1
|
Cuk M, Unal B, Bevanda A, Hayes CP, Walker M, Abraamyan F, Beluzic R, Gornik KC, Ozretic D, Prutki M, Nie Q, Reddi HV, Ghazani AA. Diagnosis of Two Unrelated Syndromes of Prader-Willi and Calpainopathy: Insight from Trio Whole Genome Analysis and Isodisomy Mapping. Genes (Basel) 2024; 15:946. [PMID: 39062725 PMCID: PMC11276144 DOI: 10.3390/genes15070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). METHODS Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged muscular hypotonia associated hyperCKemia, and early-onset obesity. The parents were unaffected. RESULTS Results showed maternal isodisomy uniparental disomy (UPD) in chromosome 15, expanding from 15q11.2 to 15q22.2, including PWS regions at 15q11.2-15q13. Maternal heterodisomy was detected from 15q22.2 to 15q26.3. A pathogenic variant, NM_000070.3(CAPN3):c.550del (p.Thr184fs), was identified at 15q15.1 in a heterozygous state in the mother that was homozygous in the proband due to maternal isodisomy. CONCLUSION This is the first study of the concurrent molecular etiology of PWS and calpainopathy (OMIM#253600) in the same patient. This report highlights the utility of joint analysis and the need for the assessment of autosomal recessive disease in regions of isodisomy in patients with complex and unexplained phenotypes.
Collapse
Affiliation(s)
- Mario Cuk
- Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Busra Unal
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
| | | | - Connor P. Hayes
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
| | - McKenzie Walker
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
| | - Feruza Abraamyan
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
| | - Robert Beluzic
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Kristina Crkvenac Gornik
- Department of Laboratory Diagnostics, Division of Cytogenetics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - David Ozretic
- Department for Diagnostic and Interventional Neuroradiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Maja Prutki
- Department of Radiology, School of Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Qian Nie
- Precision Medicine Laboratory, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Q.N.); (H.V.R.)
| | - Honey V. Reddi
- Precision Medicine Laboratory, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Q.N.); (H.V.R.)
| | - Arezou A. Ghazani
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Banerjee S, Radotra BD, Luthra-Guptasarma M, Goyal MK. Identification of novel pathogenic variants of Calpain-3 gene in limb girdle muscular dystrophy R1. Orphanet J Rare Dis 2024; 19:140. [PMID: 38561828 PMCID: PMC10983654 DOI: 10.1186/s13023-024-03158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Limb Girdle Muscular Dystrophy R1 (LGMDR1) is an autosomal recessive neuromuscular disease caused by mutations in the calpain-3 (CAPN3) gene. As clinical and pathological features may overlap with other types of LGMD, therefore definite molecular diagnosis is required to understand the progression of this debilitating disease. This study aims to identify novel variants of CAPN3 gene in LGMDR1 patients. RESULTS Thirty-four patients with clinical and histopathological features suggestive of LGMD were studied. The muscle biopsy samples were evaluated using Enzyme histochemistry, Immunohistochemistry, followed by Western Blotting and Sanger sequencing. Out of 34 LGMD cases, 13 patients were diagnosed as LGMDR1 by immunoblot analysis, demonstrating reduced or absent calpain-3 protein as compared to controls. Variants of CAPN3 gene were also found and pathogenicity was predicted using in-silico prediction tools. The CAPN3 gene variants found in this study, included, two missense variants [CAPN3: c.1189T > C, CAPN3: c.2338G > C], one insertion-deletion [c.1688delinsTC], one splice site variant [c.2051-1G > T], and one nonsense variant [c.1939G > T; p.Glu647Ter]. CONCLUSIONS We confirmed 6 patients as LGMDR1 (with CAPN3 variants) from our cohort and calpain-3 protein expression was significantly reduced by immunoblot analysis as compared to control. Besides the previously known variants, our study found two novel variants in CAPN3 gene by Sanger sequencing-based approach indicating that genetic variants in LGMDR1 patients may help to understand the etiology of the disease and future prognostication.
Collapse
Affiliation(s)
- Sukanya Banerjee
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| | - Bishan Dass Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India.
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| | - Manoj K Goyal
- Department of Neurology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| |
Collapse
|
3
|
Mianesaz H, Ghalamkari S, Salehi M, Behnam M, Hosseinzadeh M, Basiri K, Ghasemi M, Sedghi M, Ansari B. Causative variants linked with limb girdle muscular dystrophy in an Iranian population: 6 novel variants. Mol Genet Genomic Med 2022; 11:e2101. [PMID: 36374152 PMCID: PMC9938754 DOI: 10.1002/mgg3.2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy (LGMD) is a non-syndromic muscular dystrophy caused by variations in the genes involved in muscle structure, function and repair. The heterogeneity in the severity, progression, age of onset, and causative genes makes next-generation sequencing (NGS) a necessary approach for the proper diagnosis of LGMD. METHODS In this article, 26 Iranian patients with LGMD criteria were diagnosed with disease variants in the genes encoding calpain3, dysferlin, sarcoglycans and Laminin α-2. Patients were referred to the hospital with variable distribution of muscle wasting and progressive weakness in the body. The symptoms along with biochemical and EMG tests were suggestive of LGMD; thus the genomic DNA of patients were investigated by whole-exome sequencing including flanking intronic regions. The target genes were explored for the disease-causing variants. Moreover, the consequence of the amino acid alterations on proteins' secondary structure and function was investigated for a better understanding of the pathogenicity of variants. Variants were sorted based on the genomic region, type and clinical significance. RESULTS In a comprehensive investigation of previous clinical records, 6 variations were determined as novel, including c.1354-2 A > T and c.3169_3172dupCGGC in DYSF, c.568 G > T in SGCD, c.7243 C > T, c.8662_8663 insT and c. 4397G > C in LAMA2. Some of the detected variants were located in functional domains and/or near to the post-translational modification sites, altering or removing highly conserved regions of amino acid sequence.
Collapse
Affiliation(s)
- Hamidreza Mianesaz
- Department of Human Genetics, Medical SchoolUniversity of DebrecenDebrecenHungary,Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Safoura Ghalamkari
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran,Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Mansoor Salehi
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran,Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Mahdiyeh Behnam
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran,Student Research CommitteeSemnan University of Medical ScienceSemnanIran
| | - Majid Hosseinzadeh
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran,Medical Genetics Laboratory, Alzahra University HospitalIsfahan University of Medical SciencesIsfahanIran
| | - Keivan Basiri
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical ScienceTehranIran,Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Majid Ghasemi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical ScienceTehranIran,Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University HospitalIsfahan University of Medical SciencesIsfahanIran,Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical ScienceTehranIran
| | - Behnaz Ansari
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran,Isfahan Neuroscience Research Center, ALzahra Research InstituteIsfahan University of Medical ScienceIsfahanIran
| |
Collapse
|
4
|
Ganaraja VH, Polavarapu K, Bardhan M, Preethish-Kumar V, Leena S, Anjanappa RM, Vengalil S, Nashi S, Arunachal G, Gunasekaran S, Mohan D, Raju S, Unnikrishnan G, Huddar A, Ravi-Kiran V, Thomas PT, Nalini A. Disease Progression and Mutation Pattern in a Large Cohort of LGMD R1/LGMD 2A Patients from India. Glob Med Genet 2021; 9:34-41. [PMID: 35169782 PMCID: PMC8837411 DOI: 10.1055/s-0041-1736567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/18/2021] [Indexed: 10/31/2022] Open
Abstract
AbstractCalpainopathy is caused by mutations in the CAPN3. There is only one clinical and genetic study of CAPN3 from India and none from South India. A total of 72 (male[M]:female [F] = 34:38) genetically confirmed probands from 72 independent families are included in this study. Consanguinity was present in 54.2%. The mean age of onset and duration of symptoms are 13.5 ± 6.4 and 6.3 ± 4.7 years, respectively. Positive family history occurred in 23.3%. The predominant initial symptoms were proximal lower limb weakness (52.1%) and toe walking (20.5%). At presentation, 97.2% had hip girdle weakness, 69.4% had scapular winging, and 58.3% had contractures. Follow-up was available in 76.4%, and 92.7% were ambulant at a mean age of 23.7 ± 7.6 years and duration of 4.5 years, remaining 7.3% became wheelchair-bound at 25.5 ± 5.7 years of age (mean duration = 13.5 ± 4.6), 4.1% were aged more than 40 years (duration range = 5–20). The majority remained ambulant 10 years after disease onset. Next-generation sequencing (NGS) detected 47 unique CAPN3 variants in 72 patients, out of which 19 are novel. Missense variants were most common occurring in 59.7% (homozygous = 29; Compound heterozygous = 14). In the remaining 29 patients (40.3%), at least one suspected loss of function variant was present. Common recurrent variants were c.2051–1G > T and c.2338G > C in 9.7%, c.1343G > A, c.802–9G > A, and c.1319G > A in 6.9% and c.1963delC in 5.5% of population. Large deletions were observed in 4.2%. Exon 10 mutations accounted for 12 patients (16.7%). Our study highlights the efficiency of NGS technology in screening and molecular diagnosis of limb-girdle muscular dystrophy with recessive form (LGMDR1) patients in India.
Collapse
Affiliation(s)
- Valakunja H. Ganaraja
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, The Ottawa Hospital, Ottawa, Canada
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Shingavi Leena
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ram M. Anjanappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, The Ottawa Hospital, Ottawa, Canada
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Swetha Gunasekaran
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dhaarini Mohan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sanita Raju
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Valasani Ravi-Kiran
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Priya T. Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Pathak P, Sharma MC, Jha P, Sarkar C, Faruq M, Jha P, Suri V, Bhatia R, Singh S, Gulati S, Husain M. Mutational Spectrum of CAPN3 with Genotype-Phenotype Correlations in Limb Girdle Muscular Dystrophy Type 2A/R1 (LGMD2A/LGMDR1) Patients in India. J Neuromuscul Dis 2021; 8:125-136. [PMID: 33337384 DOI: 10.3233/jnd-200547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Limb girdle muscular dystrophy recessive type 1 (LGMDR1, Previously LGMD2A) is characterized by inactivating mutations in CAPN3. Despite the significant burden of muscular dystrophy in India, and particularly of LGMDR1, its genetic characterization and possible phenotypic manifestations are yet unidentified. MATERIAL AND METHODS We performed bidirectional CAPN3 sequencing in 95 LGMDR1 patient samples characterized by calpain-3 protein analysis, and these findings were correlated with clinical, biochemical and histopathological features. RESULTS We identified 84 (88.4%) cases of LGMDR1 harboring 103 CAPN3 mutations (71 novel and 32 known). At least two mutant alleles were identified in 79 (94.2%) of patients. Notably, 76% exonic variations were enriched in nine CAPN3 exons and overall, 41 variations (40%) correspond to only eight exonic and intronic mutations. Patients with two nonsense/out of frame/splice-site mutations showed significant loss of calpain-3 protein as compared to those with two missense/inframe mutations (P = 0.04). We observed a slow progression of disease and less severity in our patients compared to European population. Rarely, presenting clinical features were atypical, and mimicked other muscle diseases like FSHMD, distal myopathy and metabolic myopathies. CONCLUSION This is first systematic study to characterize the genetic framework of LGMDR1 in the Indian population. Preliminary calpain-3 immunoblot screening serves well to direct genetic testing. Our findings prioritized nine CAPN3 exons for LGMDR1 diagnosis in our population; therefore, a targeted-sequencing panel of nine exons could serve well for genetic diagnosis, carrier testing, counseling and clinical trial feasibility study in LGMDR1 patients in India.
Collapse
Affiliation(s)
- Pankaj Pathak
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.,Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India.,Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Jha
- CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed Faruq
- CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Prerana Jha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Bhatia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Sumit Singh
- Department of Neurology, Medanta, Gurgaon, Haryana, India
| | - Sheffali Gulati
- Department of Paediatric Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
6
|
El-Khoury R, Traboulsi S, Hamad T, Lamaa M, Sawaya R, Ahdab-Barmada M. Divergent Features of Mitochondrial Deficiencies in LGMD2A Associated With Novel Calpain-3 Mutations. J Neuropathol Exp Neurol 2019; 78:88-98. [PMID: 30500922 DOI: 10.1093/jnen/nly113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Limb girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized by progressive muscle weakness and wasting. LGMD2A is caused by mutations in the calpain-3 gene (CAPN3) that encodes a Ca2+-dependent cysteine protease predominantly expressed in the skeletal muscle. Underlying pathological mechanisms have not yet been fully elucidated. Mitochondrial abnormalities have been variably reported in human subjects with LGMD2A and were more systematically evaluated in CAPN3-knocked out mouse models. We have combined histochemical, immunohistochemical, molecular, biochemical, and ultrastructural analyses in our study in order to better outline mitochondrial features in 2 LGMD2A patients with novel CAPN3-associated mutations. Both patients underwent detailed clinical evaluations, followed by muscle biopsies from the quadriceps muscles. The diagnosis of LGMD2A in both patients was first suspected on the basis of a typical clinical localization of the muscle weakness, and confirmed by molecular investigations. Two novel homozygous mutations, c.2242C>G (p.Arg748Gly) and c.291C>A (p.Phe97Leu) were identified: c.2242C>G (p.Arg748Gly) mutation was associated with a significant mitochondrial mass depletion and myofibrillar disruption in the first patient, while c.291C>A (p.Phe97Leu) mutation was accompanied by reactive mitochondrial proliferation with ragged-red fibers in the second patient. Our results delineate CAPN3 mutation-specific patterns of mitochondrial dysfunction and their ultrastructural characteristics in LGMD2A.
Collapse
Affiliation(s)
- Riyad El-Khoury
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sahar Traboulsi
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tarek Hamad
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maher Lamaa
- Department of Pediatrics, Al Bahman Hospital, Beirut, Lebanon
| | - Raja Sawaya
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mamdouha Ahdab-Barmada
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
7
|
PERIC STOJAN, STEVANOVIC JELENA, JOHNSON KATHERINE, KOSAC ANA, PERIC MARINA, BRANKOVIC MARIJA, MARJANOVIC ANA, JANKOVIC MILENA, BANKO BOJAN, MILENKOVIC SANJA, DURDIC MILICA, BOZOVIC IVO, GLUMAC JELENANIKODINOVIC, LAVRNIC DRAGANA, MAKSIMOVIC RUZICA, MILIC-RASIC VEDRANA, RAKOCEVIC-STOJANOVIC VIDOSAVA. Phenotypic and genetic spectrum of patients with limb-girdle muscular dystrophy type 2A from Serbia. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2019; 38:163-171. [PMID: 31788660 PMCID: PMC6859413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Limb-girdle muscular dystrophy (LGMD) type 2A (calpainopathy) is an autosomal recessive disease caused by mutation in the CAPN3 gene. The aim of this study was to examine genetic and phenotypic features of Serbian patients with calpainopathy. The study comprised 19 patients with genetically confirmed calpainopathy diagnosed at the Neurology Clinic, Clinical Center of Serbia and the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia during a ten-year period. Eighteen patients in this cohort had c.550delA mutation, with nine of them being homozygous. In majority of the patients, disease started in childhood or early adulthood. The disease affected shoulder girdle - upper arm and pelvic girdle - thigh muscles with similar frequency, with muscles of lower extremities being more severely impaired. Facial and bulbar muscles were spared. All patients in this cohort, except two, remained ambulant. None of the patients had cardiomyopathy, while 21% showed mild conduction defects. Respiratory function was mildly impaired in 21% of patients. Standard muscle histopathology showed myopathic and dystrophic pattern. In conclusion, the majority of Serbian LGMD2A patients have the same mutation and similar phenotype.
Collapse
Affiliation(s)
- STOJAN PERIC
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - JELENA STEVANOVIC
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - KATHERINE JOHNSON
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - ANA KOSAC
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | - MARINA PERIC
- Mother and Child Health Care Institute, Belgrade, Serbia
| | - MARIJA BRANKOVIC
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - ANA MARJANOVIC
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - MILENA JANKOVIC
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - BOJAN BANKO
- Center for Magnetic Resonance Imaging, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | | | - MILICA DURDIC
- Center for Magnetic Resonance Imaging, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - IVO BOZOVIC
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | | | - DRAGANA LAVRNIC
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - RUZICA MAKSIMOVIC
- Center for Magnetic Resonance Imaging, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - VEDRANA MILIC-RASIC
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | - VIDOSAVA RAKOCEVIC-STOJANOVIC
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia,Address for correspondence: Vidosava Rakocevic-Stojanovic, Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade 6, Dr. Subotic Street, 11 000 Belgrade, Serbia. Tel. +381 64 2228779. Fax +381 11 2684577. E-mail:
| |
Collapse
|
8
|
Oliveira Santos M, Ninitas P, Conceição I. Severe limb-girdle muscular dystrophy 2A in two young siblings from Guinea-Bissau associated with a novel null homozygous mutation in CAPN3 gene. Neuromuscul Disord 2018; 28:1003-1005. [PMID: 30415788 DOI: 10.1016/j.nmd.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Limb-girdle muscular dystrophy 2A (LGMD2A) or calpainopathy is the most common type of LGMD worldwide, representing about 30-40% of all described cases. Nevertheless, its prevalence in sub-Saharan African countries is unknown. We report two young siblings from Guinea-Bissau with recessive calpainopathy due to novel null homozygous c.1702Gdup mutation in CAPN3 gene. Their phenotype was quite aggressive concerning limb-girdle atrophy and muscle weakness as well as respiratory involvement. The proband needed nocturnal non-invasive ventilation at the age of 32, and his 33-year-old affected sister succumbed to an acute respiratory arrest after an intercurrent infection. This is the first description of calpainopathy in the sub-Saharian African region. Although there is no consistent genotype-phenotype correlation in calpainopathy, the new null homozygous mutation found in the CAPN3 gene may be associated with the particularly severe phenotype observed in our patients.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-035 Lisbon, Portugal; Faculty of Medicine, Institute of Physiology Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-035 Lisbon, Portugal.
| | - Pedro Ninitas
- Department of Imagiology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Isabel Conceição
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-035 Lisbon, Portugal; Faculty of Medicine, Institute of Physiology Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-035 Lisbon, Portugal
| |
Collapse
|
9
|
Molecular genetic study of Calpainopathy in Iran. Gene 2018; 677:259-265. [PMID: 30056071 DOI: 10.1016/j.gene.2018.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Calpainopathy is an autosomal recessive form of limb girdle muscular dystrophies (LGMDs) caused by mutations in the CAPN3 gene. CAPN3 is a Ca2+-dependent cystein protease consisting of 821 amino acids. LGMD is a highly heterogeneous disorder and mutation identification of this disease by Sanger sequencing of all genes is expensive and time consuming. Using autozygosity mapping is an effective approach to address this issue. METHODS We used two sets of multiplex STR (Short tandem repeat) markers linked to CAPN3, DYSF, SGCA, SGCB, SGCG, SGCD genes following sequencing of the CAPN3 gene. In silico analysis and mutation detection in one hundred ethnically matched healthy individuals were carried out to determine the pathogenicity of novel mutations. Sequence variant interpretation was performed using the American College of Medical Genetics and Genomics (ACMG) guideline. RESULTS Sixteen out of 50 families linked to the CAPN3 gene. In this study, mutations were found in 14 out of 16 families including 4 novel (c.1894A > T, c.567delG, c.2254-2256delAAC, and c.2373C > T) and 9 previously reported mutations consisting of 5 missense (c.2105C > T, c.2243G > A, c.1714C > T, c.291C > A, c.956C > T), 3 splice site (c.2380 + 2 T > G, c.946-2A > G, c.380G > A), and one indel (c.2257delinsAA) mutations. DISCUSSION The c.2105C > T was found to be the most frequent mutation in this study. The results of this study revealed that most cases with splicing, frame shift and nonsense mutations experienced more severe clinical manifestations. Nonetheless, this should be confirmed by further studies on larger sample size.
Collapse
|
10
|
Dorobek M, Ryniewicz B, Kabzińska D, Fidziańska A, Styczyńska M, Hausmanowa-Petrusewicz I. The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population. Genet Test Mol Biomarkers 2015; 19:637-40. [DOI: 10.1089/gtmb.2015.0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Małgorzata Dorobek
- Department of Neurology, Central Clinical Hospital of the Ministry of Interior in Warsaw, Warsaw, Poland
| | | | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Fidziańska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Styczyńska
- Department of Neurology, Central Clinical Hospital of the Ministry of Interior in Warsaw, Warsaw, Poland
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
11
|
Fanin M, Angelini C. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls. Muscle Nerve 2015; 52:163-73. [PMID: 25900067 DOI: 10.1002/mus.24682] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 12/20/2022]
Abstract
Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurosciences, Biomedical Campus "Pietro d'Abano," via Giuseppe Orus 2B, 35129, Padova, Italy
| | | |
Collapse
|
12
|
Rocha CT, Hoffman EP. Limb-girdle and congenital muscular dystrophies: current diagnostics, management, and emerging technologies. Curr Neurol Neurosci Rep 2010; 10:267-76. [PMID: 20467841 DOI: 10.1007/s11910-010-0119-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The muscular dystrophies show muscle degeneration and regeneration (necrotizing myopathy) on muscle biopsy, typically associated with elevated serum creatine kinase, and muscle weakness. In 1986, the first causative gene was identified for the most prevalent and best-characterized form of muscular dystrophy, Duchenne muscular dystrophy. Over the past 25 years, the number of other genes determined to cause different subtypes has grown rapidly. This review gives a synopsis of the 45 genetically defined types of muscular dystrophies and describes the clinical, pathologic, and molecular aspects of each disease. DNA diagnosis remains the most sensitive and specific method for differential diagnosis, but molecular diagnostics can be expensive and complex (because of multiple genes at multiple testing facilities) and reimbursement may be challenging to obtain. However, emerging DNA sequencing technologies (eg, single-molecule third-generation sequencing units) promise to dramatically reduce the complexity and costs of DNA diagnostics. Treatment for nearly all forms remains supportive and is aimed at preventing complications. However, several promising approaches have entered clinical trials, providing tangible hope that quality of life will improve for many patients in the near future.
Collapse
Affiliation(s)
- Carolina Tesi Rocha
- Research Center for Genetic Medicine, Division of Neurology, Department of Pediatrics, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA.
| | | |
Collapse
|
13
|
Fanin M, Nascimbeni AC, Tasca E, Angelini C. How to tackle the diagnosis of limb-girdle muscular dystrophy 2A. Eur J Hum Genet 2008; 17:598-603. [PMID: 18854869 DOI: 10.1038/ejhg.2008.193] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Limb-girdle muscular dystrophy (LGMD) 2A (calpainopathy) is the most frequent form of LGMD in many European countries. The increasing demand for a molecular diagnosis makes the identification of strategies to improve gene mutation detection crucial. We conducted both a quantitative analysis of calpain-3 protein in 519 muscles from patients with unclassified LGMD, unclassified myopathy and hyperCKemia, and a functional assay of calpain-3 autolytic activity in 108 cases with LGMD and normal protein quantity. Subsequently, screening of CAPN3 gene mutations was performed using allele-specific tests and simplified SSCP analysis. We diagnosed a total of 94 LGMD2A patients, carrying 66 different mutations (six are newly identified). The probability of diagnosing calpainopathy was very high in patients showing either a quantitative (80%) or a functional calpain-3 protein defect (88%). Our data show a high predictive value for reduced-absent calpain-3 or lost autolytic activity. These biochemical assays are powerful tools for otherwise laborious genetic screening of cases with a high probability of being primary calpainopathy. Our multistep diagnostic approach is rational and highly effective. This strategy has improved the detection rate of the disease and our extension of screening to presymptomatic phenotypes (hyperCKemia) has allowed us to obtain early diagnoses, which has important consequences for patient care and genetic counseling.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurosciences, University of Padova, Venetian Institute of Molecular Medicine, Padova, Italy.
| | | | | | | |
Collapse
|
14
|
Guglieri M, Magri F, D'Angelo MG, Prelle A, Morandi L, Rodolico C, Cagliani R, Mora M, Fortunato F, Bordoni A, Del Bo R, Ghezzi S, Pagliarani S, Lucchiari S, Salani S, Zecca C, Lamperti C, Ronchi D, Aguennouz M, Ciscato P, Di Blasi C, Ruggieri A, Moroni I, Turconi A, Toscano A, Moggio M, Bresolin N, Comi GP. Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum Mutat 2008; 29:258-66. [PMID: 17994539 DOI: 10.1002/humu.20642] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limb girdle muscular dystrophies (LGMD) are characterized by genetic and clinical heterogeneity: seven autosomal dominant and 12 autosomal recessive loci have so far been identified. Aims of this study were to evaluate the relative proportion of the different types of LGMD in 181 predominantly Italian LGMD patients (representing 155 independent families), to describe the clinical pattern of the different forms, and to identify possible correlations between genotype, phenotype, and protein expression levels, as prognostic factors. Based on protein data, the majority of probands (n=72) presented calpain-3 deficiency; other defects were as follows: dysferlin (n=31), sarcoglycans (n=32), alpha-dystroglycan (n=4), and caveolin-3 (n=2). Genetic analysis identified 111 different mutations, including 47 novel ones. LGMD relative frequency was as follows: LGMD1C (caveolin-3) 1.3%; LGMD2A (calpain-3) 28.4%; LGMD2B (dysferlin) 18.7%; LGMD2C (gamma-sarcoglycan) 4.5%; LGMD2D (alpha-sarcoglycan) 8.4%; LGMD2E (beta-sarcoglycan) 4.5%; LGMD2F (delta-sarcoglycan) 0.7%; LGMD2I (Fukutin-related protein) 6.4%; and undetermined 27.1%. Compared to Northern European populations, Italian patients are less likely to be affected with LGMD2I. The order of decreasing clinical severity was: sarcoglycanopathy, calpainopathy, dysferlinopathy, and caveolinopathy. LGMD2I patients showed both infantile noncongenital and mild late-onset presentations. Age at disease onset correlated with variability of genotype and protein levels in LGMD2B. Truncating mutations determined earlier onset than missense substitutions (20+/-5.1 years vs. 36.7+/-11.1 years; P=0.0037). Similarly, dysferlin absence was associated with an earlier onset when compared to partial deficiency (20.2+/-standard deviation [SD] 5.2 years vs. 28.4+/-SD 11.2 years; P=0.014).
Collapse
Affiliation(s)
- Michela Guglieri
- Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Krahn M, Pécheux C, Chapon F, Béroud C, Drouin-Garraud V, Laforet P, Romero NB, Penisson-Besnier I, Bernard R, Urtizberea JA, Leturcq F, Lévy N. Transcriptional explorations of CAPN3 identify novel splicing mutations, a large-sized genomic deletion and evidence for messenger RNA decay. Clin Genet 2007; 72:582-92. [PMID: 17979987 DOI: 10.1111/j.1399-0004.2007.00906.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the gene encoding calpain-3 (CAPN3) cause autosomal recessive limb-girdle muscular dystrophy type 2A (LGMD2A) and idiopathic eosinophilic myositis. Accurate diagnosis and genetic counselling are based on the identification of disease-causing mutations on both alleles of CAPN3 in the patients. In the present study, we used transcriptional analysis as a complementary approach for patients suspected of being affected with LGMD2A, in whom initial denaturing high-performance liquid chromatography genomic mutation screening evidenced no or only one CAPN3 mutation obviously considered as disease causing. This allowed to identify and characterize cDNA deletions. Further genomic analysis allowed to determine the origin of these deletions, either as splicing defects caused by intronic mutations or as an internal multi-exonic deletion. In particular, we report two novel CAPN3 mutations (c.1745 + 4_1745 + 7delAGTG in IVS13 and c.2185-16A>G in IVS20) and a recurrent large-sized genomic deletion including exons 2-8 for which genomic breakpoints have been characterized. In addition, our results indicate nonsense-mediated messenger RNA decay as a mechanism for under-expression of CAPN3 associated to some specific variations.
Collapse
Affiliation(s)
- M Krahn
- Département de Génétique Médicale, Hôpital d'enfants de la Timone, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cuerrier D, Moldoveanu T, Campbell RL, Kelly J, Yoruk B, Verhelst SHL, Greenbaum D, Bogyo M, Davies PL. Development of Calpain-specific Inactivators by Screening of Positional Scanning Epoxide Libraries. J Biol Chem 2007; 282:9600-9611. [PMID: 17218315 DOI: 10.1074/jbc.m610372200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Calpains are calcium-dependent proteases that are required for numerous intracellular processes but also play an important role in the development of pathologies such as ischemic injury and neurodegeneration. Many current small molecule calpain inhibitors also inhibit other cysteine proteases, including cathepsins, and need improved selectivity. The specificity of inhibition of several calpains and papain was profiled using synthetic positional scanning libraries of epoxide-based compounds that target the active-site cysteine. These peptidomimetic libraries probe the P4, P3, and P2 positions, display (S,S)- or (R,R)-epoxide stereochemistries, and incorporate both natural and non-natural amino acids. To facilitate library screening, an SDS-PAGE assay that measures the extent of hydrolysis of an inactive recombinant m-calpain was developed. Individual epoxide inhibitors were synthesized guided by calpain-specific preferences observed from the profiles and tested for inhibition against calpain. The most potent compounds were assayed for specificity against cathepsins B, L, and K. Several compounds demonstrated high inhibition specificity for calpains over cathepsins. The best of these inhibitors, WRH(R,R), irreversibly inactivates m- and mu-calpain rapidly (k(2)/K(i) = 131,000 and 16,500 m(-1) s(-1), respectively) but behaves exclusively as a reversible and less potent inhibitor toward the cathepsins. X-ray crystallography of the proteolytic core of rat mu-calpain inactivated by the epoxide compounds WR gamma-cyano-alpha-aminobutyric acid (S,S) and WR allylglycine (R,R) reveals that the stereochemistry of the epoxide influences positioning and orientation of the P2 residue, facilitating alternate interactions within the S2 pocket. Moreover, the WR gamma-cyano-alpha-aminobutyric acid (S,S)-complexed structure defines a novel hydrogen-bonding site within the S2 pocket of calpains.
Collapse
Affiliation(s)
- Dominic Cuerrier
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tudor Moldoveanu
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L Campbell
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jacqueline Kelly
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Bilge Yoruk
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Steven H L Verhelst
- Department of Pathology, Stanford University School of Medicine, Stanford, Califorina 94305
| | - Doron Greenbaum
- Department of Pathology, Stanford University School of Medicine, Stanford, Califorina 94305
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, Califorina 94305
| | - Peter L Davies
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada; Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
18
|
Fanin M, Nascimbeni AC, Angelini C. Screening of calpain-3 autolytic activity in LGMD muscle: a functional map of CAPN3 gene mutations. J Med Genet 2006; 44:38-43. [PMID: 16971480 PMCID: PMC2597906 DOI: 10.1136/jmg.2006.044859] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The diagnosis of calpainopathy is obtained by identifying calpain-3 protein deficiency or CAPN3 gene mutations. However, in many patients with limb girdle muscular dystrophy type 2A (LGMD2A), the calpain-3 protein quantity is normal because loss-of-function mutations cause its enzymatic inactivation. The identification of such patients is difficult unless a functional test suggests pursuing a search for mutations. MATERIALS AND METHODS A functional in vitro assay, which was able to test calpain-3 autolytic function, was used to screen a large series of muscle biopsy specimens from patients with unclassified LGMD/hyperCKaemia who have previously shown normal calpain-3 protein quantity. RESULTS Of 148 muscle biopsy specimens tested,17 samples (11%) had lost normal autolytic function. CAPN3 gene mutations were identified in 15 of 17 patients (88%), who account for about 20% of the total patients with LGMD2A diagnosed in our series. CONCLUSIONS The loss of calpain-3 autolytic activity is highly predictive of primary calpainopathy, and the use of this test as part of calpainopathy diagnosis would improve the rate of disease detection markedly. This study provides the first evidence of the pathogenetic effect of specific CAPN3 gene mutations on the corresponding protein function in LGMD2A muscle and offers new insights into the structural-functional relationship of the gene and protein regions that are crucial for the autolytic activity of calpain-3.
Collapse
MESH Headings
- Age of Onset
- Amino Acid Substitution
- Base Sequence
- Biopsy
- Calpain/chemistry
- Calpain/genetics
- Calpain/metabolism
- Exons
- Humans
- Models, Molecular
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscular Dystrophies, Limb-Girdle/diagnosis
- Muscular Dystrophies, Limb-Girdle/enzymology
- Muscular Dystrophies, Limb-Girdle/genetics
- Muscular Dystrophies, Limb-Girdle/pathology
- Mutation, Missense
- Polymorphism, Single-Stranded Conformational
- Protein Structure, Tertiary
- Retrospective Studies
Collapse
Affiliation(s)
- M Fanin
- Department of Neurosciences, University of Padova, Venetian Institute of Molecular Medicine, Padova, Italy.
| | | | | |
Collapse
|
19
|
Kramerova I, Beckmann JS, Spencer MJ. Molecular and cellular basis of calpainopathy (limb girdle muscular dystrophy type 2A). Biochim Biophys Acta Mol Basis Dis 2006; 1772:128-44. [PMID: 16934440 DOI: 10.1016/j.bbadis.2006.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/07/2006] [Accepted: 07/13/2006] [Indexed: 11/28/2022]
Abstract
Limb girdle muscular dystrophy type 2A results from mutations in the gene encoding the calpain 3 protease. Mutations in this disease are inherited in an autosomal recessive fashion and result in progressive proximal skeletal muscle wasting but no cardiac abnormalities. Calpain 3 has been shown to proteolytically cleave a wide variety of cytoskeletal and myofibrillar proteins and to act upstream of the ubiquitin-proteasome pathway. In this review, we summarize the known biochemical and physiological features of calpain 3 and hypothesize why mutations result in disease.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology and Pediatrics and UCLA Duchenne Muscular Dystrophy Research Center, University of California, Los Angeles, Neuroscience Research Building, 635 Young Dr. South, Los Angeles, CA 90095-7334, USA
| | | | | |
Collapse
|
20
|
Comerlato EA, Scola RH, Werneck LC. Limb-girdle muscular dystrophy: an immunohistochemical diagnostic approach. ARQUIVOS DE NEURO-PSIQUIATRIA 2006; 63:235-45. [PMID: 16100969 DOI: 10.1590/s0004-282x2005000200009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The limb-girdle muscle dystrophy (LGMD) represents a heterogeneous group of muscular diseases with dominant and recessive inheritance, individualized by gene mutation. A group of 56 patients, 32 males and 24 females, with suggestive LGMD diagnosis were submitted to clinical evaluation, serum muscle enzymes, electromyography, muscle biopsy, and the immunoidentification (ID) of sarcoglycans (SG) alpha, beta, gamma and delta, dysferlin and western blot for calpain-3. All the patients had normal ID for dystrophin (rod domain, carboxyl and amine terminal). The alpha-SG was normal in 42 patients, beta-SG in 28, beta-SG in 45, deltaSG in 32, dysferlin in 37 and calpain-3 in 9. There was a reduction in the alpha-SG in 7 patients, beta-SG in 4, gamma-SG in 2, and delta-SG in 8. There was deficiency of alpha-SG in 7 patients, beta-SG in 6, gamma-SG in 9, delta-SG in 5, dysferlin in 8, and calpain-3 in 5. The patients were grouped according the ID as sarcoglycans deficiency 18 cases, dysferlin deficiency 8 cases and calpain-3 deficiency 5 cases. Only the sarcoglycans deficiency group showed calf hypertrophy. The dysferlin deficiency group was more frequent in females and the onset was later than sarcoglycan and calpain-3 deficiency groups. The calpain-3 deficiency group occurred only in males and showed an earlier onset and weaker muscular strength.
Collapse
Affiliation(s)
- Enio Alberto Comerlato
- Neuromuscular/Neurology Division, Internal Medicine Departament, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba PR, Brazil
| | | | | |
Collapse
|
21
|
Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J, Zhao P, Sartorelli V, Seo J, Pegoraro E, Angelini C, Shneiderman B, Escolar D, Chen YW, Winokur ST, Pachman LM, Fan C, Mandler R, Nevo Y, Gordon E, Zhu Y, Dong Y, Wang Y, Hoffman EP. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb–MyoD pathways in muscle regeneration. Brain 2006; 129:996-1013. [PMID: 16478798 DOI: 10.1093/brain/awl023] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations of lamin A/C (LMNA) cause a wide range of human disorders, including progeria, lipodystrophy, neuropathies and autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD). EDMD is also caused by X-linked recessive loss-of-function mutations of emerin, another component of the inner nuclear lamina that directly interacts with LMNA. One model for disease pathogenesis of LMNA and emerin mutations is cell-specific perturbations of the mRNA transcriptome in terminally differentiated cells. To test this model, we studied 125 human muscle biopsies from 13 diagnostic groups (125 U133A, 125 U133B microarrays), including EDMD patients with LMNA and emerin mutations. A Visual and Statistical Data Analyzer (VISDA) algorithm was used to statistically model cluster hierarchy, resulting in a tree of phenotypic classifications. Validations of the diagnostic tree included permutations of U133A and U133B arrays, and use of two probe set algorithms (MAS5.0 and MBEI). This showed that the two nuclear envelope defects (EDMD LMNA, EDMD emerin) were highly related disorders and were also related to fascioscapulohumeral muscular dystrophy (FSHD). FSHD has recently been hypothesized to involve abnormal interactions of chromatin with the nuclear envelope. To identify disease-specific transcripts for EDMD, we applied a leave-one-out (LOO) cross-validation approach using LMNA patient muscle as a test data set, with reverse transcription-polymerase chain reaction (RT-PCR) validations in both LMNA and emerin patient muscle. A high proportion of top-ranked and validated transcripts were components of the same transcriptional regulatory pathway involving Rb1 and MyoD during muscle regeneration (CRI-1, CREBBP, Nap1L1, ECREBBP/p300), where each was specifically upregulated in EDMD. Using a muscle regeneration time series (27 time points) we develop a transcriptional model for downstream consequences of LMNA and emerin mutations. We propose that key interactions between the nuclear envelope and Rb and MyoD fail in EDMD at the point of myoblast exit from the cell cycle, leading to poorly coordinated phosphorylation and acetylation steps. Our data is consistent with mutations of nuclear lamina components leading to destabilization of the transcriptome in differentiated cells.
Collapse
Affiliation(s)
- Marina Bakay
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sáenz A, Leturcq F, Cobo AM, Poza JJ, Ferrer X, Otaegui D, Camaño P, Urtasun M, Vílchez J, Gutiérrez-Rivas E, Emparanza J, Merlini L, Paisán C, Goicoechea M, Blázquez L, Eymard B, Lochmuller H, Walter M, Bonnemann C, Figarella-Branger D, Kaplan JC, Urtizberea JA, Martí-Massó JF, López de Munain A. LGMD2A: genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. ACTA ACUST UNITED AC 2005; 128:732-42. [PMID: 15689361 DOI: 10.1093/brain/awh408] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present here the clinical, molecular and biochemical findings from 238 limb-girdle muscular dystrophy type 2A (LGMD2A) patients, representing approximately 50% (238 out of 484) of the suspected calpainopathy cases referred for the molecular study of the calpain 3 (CAPN3) gene. The mean age at onset of LGMD2A patients was approximately 14 years, and the first symptoms occurred between 6 and 18 years of age in 71% of patients. The mean age at which the patients became wheelchair bound was 32.2 years, with 84% requiring the use of a wheelchair between the age of 21 and 40 years. There was no correlation between the age at onset and the time at which the patient became wheelchair bound, nor between the sex of the patient and the risk of becoming wheelchair bound. Of the cases where the CAPN3 gene was not affected, approximately 20% were diagnosed as LGMD2I muscular dystrophy, while facioscapulohumeral muscular dystrophy (FSHD) was uncommon in this sample. We identified 105 different mutations in the CAPN3 gene of which 50 have not been described previously. These were distributed throughout the coding region of the gene, although some exons remained free of mutations. The most frequent mutation was 2362AG-->TCATCT (exon 22), which was present in 30.7% of the chromosomes analysed (146 chromosomes). Other recurrent mutations described were N50S, 550DeltaA, G222R, IVS6-1G-->A, A483D, IVS17+1G-->T, 2069-2070DeltaAC, R748Q and R748X, each of which was found in >5 chromosomes. The type of mutation in the CAPN3 gene does not appear to be a risk factor for becoming dependent on a wheelchair at a determined age. However, in the cases with two null mutations, there were significantly fewer patients that were able to walk than in the group of patients with at least one missense mutation. Despite the fact that the results of phenotyping and western blot might be biased due to multiple referral centres, producing a diagnosis on the basis of the classical phenotype is neither sufficiently sensitive (86.7%) nor specific (69.3%), although western blot proved to be even less sensitive (52.5%) yet more specific (87.8%). In this case LGMD2I was a relevant cause of false-positive diagnoses. Considering both the clinical phenotype and the biochemical information together, the probability of correctly diagnosing a calpainopathy is very high (90.8%). However, if one of the analyses is lacking, the probability varies from 78.3 to 73.7% depending on the information available. When both tests are negative, the probability that the sample comes from a patient with LGMD2A was 12.2%.
Collapse
Affiliation(s)
- A Sáenz
- Unidad Experimental, Hospital Donostia, San Sebastián, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fanin M, Nascimbeni AC, Fulizio L, Angelini C. The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord 2005; 15:218-24. [PMID: 15725583 DOI: 10.1016/j.nmd.2004.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/22/2004] [Accepted: 11/24/2004] [Indexed: 11/27/2022]
Abstract
Limb-girdle muscular dystrophy 2A (LGMD2A) is considered to be the most frequent LGMD. Our study surveyed an area in northeastern Italy where an almost complete ascertainment was possible. To identify LGMD2A patients we used a new diagnostic approach, including several molecular and biochemical methods. In 84 screened patients from northeastern Italy, we identified 39 LGMD2A patients, the prevalence of LGMD2A being 9.47 per million. In the Venezia district it appears higher than in other districts of the Veneto region, and in the Friuli region it is three times higher than in Veneto, due to the recurrence of single mutation. Haplotype analysis suggested a founder effect. The population from Venezia and Friuli has a higher risk of being heterozygote for these two mutant alleles than people from the rest of northeastern Italy. Our results indicate that LGMD2A is one of the most frequent autosomal recessive disorders, thus finding its molecular characterization becoming increasingly important.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurosciences, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
24
|
Abstract
Limb girdle muscular dystrophies (LGMDs) are a genetically heterogeneous group of primary myopathies involving progressive weakness and wasting of the muscles in the hip and shoulder girdles, with distal spread to the bulbar or respiratory musculature in rare cases. Depending on the mode of genetic transmission, six autosomal dominant forms (LGMD1A-F, 10-25%) and ten autosomal recessive forms (LGMD2A-J, 75-90%) are currently known. The prevalence of LGMDs is 0.8/100,000. These conditions are caused by mutations in genes encoding for myotilin (5q31, LGMD1A), lamin A/C (1q11-q21.2, LGMD1B), caveolin-3 (3p25, LGMD1C), unknown proteins (7q, LGMD1D, 6q23, LGMD1E, 7q32.1-32.2., LGMD1F), calpain-3 (15q15.1-21.1, LGMD2A), dysferlin (2p13.3-13.1, LGMD2B), gamma-sarcoglycan (13q12, LGMD2C), alpha-sarcoglycan, also known as adhalin (17q12-q21.3, LGMD2D), beta-sarcoglycan (4q12, LGMD2E), delta-sarcoglycan (5q33-q34, LGMD2F), telethonin (17q11-q12, LGMD2G), E3-ubiquitin ligase (9q31-q34.1, LGMD2H), fukutin-related protein (19q13.3, LGMD2I), and titin (2q31, LGMD2J). Cardiac involvement has been described for LGMD1B-E, LGMD2C-G, and LGMD2I. The time of onset varies between early childhood and middle age. There is no male or female preponderance. Disease progression and life expectancy vary widely, even among different members of the same family. The diagnosis is based primarily on DNA analysis. The history, clinical neurological examinations, blood chemistry investigations, electromyography, and muscle biopsy also provide information that is helpful for the diagnosis. No causal therapy is currently available.
Collapse
Affiliation(s)
- J Finsterer
- Neurologische Abteilung, KA Rudolfstiftung, Wien, Osterreich.
| |
Collapse
|
25
|
Abstract
Calpains are calcium-modulated proteases which respond to Ca2+ signals by removing limited portions of protein substrates, thereby irreversibly modifying their function(s). Members of this protease family are present in a variety of organisms ranging from mammals to plants; some of them are ubiquitously expressed, while others are tissue specific. Although calpains are apparently involved in a multitude of physiological and pathological events, their functions are still poorly understood. In two cases, however, the alteration of a member of the calpain family has been clearly identified as being responsible for a human disease: the loss of function of calpain 3 causes limb girdle muscular dystrophy type 2A, and mutations in the gene coding for calpain 10 have been shown to correlate with non-insulin-dependent diabetes.
Collapse
Affiliation(s)
- Donata Branca
- Dipartimento di Chimica Biologica, Università di Padova and Venetian Institute of Molecular Medicine, Viale G. Colombo 3, 35121 Padua, Italy.
| |
Collapse
|
26
|
Chrobáková T, Hermanová M, Kroupová I, Vondrácek P, Maríková T, Mazanec R, Zámecník J, Stanek J, Havlová M, Fajkusová L. Mutations in Czech LGMD2A patients revealed by analysis of calpain3 mRNA and their phenotypic outcome. Neuromuscul Disord 2004; 14:659-65. [PMID: 15351423 DOI: 10.1016/j.nmd.2004.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 04/05/2004] [Accepted: 05/13/2004] [Indexed: 10/26/2022]
Abstract
Calpain3 (CAPN3, p94) is a muscle-specific nonlysosomal cysteine proteinase. Loss of proteolytic function or change of other properties of this enzyme (such as stability or ability to interact with other muscular proteins) is manifested as limb girdle muscular dystrophy type 2A (LGMD2A, calpainopathy). These pathological changes in properties of calpain3 are caused by mutations in the calpain3 gene. The fact that the human gene for calpain3 is quite long led us to analyse its coding sequence by reverse transcription-PCR followed by sequence analysis. This study reports nine mutations that we found by analysing mRNA of seven unrelated LGMD patients in the Czech Republic. Three of these mutations were novel, not described on the Leiden muscular dystrophy pages so far. Further, we observed a reduction of dysferlin in muscle membrane in five of our seven LGMD2A patients by immunohistochemical analysis of muscle sections.
Collapse
Affiliation(s)
- Tána Chrobáková
- Center of Molecular Biology and Gene Therapy, University Hospital Brno, Cernopolni 9, CZ-62500 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Canki-Klain N, Milic A, Kovac B, Trlaja A, Grgicevic D, Zurak N, Fardeau M, Leturcq F, Kaplan JC, Urtizberea JA, Politano L, Piluso G, Feingold J. Prevalence of the 550delA mutation in calpainopathy (LGMD 2A) in Croatia. Am J Med Genet A 2004; 125A:152-6. [PMID: 14981715 DOI: 10.1002/ajmg.a.20408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the calpain 3 (CAPN3) gene are responsible for limb-girdle muscular dystrophy (LGMD) type 2A. We report five causal mutations: 550delA, DeltaFWSAL, R541W, Y357X and R49H found on 45/50 of alleles studied in 25 unrelated families from Croatia. The 550delA mutation was present on 76% of CAPN3 chromosomes that led us to screen general population for this mutation; 532 random blood samples from three different regions were analyzed using allele-specific PCR. Four healthy 550delA heterozygous were found suggesting a frequency of 1 in 133. All four carriers detected originated from an island and mountain region close to the Adriatic Sea. These findings combined with haplotype analysis confirm that our general population is rather "closed" with a probable founder effect in some parts of the country. In addition, the high frequency of 550delA mutation found in some neighboring European countries together with the easy detection of the 550delA mutation should streamline genetic analysis, especially bearing in mind the geographic and ethnic origin of the patients. Our results, combined with published haplotype studies suggest that 550delA originated in the Eastern Mediterranean from which it has probably spread widely across Europe. Extending this study to other areas would help to address this epidemiological question. Our data are relevant to accurate genetic counseling and patient testing since we lack sensitive and specific biopsy screening methods for detecting patients with calpainopathy. Thus, detection of patients relies on the direct detection of gene mutation and our findings may be helpful in establishing diagnostic screening strategy.
Collapse
Affiliation(s)
- Nina Canki-Klain
- Croatian Institute for Brain Research, Zagreb University Medical School, Croatia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fanin M, Fulizio L, Nascimbeni AC, Spinazzi M, Piluso G, Ventriglia VM, Ruzza G, Siciliano G, Trevisan CP, Politano L, Nigro V, Angelini C. Molecular diagnosis in LGMD2A: Mutation analysis or protein testing? Hum Mutat 2004; 24:52-62. [PMID: 15221789 DOI: 10.1002/humu.20058] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Limb girdle muscular dystrophy (LGMD) type 2A (LGMD2A) is caused by mutations in the CAPN3 gene encoding for calpain-3, a muscle specific protease. While a large number of CAPN3 gene mutations have already been described in calpainopathy patients, the diagnosis has recently shifted from molecular genetics towards biochemical assay of defective protein. However, an estimate of sensitivity and specificity of protein analysis remains to be established. Thus, we first correlated protein and molecular data in our large LGMD2A patient population. By a preliminary immunoblot screening for calpain-3 protein of 548 unclassified patients with various phenotypes (LGMD, myopathy, or elevated levels of serum creatine kinase [hyperCKemia]), we selected 208 cases for CAPN3 gene mutation analysis: 69 had protein deficiency and 139 had normal expression. Mutation search was conducted using SSCP, denaturing high performance liquid chromatography (DHPLC), amplification refractory mutation system (ARMS-PCR), and direct sequencing methods. We identified 58 LGMD2A mutant patients: 46 (80%) had a variable degree of protein deficiency and 12 (20%) had normal amount of calpain-3. We calculated that the probability of having LGMD2A is very high (84%) when patients show a complete calpain-3 deficiency and progressively decreases with the amount of protein; this new data offers an important tool for genetic counseling when only protein data are available. A total of 37 different CAPN3 gene mutations were detected, 10 of which are novel. In our population, 87% of mutant alleles were concentrated in seven exons (exons 1, 4, 5, 8, 10, 11, and 21) and 61% correspond to only eight mutations, indicating the regions where future molecular analysis could be restricted. This study reports the largest collection of LGMD2A patients so far in which both protein and gene mutations were obtained to draw genotype-protein-phenotype correlations and provide insights into a critical protein domain.
Collapse
Affiliation(s)
- M Fanin
- Department of Neurosciences, University of Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fanin M, Nascimbeni AC, Fulizio L, Trevisan CP, Meznaric-Petrusa M, Angelini C. Loss of calpain-3 autocatalytic activity in LGMD2A patients with normal protein expression. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1929-36. [PMID: 14578192 DOI: 10.1016/s0002-9440(10)63551-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The diagnosis of limb girdle muscular dystrophy (LGMD) type 2A (due to mutations in the gene encoding for calpain-3) is currently based on protein analysis, but mutant patients with normal protein expression have also been identified. In this study we investigated 150 LGMD patients with normal calpain-3 protein expression, identified gene mutations by an allele-specific polymerase chain reaction test, and analyzed the mutant calpain-3 catalytic activity. Four different mutations were found in eight patients (5.5%): a frame-shifting deletion (550 A del) and three missense (R490Q, R489Q, R490W). Patients with normal calpain-3 protein expression on Western blot are a considerable proportion (20%) of our total LGMD2A population. While in control muscle the calpain-3 Ca(++)-dependent autocatalytic activity was evident within 5 minutes and was prevented by ethylene diaminetetraacetic acid, in all mutant patient samples the protein was not degraded, indicating that the normal autocatalytic function had been lost. By this new functional test, we show that conventional protein diagnosis fails to detect some mutant proteins, and prove the pathogenetic role of R490Q, R489Q, R490W missense mutations. We suggest that these mutations impair protein activity by affecting interdomain protein interaction, or reduce autocatalytic activity by lowering the Ca(++) sensitivity.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurological and Psychiatric Sciences, University of Padua, via Giustiniani 5, 35128 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Wicklund MP, Mendell JR. The limb girdle muscular dystrophies: our ever-expanding knowledge. J Clin Neuromuscul Dis 2003; 5:12-28. [PMID: 19078718 DOI: 10.1097/00131402-200309000-00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The limb girdle muscular dystrophies (LGMDs) represent a genetically diverse group of disorders. Currently, chromosomal loci are known for at least 5 autosomal-dominant and 10 autosomal-recessive subgroups. In 13 of these, recognized genes and protein products generate an assortment of phenotypes, some unique and many overlapping. In some disorders, novel clinical features are sufficiently distinct so as to proffer clues to the diagnosis of a specific LGMD subtype. An armamentarium of laboratory tools is required to confirm specific subtypes of LGMD. These might only be available in neuromuscular centers specializing in this form of dystrophy. Currently, supportive therapy is the predominant means of treatment, but further understanding of unique pathogenic mechanisms holds promise for the future.
Collapse
Affiliation(s)
- Matthew P Wicklund
- From the Department of Neurology, Wilford Hall Medical Center, Lackland Air Force Base, Texas (Dr Wicklund); and the Department of Neurology, The Ohio State University, Columbus, Ohio (Dr Mendell)
| | | |
Collapse
|
31
|
Abstract
In the last twenty years, the genetic basis for most of the inherited myopathies and muscular dystrophies has been unveiled. Diseases have been found to result from loss of function of structural components of the muscle basal lamina (e.g., MCD1A), sarcolemma (e.g., the sarcoglycanopathies), nucleus (e.g., EDMD) and sarcomere (e.g., the nemaline myopathies). A few have been associated with abnormalities in the genes for muscle enzymes (e.g., calpain and fukutin). Alternate mechanisms of pathogenesis have also recently been suggested by mutations lying outside of coding regions, such as the "field effect" of chromosomal mutations in DM2. In the future, we will likely identify the genes responsible for the remaining disorders, including many of the distal myopathies. In addition, we may also find skeletal muscle diseases associated with some of the presently non-implicated muscle proteins: syntropin, dystrobrevin, epsilon-sarcoglycan and sarcospan. The next steps may be to identify and understand the relationship of modifier genes producing the phenotypic heterogeneity of many of these diseases and to characterize those and other targets for therapeutic intervention, whether by gene therapy or by pharmacological treatment.
Collapse
Affiliation(s)
- Kathryn R Wagner
- Department of Neurology, Johns Hopkins Hospital, Meyer 5-119, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
32
|
Gordon ES, Hoffman EP. The ABC's of limb-girdle muscular dystrophy: alpha-sarcoglycanopathy, Bethlem myopathy, calpainopathy and more. Curr Opin Neurol 2001; 14:567-73. [PMID: 11562567 DOI: 10.1097/00019052-200110000-00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Limb-girdle muscular dystrophy is a class of disorders encompassing many forms of this disease. Variation exists between the inheritance patterns, genes responsible, course of disease and symptoms, with the cohesive factor among these disorders being the predominance of proximal muscle weakness. Here we review each form of limb-girdle muscular dystrophy with attention to molecular genetics, clinical features, inheritance, and diagnostic issues pertaining to each primary genetic cause.
Collapse
Affiliation(s)
- E S Gordon
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | | |
Collapse
|
33
|
Chae J, Minami N, Jin Y, Nakagawa M, Murayama K, Igarashi F, Nonaka I. Calpain 3 gene mutations: genetic and clinico-pathologic findings in limb-girdle muscular dystrophy. Neuromuscul Disord 2001; 11:547-55. [PMID: 11525884 DOI: 10.1016/s0960-8966(01)00197-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutations in the calpain 3 gene have been proven to be responsible for limb-girdle muscular dystrophy (LGMD) type 2A. To determine the incidence and genotypes of the calpain 3 (p94) gene mutations in Japanese LGMD patients, we sequenced the gene in 80 patients with clinical characteristics of autosomal recessive or sporadic LGMD. We identified 13 distinct pathogenic mutations in 21 patients (26%), including seven missense mutations, four splice-site mutations and two insertions in which six were novel mutations. Among the 21 patients, 15 (71%) had three types of the common missense (G233V, R461C, D707G) and one insertion (1795-1796insA) mutation. The patients had slowly progressive muscle weakness with age of onset of the disease varying from 6 to 52 years, averaging 20.9. The most striking pathologic findings were the presence of lobulated fibers in 14 patients, especially in the advanced stages. Differing from Duchenne and Becker muscular dystrophy, opaque (hypercontracted) fibers were very rarely seen. These findings may be helpful in establishing diagnostic screening strategies in Japanese LGMD patients.
Collapse
Affiliation(s)
- J Chae
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Jia Z, Petrounevitch V, Wong A, Moldoveanu T, Davies PL, Elce JS, Beckmann JS. Mutations in calpain 3 associated with limb girdle muscular dystrophy: analysis by molecular modeling and by mutation in m-calpain. Biophys J 2001; 80:2590-6. [PMID: 11371436 PMCID: PMC1301447 DOI: 10.1016/s0006-3495(01)76229-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized by selective atrophy of the proximal limb muscles. Its occurrence is correlated, in a large number of patients, with defects in the human CAPN3 gene, a gene that encodes the skeletal muscle-specific member of the calpain family, calpain 3 (or p94). Because calpain 3 is difficult to study due to its rapid autolysis, we have developed a molecular model of calpain 3 based on the recently reported crystal structures of m-calpain and on the high-sequence homology between p94 and m-calpain (47% sequence identity). On the basis of this model, it was possible to explain many LGMD2A point mutations in terms of calpain 3 inactivation, supporting the idea that loss of calpain 3 activity is responsible for the disease. The majority of the LGMD2A mutations appear to affect domain/domain interaction, which may be critical in the assembly and the activation of the multi-domain calpain 3. In particular, we suggest that the flexibility of protease domain I in calpain 3 may play a critical role in the functionality of calpain 3. In support of the model, some clinically observed calpain 3 mutations were generated and analyzed in recombinant m-calpain. Mutations of residues forming intramolecular domain contacts caused the expected loss of activity, but mutations of some surface residues had no effect on activity, implying that these residues in calpain 3 may interact in vivo with other target molecules. These results contribute to an understanding of structure-function relationships and of pathogenesis in calpain 3.
Collapse
Affiliation(s)
- Z Jia
- Department of Biochemistry, Queen's University and The Protein Engineering Network of Centres of Excellence, Kingston, Ontario K7L 3N6, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Pogue R, Anderson LV, Pyle A, Sewry C, Pollitt C, Johnson MA, Davison K, Moss JA, Mercuri E, Muntoni F, Bushby KM. Strategy for mutation analysis in the autosomal recessive limb-girdle muscular dystrophies. Neuromuscul Disord 2001; 11:80-7. [PMID: 11166169 DOI: 10.1016/s0960-8966(00)00154-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a strategy for molecular diagnosis in the autosomal recessive limb-girdle muscular dystrophies, a highly heterogeneous group of inherited muscle-wasting diseases. Genetic mutation analysis is directed by immunoanalysis of muscle biopsies using antibodies against a panel of muscular dystrophy-associated proteins. Performing the molecular analysis in this way greatly increases the chance that mutations will be found in the first gene examined. The use of this strategy can significantly decrease the time involved in determining the genetic fault in a patient with a clinical diagnosis of recessive limb-girdle muscular dystrophy, as well as having a feedback effect, which is useful in helping clinicians to identify subtle clinical differences between the subtypes of the disease. The use of this approach has so far helped us to identify mutations in ten sarcoglycanopathy (limb-girdle muscular dystrophy 2C-2F) patients, and seven calpainopathy (limb-girdle muscular dystrophy 2A) patients.
Collapse
Affiliation(s)
- R Pogue
- Department of Neurobiology, University Medical School, Framlington Place, NE2 4HH, Newcastle-upon-Tyne, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen YW, Zhao P, Borup R, Hoffman EP. Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol 2000; 151:1321-36. [PMID: 11121445 PMCID: PMC2190600 DOI: 10.1083/jcb.151.6.1321] [Citation(s) in RCA: 394] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Accepted: 10/27/2000] [Indexed: 11/22/2022] Open
Abstract
We used expression profiling to define the pathophysiological cascades involved in the progression of two muscular dystrophies with known primary biochemical defects, dystrophin deficiency (Duchenne muscular dystrophy) and alpha-sarcoglycan deficiency (a dystrophin-associated protein). We employed a novel protocol for expression profiling in human tissues using mixed samples of multiple patients and iterative comparisons of duplicate datasets. We found evidence for both incomplete differentiation of patient muscle, and for dedifferentiation of myofibers to alternative lineages with advancing age. One developmentally regulated gene characterized in detail, alpha-cardiac actin, showed abnormal persistent expression after birth in 60% of Duchenne dystrophy myofibers. The majority of myofibers ( approximately 80%) remained strongly positive for this protein throughout the course of the disease. Other developmentally regulated genes that showed widespread overexpression in these muscular dystrophies included embryonic myosin heavy chain, versican, acetylcholine receptor alpha-1, secreted protein, acidic and rich in cysteine/osteonectin, and thrombospondin 4. We hypothesize that the abnormal Ca(2)+ influx in dystrophin- and alpha-sarcoglycan-deficient myofibers leads to altered developmental programming of developing and regenerating myofibers. The finding of upregulation of HLA-DR and factor XIIIa led to the novel identification of activated dendritic cell infiltration in dystrophic muscle; these cells mediate immune responses and likely induce microenvironmental changes in muscle. We also document a general metabolic crisis in dystrophic muscle, with large scale downregulation of nuclear-encoded mitochondrial gene expression. Finally, our expression profiling results show that primary genetic defects can be identified by a reduction in the corresponding RNA.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Po Zhao
- Research Center for Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Rehannah Borup
- Research Center for Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC 20010
| | - Eric P. Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC 20010
| |
Collapse
|
37
|
Abstract
Our understanding of the neuromuscular disorders of childhood has been rapidly expanding. This is mostly because of the discovery of the underlying genetic loci for the vast majority of these diseases and the abnormal proteins produced caused by these mutations. Spinal muscular atrophy is the second most frequent autosomal recessive disease of childhood and the most fatal. It has been mapped to chromosome 5q11.2-13.3, an area with three distinct genes associated with spinal muscular atrophy. Charcot-Marie-Tooth is the most common inherited peripheral neuropathy. Three genes encoding for myelin proteins and one for a nuclear protein have been associated with this group of disorders. Finally, since dystrophin was cloned in 1986, many proteins assisting dystrophin in anchoring the muscle cytoskeleton to the extracellular matrix have been discovered. Mutations in these genes lead to various forms of muscular dystrophy.
Collapse
Affiliation(s)
- J B Strober
- Pediatrics and Neurology, Division of Child Neurology, University of California at San Francisco, 94143-0136, USA.
| |
Collapse
|
38
|
Abstract
Using immunohistochemistry in diagnosing neuromuscular diseases is meant to enhance the diagnostic yield in two ways. The first application aims at visualizing molecules which are developmentally, neurally, and/or immunologically regulated and not expressed by normal muscle. They are upregulated in pathological conditions and may help assign a given muscular biopsy to one of the main diagnostic entities (muscular dystrophies, inflammatory myopathy, neurogenic atrophy). In the past, muscle-specific molecules with a defined expression pattern during fetal myogenesis served as antigens, with the rationale that the developmental program was switched on in new fibers. Recently, myofibers in diseased muscle are thought of as targets of stimuli which are released by macrophages in muscular dystrophy, by lymphocytes in inflammatory myopathies, or by a lesioned peripheral nerve in neurogenic atrophies. This has somewhat blurred the borders between the diagnostic groups, for certain molecules, e.g. cytokines, may be upregulated after experimental necrotization, denervation, and also in inflammatory myopathies. In the second part of this review we summarise the experiences of a Centre in the North of England that specialises in the diagnosis and clinical support of patients with muscular dystrophy. Emphasis is placed on the use of protein expression to guide mutation analysis, particularly in the limb-girdle muscular dystrophies (a group of diseases that are very difficult to differentiate on clinical grounds alone). We confirm that genetic analysis is essential to corroborate the results of protein analysis in certain conditions (particularly in calpainopathy). However, we conclude that analysing biopsies for abnormal protein expression is very useful in aiding the decision between alternative diagnoses.
Collapse
Affiliation(s)
- A Bornemann
- Institute of Brain Research, University of Tübingen, Germany.
| | | |
Collapse
|
39
|
Minami N, Nishino I, Kobayashi O, Ikezoe K, Goto Y, Nonaka I. Mutations of calpain 3 gene in patients with sporadic limb-girdle muscular dystrophy in Japan. J Neurol Sci 1999; 171:31-7. [PMID: 10567047 DOI: 10.1016/s0022-510x(99)00245-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations of the calpain 3 gene, an intracellular calcium-activated neutral protease, is one of the causes of limb-girdle muscular dystrophy (LGMD). We examined 14 Japanese patients with sporadic LGMD for calpain 3 mutations, and found four mutations in five patients. Three (R461C, D707G and R147P) were novel missense mutations, and one was a splice-site mutation (801+1g-->a) resulting in skipping of exons 4 and 5. Of the five patients, three patients with homozygous missense mutations showed later onset and slower progression than the other two patients with an exon skipping or mRNA loss of unknown cause. It would appear that the occurrence of calpain 3 gene mutations in sporadic LGMD in Japan may be quite high since all five patients with mutations in this gene were among the 14 patients without apparent family history, an incidence of 36%. These findings also suggest that calpain 3 deficiency occurs in both sporadic and familial LGMD and that direct analysis of the calpain 3 gene may be useful in the definitive diagnosis not only of the 15q-linked familial but also of sporadic cases of LGMD.
Collapse
Affiliation(s)
- N Minami
- Department of Laboratory Medicine, National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The most important advances in sarcomeric protein diseases continue to be the identification of mutated genes responsible for human diseases. These have recently included those that encode skeletal muscle alpha-actin in autosomal dominant and autosomal recessive nemaline myopathy, nebulin and slow alpha-tropomyosin in autosomal recessive nemaline myopathy, and desmin and alpha B-crystallin in desminopathies.
Collapse
Affiliation(s)
- N G Laing
- Australian Neuromuscular Research Institute, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Australia.
| |
Collapse
|
41
|
|