otopathology in a patient with CMT syndrome. Molecular genetic testing of DNA obtained at autopsy revealed a missense variant in the MPZ gene (p.Thr65Ala), pathogenic for an autosomal-dominant form of CMT1B. The temporal bones were also prepared for light microscopy by hematoxylin and eosin and Gömöri trichome stains, and immunostaining for anti-myelin protein zero. Pathology was consistent with a myelinopathy of the auditory, vestibular, and facial nerves bilaterally. The pathophysiology of cranial nerve dysfunction in CMT is unknown. Findings in the current case suggested, at least in cranial nerves 7 and 8, that a myelinopathy may be causative.
Collapse
Affiliation(s)
- Joseph B Nadol
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA,
| | - E Tessa Hedley-Whyte
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sami Samir Amr
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer T O Apos Malley
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Takefumi Kamakura
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Faye E, Modaff P, Pauli R, Legare J. Combined Phenotypes of Spondylometaphyseal Dysplasia-Kozlowski Type and Charcot-Marie-Tooth Disease Type 2C Secondary to a TRPV4 Pathogenic Variant. Mol Syndromol 2018; 10:154-160. [PMID: 31191204 DOI: 10.1159/000495778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 11/19/2022] Open
Abstract
TRPV4, a nonselective calcium permeable ion channel, is expressed broadly in many organs including bone and neurons. Pathogenic variants in TRPV4 are known to cause both a spectrum of skeletal dysplasias and neuropathies. Recent publications have documented a few patients who have a combined phenotype of skeletal dysplasia and neuropathy secondary to TRPV4 pathogenic variants. We present an additional patient who has an overlapping neuromuscular and skeletal phenotype secondary to a TRPV4 pathogenic variant. The patient has spondylometaphyseal dysplasia-Kozlowski type and Charcot-Marie-Tooth disease type 2C. This and prior reports illustrate that TRPV4-related skeletal dysplasias and TRPV4-related neuropathies are not fully distinct disorders secondary to unique sets of pathogenic variants as originally postulated, but rather are 2 phenotypes on the same spectrum that may or may not overlap. We suggest that evaluation for patients presenting with any TRPV4-related disorder include assessment for both skeletal and neurological findings.
Collapse
Affiliation(s)
- Eden Faye
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peggy Modaff
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Richard Pauli
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Janet Legare
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
20
|
|
21
|
Yamaguchi M, Takashima H. Drosophila Charcot-Marie-Tooth Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:97-117. [PMID: 29951817 DOI: 10.1007/978-981-13-0529-0_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) was initially described in 1886. It is characterized by defects in the peripheral nervous system, including sensory and motor neurons. Although more than 80 CMT-causing genes have been identified to date, an effective therapy has not yet been developed for this disease. Since Drosophila does not have axons surrounded by myelin sheaths or Schwann cells, the establishment of a demyelinating CMT model is not appropriate. In this chapter, after overviewing CMT, examples of Drosophila CMT models with axonal neuropathy and other animal CMT models are described.
Collapse
Affiliation(s)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
22
|
Gentil BJ, O'Ferrall E, Chalk C, Santana LF, Durham HD, Massie R. A New Mutation in FIG4 Causes a Severe Form of CMT4J Involving TRPV4 in the Pathogenic Cascade. J Neuropathol Exp Neurol 2017; 76:789-799. [PMID: 28859335 DOI: 10.1093/jnen/nlx062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in FIG4, coding for a phosphoinositol(3,5) bisphosphate 5' phosphatase and involved in vesicular trafficking and fusion, have been shown causing a recessive form of Charcot-Marie-Tooth (CMT). We have identified a novel intronic mutation in the FIG4 in a wheel-chair bound patient presenting with a severe form of CMT4J and provide a longitudinal study. Investigations indicated a demyelinating sensorimotor polyneuropathy with diffuse active denervation and severe axonal loss. Genetic testing revealed that the patient is heterozygous for 2 FIG4 mutations, p.I41T and a T > G transversion at IVS17-10, the latter predicted to cause a splicing defect. FIG4 was severely diminished in patient's fibroblasts indicating loss-of-function. Consistent with FIG4's function in phosphoinositol homeostasis and vesicular trafficking, fibroblasts contained multiple large vacuoles and vesicular organelles were abnormally dispersed. FIG4 deficiency has implications for turnover of membrane proteins. The transient receptor cation channel, TRPV4, accumulated at the plasma membrane of patient's fibroblasts due to slow turnover. Knocking down Fig4 in murine cultured motor neurons resulted in vacuolation and cell death. Inhibiting TRPV4 activity significantly preserved viability, although not correcting vesicular trafficking. In conclusion, we demonstrate a new FIG4 intronic mutation and, importantly, a functional interaction between FIG4 and TRPV4.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Erin O'Ferrall
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Colin Chalk
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Luis F Santana
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Heather D Durham
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Rami Massie
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Zambon AA, Natali Sora MG, Cantarella G, Cerri F, Quattrini A, Comi G, Previtali SC, Bolino A. Vocal cord paralysis in Charcot-Marie-Tooth type 4b1 disease associated with a novel mutation in the myotubularin-related protein 2 gene: A case report and review of the literature. Neuromuscul Disord 2017; 27:487-491. [PMID: 28190646 PMCID: PMC5425401 DOI: 10.1016/j.nmd.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/21/2016] [Accepted: 01/09/2017] [Indexed: 12/05/2022]
Abstract
Vocal cord paralysis is a relevant symptom of Charcot–Marie–Tooth type 4B1. Patients harboring MTMR2 mutations should be investigated for laryngeal function. A new mutation in the MTMR2 gene is described. The frequency of vocal cord paralysis in early-onset CMT subtypes is explored.
Charcot–Marie–Tooth type 4B1 (CMT4B1) is an autosomal recessive motor and sensory demyelinating neuropathy characterized by the association of early-onset neurological symptoms and typical histological findings. The natural history and the clinical variability of the disease are still poorly known, thus further clarification of the different phenotypes is needed. We report on the case of a Pakistani girl born to consanguineous parents harboring a novel mutation in the MTMR2 gene. When aged 18 months, reduced limb tone, muscle wasting associated with proximal and distal weakness prevalent in lower limbs, absence of tendon reflexes, hoarseness and inspiratory stridor were detected. Vocal cord palsy was diagnosed shortly after. We suggest that laryngeal involvement might be a relevant and initial feature of early-onset CMT4B1 neuropathy. Thus, affected patients should undergo early laryngological evaluation in order to prompt an appropriate management.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Department of Neurology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| | - Maria Grazia Natali Sora
- Department of Neurology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Giovanna Cantarella
- Otolaryngology Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan, Italy
| | - Federica Cerri
- Department of Neurology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Experimental Neuropathology Unit, INSPE and Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Angelo Quattrini
- Department of Neurology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Experimental Neuropathology Unit, INSPE and Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Stefano Carlo Previtali
- Department of Neurology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Neuromuscular Repair Unit, INSPE and Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandra Bolino
- Human Inherited Neuropathies Unit, INSPE and Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
24
|
Garcez CA, Neves ELA, Melo SMD, Nunes PS, Barreto LCL, Costa IMP, Souza CC, Rezende RL, Araújo AADS. Evaluation of Respiratory Muscle Strength and Pulmonary Function in Patients with Charcot-Marie-Tooth Disease Type 2. Eur Neurol 2015; 74:310-4. [PMID: 26674657 DOI: 10.1159/000442282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the pulmonary condition in a large family with Charcot-Marie-Tooth disease type 2 (CMT2). Eighteen participants diagnosed with CMT2 and 20 healthy individuals were evaluated by spirometry and maximal expiratory and maximal inspiratory pressures (MEP and MIP, respectively). Clinical disability was measured with CMT neuropathy score (CMTNS; range 0-36). One control group (CG) comprising 20 individuals, matched for age, sex and body mass index, were used for comparison. Eight patients were female (44.5%) and 10 patients were male (55.5%); mean age was 31.8 years (range 11-79) and CMTNS range was 6-26. Differences between CMT2 and CG in the spirometry and respiratory muscle strength were statistically significant for all dimensions. There were significant correlations between CMTNS and MIP (Pearson = -0.581) and MEP (Pearson = -0.5090). The results of this study show that patients with CMT, in spite of not showing clinical signs of advanced respiratory impairment, may present subclinical respiratory changes. The respiratory comprise in the CMT disease can be silent and insidious without presenting characteristic clinical signals.
Collapse
Affiliation(s)
- Catarina Andrade Garcez
- Nx00FA;cleo de Px00F3;s-Graduax00E7;x00E3;o em Medicina da Universidade Federal de Sergipe-UFS, Sx00E3;o Cristx00F3;vx00E3;o, Sergipe, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sullivan JM, Zimanyi CM, Aisenberg W, Bears B, Chen DH, Day JW, Bird TD, Siskind CE, Gaudet R, Sumner CJ. Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy. NEUROLOGY-GENETICS 2015; 1:e29. [PMID: 27066566 PMCID: PMC4811381 DOI: 10.1212/nxg.0000000000000029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/10/2015] [Indexed: 01/18/2023]
Abstract
Objective: To characterize 2 novel TRPV4 mutations in 2 unrelated families exhibiting the Charcot-Marie-Tooth disease type 2C (CMT2C) phenotype. Methods: Direct CMT gene testing was performed on 2 unrelated families with CMT2C. A 4-fold symmetric tetramer model of human TRPV4 was generated to map the locations of novel TRPV4 mutations in these families relative to previously identified disease-causing mutations (neuropathy, skeletal dysplasia, and osteoarthropathy). Effects of the mutations on TRPV4 expression, localization, and channel activity were determined by immunocytochemical, immunoblotting, Ca2+ imaging, and cytotoxicity assays. Results: Previous studies suggest that neuropathy-causing mutations occur primarily at arginine residues on the convex face of the TRPV4 ankyrin repeat domain (ARD). Further highlighting the key role of this domain in TRPV4-mediated hereditary neuropathy, we report 2 novel heterozygous missense mutations in the TRPV4-ARD convex face (p.Arg237Gly and p.Arg237Leu). Generation of a model of the TRPV4 homotetramer revealed that while ARD residues mutated in neuropathy (including Arg237) are likely accessible for intermolecular interactions, skeletal dysplasia–causing TRPV4 mutations occur at sites suggesting disruption of intramolecular and/or intersubunit interactions. Like previously described neuropathy-causing mutations, the p.Arg237Gly and p.Arg237Leu substitutions do not alter TRPV4 subcellular localization in transfected cells but cause elevations of cytosolic Ca2+ levels and marked cytotoxicity. Conclusions: These findings expand the number of ARD residues mutated in TRPV4-mediated neuropathy, providing further evidence of the central importance of this domain to TRPV4 function in peripheral nerve.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Christina M Zimanyi
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - William Aisenberg
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Breanne Bears
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Dong-Hui Chen
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - John W Day
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Thomas D Bird
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Carly E Siskind
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Rachelle Gaudet
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Charlotte J Sumner
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
26
|
Koutsis G, Lynch D, Manone A, Karadima G, Reilly MM, Houlden H, Panas M. Charcot-Marie-Tooth disease type 2C and scapuloperoneal muscular atrophy overlap syndrome in a patient with the R232C TRPV4 mutation. J Neurol 2015; 262:1972-5. [DOI: 10.1007/s00415-015-7800-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/29/2022]
|
27
|
Evangelista T, Bansagi B, Pyle A, Griffin H, Douroudis K, Polvikoski T, Antoniadi T, Bushby K, Straub V, Chinnery PF, Lochmüller H, Horvath R. Phenotypic variability of TRPV4 related neuropathies. Neuromuscul Disord 2015; 25:516-21. [PMID: 25900305 PMCID: PMC4454778 DOI: 10.1016/j.nmd.2015.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Mutations in the transient receptor potential vanilloid 4 (TRPV4) gene have been associated with autosomal dominant skeletal dysplasias and peripheral nervous system syndromes (PNSS). PNSS include Charcot-Marie-Tooth disease (CMT) type 2C, congenital spinal muscular atrophy and arthrogryposis and scapuloperoneal spinal muscular atrophy. We report the clinical, electrophysiological and muscle biopsy findings in two unrelated patients with two novel heterozygous missense mutations in the TRPV4 gene. Whole exome sequencing was carried out on genomic DNA using Illumina Truseq(TM) 62Mb exome capture. Patient 1 harbours a de novo c.805C > T (p.Arg269Cys) mutation. Clinically, this patient shows signs of both scapuloperoneal spinal muscular atrophy and skeletal dysplasia. Patient 2 harbours a novel c.184G > A (p.Asp62Asn) mutation. While the clinical phenotype is compatible with CMT type 2C with the patient's muscle harbours basophilic inclusions. Mutations in the TRPV4 gene have a broad phenotypic variability and disease severity and may share a similar pathogenic mechanism with Heat Shock Protein related neuropathies.
Collapse
Affiliation(s)
- Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Boglarka Bansagi
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Angela Pyle
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Konstantinos Douroudis
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Tuomo Polvikoski
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Thalia Antoniadi
- Bristol Genetic Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Kate Bushby
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
28
|
Hsu AK, Rosow DE, Wallerstein RJ, April MM. Familial congenital bilateral vocal fold paralysis: a novel gene translocation. Int J Pediatr Otorhinolaryngol 2015; 79:323-7. [PMID: 25617187 DOI: 10.1016/j.ijporl.2014.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES True vocal fold (TVF) paralysis is a common cause of neonatal stridor and airway obstruction, though bilateral TVF paralysis is seen less frequently. Rare cases of familial congenital TVF paralysis have been described with implied genetic origin, but few genetic abnormalities have been discovered to date. The purpose of this study is to describe a novel chromosomal translocation responsible for congenital bilateral TVF immobility. METHODS The charts of three patients were retrospectively reviewed: a 35 year-old woman and her two children. The mother had bilateral TVF paralysis at birth requiring tracheotomy. Her oldest child had a similar presentation at birth and also required tracheotomy, while the younger child had laryngomalacia without TVF paralysis. Standard karyotype analysis was done using samples from all three patients and the parents of the mother, to assess whether a chromosomal abnormality was responsible. RESULTS Karyotype analysis revealed the same balanced translocation between chromosomes 5 and 14, t(5;14) (p15.3, q11.2) in the mother and her two daughters. No other genetic abnormalities were identified. Neither maternal grandparent had the translocation, which appeared to be a spontaneous mutation in the mother with autosomal dominant inheritance and variable penetrance. CONCLUSIONS A novel chromosomal translocation was identified that appears to be responsible for familial congenital bilateral TVF paralysis. While there are other reports of genetic abnormalities responsible for this condition, we believe this is the first describing this particular translocation.
Collapse
Affiliation(s)
- Amy K Hsu
- Department of Otolaryngology/Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - David E Rosow
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.
| | - Robert J Wallerstein
- Department of Pediatrics, Santa Clara Valley Medical Center, San Jose, CA, United States
| | - Max M April
- Department of Otolaryngology/Head and Neck Surgery, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
29
|
Al-Shahoumi R, Brady LI, Schwartzentruber J, Tarnopolsky MA. Two cases of congenital myasthenic syndrome with vocal cord paralysis. Neurology 2015; 84:1281-2. [PMID: 25695962 DOI: 10.1212/wnl.0000000000001396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rashid Al-Shahoumi
- From McMaster University (R.A.-S., L.I.B., M.A.T.), Hamilton; and McGill University and Genome Quebec Innovation Centre (J.S.), Montréal, Canada
| | - Lauren I Brady
- From McMaster University (R.A.-S., L.I.B., M.A.T.), Hamilton; and McGill University and Genome Quebec Innovation Centre (J.S.), Montréal, Canada
| | - Jeremy Schwartzentruber
- From McMaster University (R.A.-S., L.I.B., M.A.T.), Hamilton; and McGill University and Genome Quebec Innovation Centre (J.S.), Montréal, Canada
| | - Mark A Tarnopolsky
- From McMaster University (R.A.-S., L.I.B., M.A.T.), Hamilton; and McGill University and Genome Quebec Innovation Centre (J.S.), Montréal, Canada.
| |
Collapse
|
30
|
Punetha J, Monges S, Franchi ME, Hoffman EP, Cirak S, Tesi-Rocha C. Exome Sequencing Identifies DYNC1H1 Variant Associated With Vertebral Abnormality and Spinal Muscular Atrophy With Lower Extremity Predominance. Pediatr Neurol 2015; 52:239-44. [PMID: 25484024 PMCID: PMC4351714 DOI: 10.1016/j.pediatrneurol.2014.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Molecular diagnosis of the distal spinal muscular atrophies or distal hereditary motor neuropathies remains challenging because of clinical and genetic heterogeneity. Next generation sequencing offers potential for identifying de novo mutations of causative genes in isolated cases. PATIENT DESCRIPTION We present a 3.6-year-old girl with congenital scoliosis, equinovarus, and L5/S1 left hemivertebra who demonstrated delayed walking and lower extremities atrophy. She was negative for SMN1 deletion testing, and parents show no sign of disease. RESULTS Whole exome sequencing of the affected girl showed a novel de novo heterozygous missense mutation c.1792C>T (p.Arg598Cys) in the tail domain of the DYNC1H1 gene encoding for cytoplasmic dynein heavy chain 1. The mutation changed a highly conserved amino acid and was absent from both parents. CONCLUSION De novo mutations of DYNC1H1 have been found in individuals with autosomal dominant mental retardation with neuronal migration defects. Dominantly inherited mutations of DYNC1H1 have been reported to cause spinal muscular atrophy with predominance of lower extremity involvement and Charcot-Marie-Tooth type 2O. This is the first report of a de novoDYNC1H1 mutation associated with the spinal muscular atrophy with predominance of lower extremity phenotype with a spinal deformity (lumbar hemivertebrae). This case also demonstrates the power of next generation sequencing to discover de novo mutations on a genome-wide scale.
Collapse
Affiliation(s)
- Jaya Punetha
- Department of Integrative Systems Biology, The George Washington University School of Medicine, Washington DC, USA,Center for Genetic Medicine Research, Children’s National Medical Center, Washington DC, USA
| | - Soledad Monges
- Hospital Nacional de Pediatria “J. P. Garrahan”, Buenos Aires, Argentina
| | | | - Eric P Hoffman
- Department of Integrative Systems Biology, The George Washington University School of Medicine, Washington DC, USA,Center for Genetic Medicine Research, Children’s National Medical Center, Washington DC, USA
| | - Sebahattin Cirak
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington DC, USA
| | - Carolina Tesi-Rocha
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC; Department of Neurology and Neurological Sciences, Stanford University Medical Center, Palo Alto, California.
| |
Collapse
|
31
|
Harel T, Lupski J. Charcot-Marie-Tooth disease and pathways to molecular based therapies. Clin Genet 2014; 86:422-31. [DOI: 10.1111/cge.12393] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/31/2023]
Affiliation(s)
- T. Harel
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
| | - J.R. Lupski
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Department of Pediatrics; Baylor College of Medicine; Houston TX USA
- Texas Children's Hospital; Houston TX USA
- Human Genome Sequencing Center; Baylor College of Medicine; Houston TX USA
| |
Collapse
|
32
|
Grigelioniene G, Geiberger S, Horemuzova E, Moström E, Jäntti N, Neumeyer L, Åström E, Nordenskjöld M, Nordgren A, Mäkitie O. Autosomal dominant brachyolmia in a large Swedish family: phenotypic spectrum and natural course. Am J Med Genet A 2014; 164A:1635-41. [PMID: 24677493 DOI: 10.1002/ajmg.a.36502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/27/2014] [Indexed: 11/09/2022]
Abstract
Autosomal dominant brachyolmia (Type 3, OMIM #113500) belongs to a group of skeletal dysplasias caused by mutations in the transient receptor potential cation channel, subfamily V, member 4 (TRPV4) gene, encoding a Ca++-permeable, non-selective cation channel. The disorder is characterized by disproportionate short stature with short trunk, scoliosis and platyspondyly. The phenotypic variability and long-term natural course remain inadequately characterized. The purpose of this study was to describe a large Swedish family with brachyolmia type 3 due to a heterozygous TRPV4 mutation c.1847G>A (p.R616Q) in 11 individuals. The mutation has previously been detected in another family with autosomal dominant brachyolmia [Rock et al., 2008]. Review of hospital records and patient assessments indicated that clinical symptoms of brachyolmia became evident by school age with chronic pain in the spine and hips; radiographic changes were evident earlier. Growth was not affected during early childhood but deteriorated with age in some patients due to increasing spinal involvement. Affected individuals had a wide range of subjective symptoms with chronic pain in the extremities and the spine, and paresthesias. Our findings indicate that autosomal dominant brachyolmia may be associated with significant long-term morbidity, as seen in this family.
Collapse
Affiliation(s)
- Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The widely distributed TRPV4 cationic channel participates in the transduction of both physical (osmotic, mechanical, and heat) and chemical (endogenous, plant-derived, and synthetic ligands) stimuli. In this chapter we will review TRPV4 expression, biophysics, structure, regulation, and interacting partners as well as physiological and pathological insights obtained in TRPV4 animal models and human genetic studies.
Collapse
|
34
|
Chen DH, Naydenov A, Blankman JL, Mefford HC, Davis M, Sul Y, Barloon AS, Bonkowski E, Wolff J, Matsushita M, Smith C, Cravatt BF, Mackie K, Raskind WH, Stella N, Bird TD. Two novel mutations in ABHD12: expansion of the mutation spectrum in PHARC and assessment of their functional effects. Hum Mutat 2013; 34:1672-8. [PMID: 24027063 DOI: 10.1002/humu.22437] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/25/2013] [Indexed: 01/13/2023]
Abstract
PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataracts) is a recently described autosomal-recessive neurodegenerative disease caused by mutations in the α-β-hydrolase domain-containing 12 gene (ABHD12). Only five homozygous ABHD12 mutations have been reported and the pathogenesis of PHARC remains unclear. We evaluated a woman who manifested short stature as well as the typical features of PHARC. Sequence analysis of ABHD12 revealed a novel heterozygous c.1129A>T (p.Lys377*) mutation. Targeted comparative genomic hybridization detected a 59-kb deletion that encompasses exon 1 of ABHD12 and exons 1-4 of an adjacent gene, GINS1, and includes the promoters of both genes. The heterozygous deletion was also carried by the patient's asymptomatic mother. Quantitative reverse transcription-PCR demonstrated ∼50% decreased expression of ABHD12 RNA in lymphoblastoid cell lines from both individuals. Activity-based protein profiling of serine hydrolases revealed absence of ABHD12 hydrolase activity in the patient and 50% reduction in her mother. This is the first report of compound heterozygosity in PHARC and the first study to describe how a mutation might affect ABHD12 expression and function. The possible involvement of haploinsufficiency for GINS1, a DNA replication complex protein, in the short stature of the patient and her mother requires further studies.
Collapse
Affiliation(s)
- Dong-Hui Chen
- Department of Neurology, University of Washington, Seattle, Washington, 98195
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nicolaou P, Christodoulou K. Advances in the molecular diagnosis of Charcot-Marie-Tooth disease. World J Neurol 2013; 3:42-55. [DOI: 10.5316/wjn.v3.i3.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy is the most common inherited neuromuscular disorder affecting at least 1 in 2500. CMT disease is pathologically and genetically heterogeneous and is characterized by a variable age of onset, slowly progressive weakness and muscle atrophy, starting in the lower limbs and subsequently affecting the upper extremities. Symptoms are usually slowly progressive, especially for the classic and late-onset phenotypes, but can be rather severe in early-onset forms. CMT is grouped into demyelinating, axonal and intermediate forms, based on electrophysiological and pathological findings. The demyelinating types are characterized by severely reduced motor nerve conduction velocities (MNCVs) and mainly by myelin abnormalities. The axonal types are characterized by normal or slightly reduced MNCVs and mainly axonal abnormalities. The intermediate types are characterized by MNCVs between 25 m/s and 45 m/s and they have features of both demyelination and axonopathy. Inheritance can be autosomal dominant, X-linked, or autosomal recessive. Mutations in more than 30 genes have been associated with the different forms of CMT, leading to major advancements in molecular diagnostics of the disease, as well as in the understanding of pathogenetic mechanisms. This editorial aims to provide an account that is practicable and efficient on the current molecular diagnostic procedures for CMT, in correlation with the clinical, pathological and electrophysiological findings. The most frequent causative mutations of CMT will also be outlined.
Collapse
|
36
|
Siskind CE, Panchal S, Smith CO, Feely SME, Dalton JC, Schindler AB, Krajewski KM. A review of genetic counseling for Charcot Marie Tooth disease (CMT). J Genet Couns 2013; 22:422-36. [PMID: 23604902 DOI: 10.1007/s10897-013-9584-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Charcot Marie Tooth disease (CMT) encompasses the inherited peripheral neuropathies. While four genes have been found to cause over 90 % of genetically identifiable causes of CMT (PMP22, GJB1, MPZ, MFN2), at least 51 genes and loci have been found to cause CMT when mutated, creating difficulties for clinicians to find a genetic subtype for families. Here, the classic features of CMT as well as characteristic features of the most common subtypes of CMT are described, as well as methods for narrowing down the possible subtypes. Psychosocial concerns particular to the CMT population are identified. This is the most inclusive publication for CMT-specific genetic counseling.
Collapse
Affiliation(s)
- Carly E Siskind
- Neurosciences Department, Stanford Hospital and Clinics, 300 Pasteur Dr., Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited peripheral neuropathies in which the neuropathy is the sole or primary component of the disorder, as opposed to diseases in which the neuropathy is part of a more generalized neurologic or multisystem syndrome. Because of the great genetic heterogeneity of this condition, it can be challenging for the general neurologist to diagnose patients with specific types of CMT. This article reviews the biology of the inherited peripheral neuropathies, delineates major phenotypic features of the CMT subtypes, and suggest strategies for focusing genetic testing.
Collapse
Affiliation(s)
- Mario A Saporta
- National Laboratory of Embryonic Stem Cells, Biomedical Sciences Department, Federal University of Rio de Janeiro, Rua Republica do Peru 362/602, Rio de Janeiro 22021-040, Brazil.
| | | |
Collapse
|
38
|
Nilius B, Voets T. The puzzle of TRPV4 channelopathies. EMBO Rep 2013; 14:152-63. [PMID: 23306656 DOI: 10.1038/embor.2012.219] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/10/2012] [Indexed: 11/09/2022] Open
Abstract
Hereditary channelopathies, that is, mutations in channel genes that alter channel function and are causal for the pathogenesis of the disease, have been described for several members of the transient receptor potential channel family. Mutations in the TRPV4 gene, encoding a polymodal Ca(2+) permeable channel, are causative for several human diseases, which affect the skeletal system and the peripheral nervous system, with highly variable phenotypes. In this review, we describe the phenotypes of TRPV4 channelopathies and overlapping symptoms. Putative mechanisms to explain the puzzle, and how mutations in the same region of the channel cause different diseases, are discussed and experimental approaches to tackle this surprising problem are suggested.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular & Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
39
|
Kang SS, Shin SH, Auh CK, Chun J. Human skeletal dysplasia caused by a constitutive activated transient receptor potential vanilloid 4 (TRPV4) cation channel mutation. Exp Mol Med 2012; 44:707-22. [PMID: 23143559 PMCID: PMC3538978 DOI: 10.3858/emm.2012.44.12.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2012] [Indexed: 12/23/2022] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of Ca²⁺ signals and/or depolarization of the membrane potential. Regulation of TRPV4 abundance at the cell surface is critical for osmo- and mechanotransduction. Defects in TRPV4 are the cause of several human diseases, including brachyolmia type 3 (MIM:113500) (also known as brachyrachia or spondylometaphyseal dysplasia Kozlowski type [MIM:118452]), and metatropic dysplasia (MIM:156530) (also called metatropic dwarfism or parastremmatic dwarfism [MIM:168400]). These bone dysplasia mutants are characterized by severe dwarfism, kyphoscoliosis, distortion and bowing of the extremities, and contractures of the large joints. These diseases are characterized by a combination of decreased bone density, bowing of the long bones, platyspondyly, and striking irregularities of endochondral ossification with areas of calcific stippling and streaking in radiolucent epiphyses, metaphyses, and apophyses. In this review, we discuss the potential effect of the mutation on the regulation of TRPV4 functions, which are related to human diseases through deviated function. In particular, we emphasize how the constitutive active TRPV4 mutant affects endochondral ossification with a reduced number of hypertrophic chondrocytes and the presence of cartilage islands within the zone of primary mineralization. In addition, we summarize current knowledge about the role of TRPV4 in the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Sang Sun Kang
- Department of Biology Education Chungbuk National University Cheongju 361-763, Korea.
| | | | | | | |
Collapse
|
40
|
Yiu EM, Ryan MM. Genetic axonal neuropathies and neuronopathies of pre-natal and infantile onset. J Peripher Nerv Syst 2012; 17:285-300. [DOI: 10.1111/j.1529-8027.2012.00412.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Nishimura G, Lausch E, Savarirayan R, Shiba M, Spranger J, Zabel B, Ikegawa S, Superti-Furga A, Unger S. TRPV4-associated skeletal dysplasias. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:190-204. [PMID: 22791502 DOI: 10.1002/ajmg.c.31335] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dominant mutations in the TRPV4 gene result in a bone dysplasia family and form a continuous phenotypic spectrum that includes, in decreasing severity, lethal, and nonlethal metatropic dysplasia (MD), spondylometaphyseal dysplasia Kozlowski type (SMDK), and autosomal dominant brachyolmia. Several rare variant phenotypes that have some overlap but deviate in some ways from the general pattern have also been described. The known variant phenotypes are spondyloepiphyseal dysplasia Maroteaux type (Pseudo-Morquio type 2), parastremmatic dysplasia, and familial digital arthropathy with brachydactyly. Interestingly, different TRPV4 mutations have been associated with dominantly inherited neurologic disorders such as congenital spinal muscular atrophy and hereditary motor and sensory neuropathy. Finally, a small number of patients have been identified in whom a TRPV4 mutation results in a phenotype combining skeletal dysplasia with peripheral neuropathy. The TRPV4 gene encodes a regulated calcium channel implicated in multiple and diverse cellular processes. Over 50 different TRPV4 mutations have been reported, with two codons appearing to be mutational hot spots: P799 in exon 15, mostly associated with MD, and R594 in exon 11, associated with SMDK. While most pathogenic mutations tested so far result in activation of the calcium channel in vitro, the mechanisms through which TRPV4 activation results in skeletal dysplasia and/or peripheral neuropathy remain unclear and the genotype-phenotype correlations in this group of disorders remains somewhat mysterious. Since the phenotypic expression of most mutations seems to be relatively constant, careful clinical and radiographic assessment is useful in directing molecular analysis.
Collapse
Affiliation(s)
- Gen Nishimura
- Génétique Médicale, CHUV, Av. Decker 2, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
TRPV4 axonal neuropathy spectrum disorder. J Clin Neurosci 2012; 19:927-33. [DOI: 10.1016/j.jocn.2011.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/18/2011] [Indexed: 11/21/2022]
|
43
|
Chun J, Shin SH, Kang SS. The negative feedback regulation of TRPV4 Ca2+ ion channel function by its C-terminal cytoplasmic domain. Cell Signal 2012; 24:1918-22. [PMID: 22735813 DOI: 10.1016/j.cellsig.2012.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/16/2012] [Indexed: 12/25/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of a Ca(2+) signal and/or depolarization of the membrane potential. Regulation of the abundance of TRPV4 at the cell surface is critical in osmo- and mechanotransduction. In this review, we discussed that the potential effect of Ca(2+) occurs via its action at an intracellular site in the C-terminus of the channel protein by the effect of the modulation on TRPV4 (such as 824 Ser residue phosphorylation), and its regulation for TRPV4 functions related with cell surface spread, wound healing or its polarity reorientation through its differential affinity with actin or tubulin.
Collapse
Affiliation(s)
- Jaesun Chun
- Department of Biology Education, Korea National University of Education, Cheongwon, Chungbuk, Republic of Korea
| | | | | |
Collapse
|
44
|
Landouré G, Sullivan JM, Johnson JO, Munns CH, Shi Y, Diallo O, Gibbs JR, Gaudet R, Ludlow CL, Fischbeck KH, Traynor BJ, Burnett BG, Sumner CJ. Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology 2012; 79:192-4. [PMID: 22675077 DOI: 10.1212/wnl.0b013e31825f04b2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Cho TJ, Matsumoto K, Fano V, Dai J, Kim OH, Chae JH, Yoo WJ, Tanaka Y, Matsui Y, Takigami I, Monges S, Zabel B, Shimizu K, Nishimura G, Lausch E, Ikegawa S. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: a report of three patients. Am J Med Genet A 2012; 158A:795-802. [PMID: 22419508 DOI: 10.1002/ajmg.a.35268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 01/16/2012] [Indexed: 01/17/2023]
Abstract
Heterozygous missense mutations of transient receptor potential vanilloid 4 channel (TRPV4) cause a spectrum of skeletal disorders, including brachyolmia, spondylometaphyseal dysplasia Kozlowski type, metatropic dysplasia, parastremmatic dysplasia, and spondyloepimetaphyseal dysplasia Maroteaux type. Similarly, heterozygous missense mutations of TRPV4 cause a spectrum of peripheral neuropathy, including hereditary motor and sensory neuropathy type IIC, congenital spinal muscular atrophy, and scapuloperoneal spinal muscular atrophy. There are no apparent differences in the amino acid positions affected or type of change predicted by the TRPV4 mutations responsible for the two disease spectrums; nevertheless, no fundamental phenotypic overlap has been shown between the two spectrums. Here, we report on three patients who had both skeletal dysplasia and peripheral neuropathy caused by heterozygous TRPV4 missense mutations. The skeletal and neurologic phenotypes of these patients covered the wide spectrum of reported TRPV4-pathies (disease caused by TRPV4 mutations). The molecular data are complementary, proving that "neuropathic" mutations can cause skeletal dysplasia but also the "skeletopathic" mutations can lead to neuropathies. Our findings suggest that pathogenic mechanisms of TRPV4-pathies in skeletal and nervous systems are not always mutually exclusive and provide further evidence that there is no clear genotype-phenotype correlation for either spectrum. Co-occurrence of skeletal dysplasia and degenerative neuropathy should be kept in mind in clinical practice including diagnostic testing, surgical evaluation, and genetic counseling.
Collapse
Affiliation(s)
- Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aharoni S, Harlalka G, Offiah A, Shuper A, Crosby AH, McEntagart M. Striking phenotypic variability in familial TRPV4-axonal neuropathy spectrum disorder. Am J Med Genet A 2011; 155A:3153-6. [PMID: 22065612 DOI: 10.1002/ajmg.a.34327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/04/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Sharon Aharoni
- Department of Neurology, Schneider Children's Medical Center, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
47
|
Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 2011; 43:1142-6. [DOI: 10.1038/ng.945] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/24/2011] [Indexed: 11/09/2022]
|
48
|
Unger S, Lausch E, Stanzial F, Gillessen-Kaesbach G, Stefanova I, Di Stefano CM, Bertini E, Dionisi-Vici C, Nilius B, Zabel B, Superti-Furga A. Fetal akinesia in metatropic dysplasia: The combined phenotype of chondrodysplasia and neuropathy? Am J Med Genet A 2011; 155A:2860-4. [PMID: 21964829 DOI: 10.1002/ajmg.a.34268] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 11/08/2022]
Abstract
Dominant mutations in the receptor calcium channel gene TRPV4 have been associated with a family of skeletal dysplasias (metatropic dysplasia, pseudo-Morquio type 2, spondylometaphyseal dysplasia, Kozlowski type, brachyolmia, and familial digital arthropathy) as well as with dominantly inherited neuropathies (hereditary motor and sensory neuropathy 2C, scapuloperoneal spinal muscular atrophy, and congenital distal spinal muscular atrophy). While there is phenotypic overlap between the various members of each group, the two groups were considered to be totally separate with the former being strictly a structural skeletal condition and the latter group being confined to the peripheral nervous system. We report here on fetal akinesia as the presenting feature of severe metatropic dysplasia, suggesting that certain TRPV4 mutations can cause both a skeletal and a neuropathic phenotype. Three cases were detected on prenatal ultrasound because of absent movements in the second trimester. Case 4 presented with multiple joint contractures and absent limb movements at birth and was diagnosed with "fetal akinesia syndrome". Post-interruption and post-natal X-rays showed typical features of metatropic dysplasia in all four. Sequencing of the TRPV4 gene confirmed the presence of de novo heterozygous mutations predicting G78W (Case 1), T740I (Cases 2 and 3), and K276E (Case 4). Although some degree of restriction of movements is not uncommon in fetuses with skeletal dysplasia, akinesia as leading sign is unusual and suggests that certain TRPV4 mutations produce both chondrodysplasia and a peripheral neuropathy resulting in a severe "overlap" phenotype.
Collapse
Affiliation(s)
- Sheila Unger
- Service of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Baets J, Timmerman V. Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain 2011; 134:1587-90. [DOI: 10.1093/brain/awr114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Berciano J, Baets J, Gallardo E, Zimoń M, García A, López-Laso E, Combarros O, Infante J, Timmerman V, Jordanova A, De Jonghe P. Reduced penetrance in hereditary motor neuropathy caused by TRPV4 Arg269Cys mutation. J Neurol 2011; 258:1413-21. [PMID: 21336783 DOI: 10.1007/s00415-011-5947-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
Incomplete penetrance has rarely been reported in Charcot-Marie-Tooth disease. Our aim is to describe reduced penetrance in a hereditary motor neuropathy pedigree due to mutation in the transient receptor potential vallinoid 4 (TRPV4) gene. The pedigree comprised two affected members, the proband aged 44 years and her affected daughter aged 7 years, and seven additional related subjects, three of whom were subclinical gene mutation carriers aged 9, 40 and 70 years. Clinico-electrophysiological studies, MRI of lower-limb musculature and genetic testing of the TRPV4 were performed. The proband presented with a moderate facio-scapulo-peroneal syndrome, whereas her symptomatic daughter suffered from severe congenital spinal muscular atrophy with arthrogryposis, laryngomalacia, and vocal cord paresis. Electrophysiological evaluation revealed a pure motor axonal neuropathy. In the proband, MRI showed extensive and widespread fatty atrophy of lower-leg musculature, whereas in thigh musculature there was just mild distal fatty infiltration of vastus lateralis. Genetic testing revealed a heterozygous Arg269Cys mutation in the TPRV4 gene. In all three mutation carriers results from clinical and electrophysiological examination, and MRI of foot and lower-leg musculature were normal. We conclude that non-penetrance may be an integral feature of neuropathic syndromes associated with TRPV4 gene mutation.
Collapse
Affiliation(s)
- José Berciano
- Service of Neurology, University Hospital "Marqués de Valdecilla" (IFIMAV), "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas" (CIBERNED), University of Cantabria (UC), 39008 Santander, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|