1
|
Kim W, Cho JS, Shim YK, Ko YJ, Choi SA, Kim SY, Kim H, Lim BC, Hwang H, Choi J, Kim KJ, Kim MJ, Seong MW, Chae JH. Early-onset autosomal dominant GTP-cyclohydrolase I deficiency: Diagnostic delay and residual motor signs. Brain Dev 2021; 43:759-767. [PMID: 33875303 DOI: 10.1016/j.braindev.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Autosomal dominant (AD) guanosine triphosphate cyclohydrolase 1 (GCH1) deficiency is the most common cause of dopa-responsive dystonia (DRD). Patients with GCH1 deficiency are likely to experience diagnostic delay, but its consequences have not been described thoroughly in patients with early-onset disease. We describe the diagnostic delay and residual motor signs (RMS) observed in patients with early-onset (before 15 years of age) disease. METHODS Twelve patients with early-onset AD GCH1 deficiency from a single center were included in the case series analysis. For the meta-analysis, the PubMed database was searched for articles on early-onset AD GCH1 deficiency published from 1995 to 2019. RESULTS In the case series, the mean duration of diagnostic delay was 5.6 years. Two patients exhibited RMS, and four patients underwent orthopedic surgery. The literature search yielded 137 AD GCH1 deficiency cases for review; gait disturbance was reported in 92.7% of patients, diurnal fluctuation of symptoms in 91.9%, and RMS in 39%. The mean duration of diagnostic delay was 14.6 years overall: 12.0 years in RMS-negative patients and 21.2 years in RMS-positive patients. CONCLUSIONS Diagnostic delay in early-onset AD GCH1 deficiency is more closely associated with later RMS. Early clinical suspicion, timely diagnosis, and levodopa treatment may reduce the occurrence of RMS in patients with early-onset AD GCH1 deficiency.
Collapse
Affiliation(s)
- WooJoong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jae So Cho
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Kyu Shim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Jun Ko
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Sun Ah Choi
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jieun Choi
- Department of Pediatrics, SMG-SNU Boramae Hospital, Seoul, Republic of Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Man Jin Kim
- Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Autosomal-dominant guanosine triphosphate cyclohydrolase I deficiency with novel mutations. Pediatr Neurol 2008; 38:367-9. [PMID: 18410856 DOI: 10.1016/j.pediatrneurol.2008.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/12/2007] [Accepted: 01/28/2008] [Indexed: 11/20/2022]
Abstract
Dopa-responsive dystonia in children, including guanosine triphosphate cyclohydrolase I deficiency, is an important subcategory of treatable dystonia characterized by a dramatic, sustained response to levodopa. Early diagnosis is difficult, however, because of the heterogeneity of the clinical phenotype. We report on two Korean children affected with dopa-responsive dystonia caused by a novel missense mutation of the guanosine triphosphate cyclohydrolase I gene. One child exhibits a novel sporadic mutation, and the other child demonstrates autosomal-dominant inheritance.
Collapse
|
3
|
Ikemoto K, Suzuki T, Ichinose H, Ohye T, Nishimura A, Nishi K, Nagatsu I, Nagatsu T. Localization of sepiapterin reductase in the human brain. Brain Res 2002; 954:237-46. [PMID: 12414107 DOI: 10.1016/s0006-8993(02)03341-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sepiapterin reductase (SPR) is the enzyme that catalyzes the final step of the synthesis of tetrahydrobiopterin (BH4), the cofactor for phenylalanine hydroxylase, tyrosine hydroxylase (TH), tryptophan hydroxylase, and nitric oxide synthase (NOS). Although SPR is essential for synthesizing BH4, the distribution of SPR in the human brain has not yet been clarified. In the present study, we purified recombinant human SPR from cDNA, raised an antibody against human SPR (hSPR), and examined the localization of SPR protein and SPR activity. Human brain homogenates from the substantia nigra (SN), caudate nucleus (CN), gray and white matters of the cerebral cortex (CTX), and dorsal and ventral parts of the medulla oblongata (MO) were subjected to Western blot analysis with anti-hSPR antibody or with anti-TH antibody. Whereas TH protein showed a restricted localization, being mainly detected in the SN and CN, SPR protein was detected in all brain regions examined. SPR activity was relatively high compared with the activity of GTP cyclohydrolase I (GCH), the rate-limiting biosynthetic enzyme of BH4, and was more widely distributed than GCH activity. Immunohistochemistry revealed SPR immunoreactivity in pyramidal neurons in the cerebral CTX, in a small number of striatal neurons, and in neurons of the hypothalamic and brain stem monoaminergic fields and olivary nucleus. Double-staining immunohistochemistry showed that TH and SPR were colocalized in the SN dopamine neurons. Localization of SPR immunoreactive neurons corresponded to monoamine or NOS neuronal fields, and also to the areas where no monoamine or NOS neurons were located. The results indicate that there might be a BH4 biosynthetic pathway where GCH is not involved and that SPR might have some yet unidentified function(s) in addition to BH4 biosynthesis.
Collapse
Affiliation(s)
- Keiko Ikemoto
- Department of Anatomy, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
In the clinic setting, most cases represent either Parkinson's disease (PD) or one of the other neurodegenerative disorders that make up the parkinsonism-plus syndromes. The major parkinsonism-plus syndromes include progressive supranuclear palsy, multiple system atrophy, corticobasal degeneration, as well as parkinsonism occurring in the context of Alzheimer's disease or one of the other primary dementing disorders. There are a variety of other conditions, however, that occasionally come into the differential diagnosis. These fall into the categories of secondary parkinsonism (due to drugs, toxins, structural lesions, etc.), another tremor syndrome such as essential tremor, or a hereditary disorder with parkinsonism. This broad differential diagnosis is reviewed.
Collapse
Affiliation(s)
- JE Ahlskog
- Division of Movement Disorders, Mayo Clinic, Department of Neurology, Mayo School of Medicine, 55905, Rochester, MN, USA
| |
Collapse
|
6
|
Ichinose H, Suzuki T, Inagaki H, Ohye T, Nagatsu T. Molecular genetics of dopa-responsive dystonia. Biol Chem 1999; 380:1355-64. [PMID: 10661862 DOI: 10.1515/bc.1999.175] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The causative genes of two types of hereditary dopa-responsive dystonia (DRD) due to dopamine (DA) deficiency in the nigrostriatum DA neurons have been elucidated. Autosomal dominant DRD (AD-DRD) was originally described by Segawa as hereditary progressive dystonia with marked diurnal fluctuation (HPD). We cloned the human GTP cyclohydrolase I (GCH1) gene, and mapped the gene to chromosome 14q22.1-q22.2 within the HPD/DRD locus, which had been identified by linkage analysis. GCH1 isthe rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin (BH4), the cofactor for tyrosine hydroxylase (TH), which is the first and rate-limiting enzyme of DA synthesis. We proved that the GCH1 gene is the causative gene for HPD/DRD based on the identification of mutations of the gene in the patients and decreases in the enzyme activity expressed in mononuclear blood cells to 2-20% of the normal value. About 60 different mutations (missense, nonsense, and frameshift mutations) in the coding region or in the exon-intron junctions of the GCH1 gene have been reported in patients with AD-DRD all over the world. Recent findings indicate that the decreased GCH1 activity in AD-DRD may be caused by the negative interaction of the mutated subunit with the wild-type one, i.e., a dominant negative effect, and/or by decreases in the levels of GCH1 mRNA and protein caused by inactivation of one allele of the GCH1 gene. Autosomal recessive DRD (AR-DRD) with Segawa's syndrome was discovered in Germany. The AR-DRD locus was mapped to chromosome 11p15.5 in the chromosomal site of the TH gene. In the AR-DRD with Segawa's syndrome, a point mutation in TH (Gln381Lys) resulted in a pronounced decrease in TH activity to about 15% of that of the wild type. Several missense mutations in the TH gene have been found in AR-DRD in Europe. The phenotype of AR-DRD with the Leu205Pro mutation in the TH gene, which produces a severe decrease in TH activity to 1.5% of that of the wild type, was severe, not dystonia/Segawa's syndrome, but early-onset parkinsonism. However, a marked improvement of all clinical symptoms with a low dose of L-dopa was reported in AR-DRD/parkinsonism patients. These findings on DRD indicate that the nigrostriatal DA neurons may be most susceptible to the decreases in GCH1 activity, BH4 level, TH activity, and DA level, and that DRD is the DA deficiency without neuronal death in contrast to juvenile parkinsonism or Parkinson's disease with DA cell death.
Collapse
Affiliation(s)
- H Ichinose
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | |
Collapse
|