1
|
Kampmann M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat Rev Neurosci 2024; 25:351-371. [PMID: 38575768 DOI: 10.1038/s41583-024-00806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations - including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease - are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Yuan Y, Bailey JM, Rivera-Lopez GM, Atchison WD. Preferential potentiation of AMPA-mediated currents in brainstem hypoglossal motoneurons by subchronic exposure of mice expressing the human superoxide dismutase 1 G93A gene mutation to neurotoxicant methylmercury in vivo. Neurotoxicology 2024; 100:72-84. [PMID: 38065418 PMCID: PMC10877233 DOI: 10.1016/j.neuro.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA.
| | - Jordan M Bailey
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - Gretchen M Rivera-Lopez
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| |
Collapse
|
3
|
Calancie BM, Chin S, Wang D. Establishing the Minimum Intensity of Transcranial Magnetic Stimulation Superconditioning Pulses to Effect Inhibition and Facilitation of Motor Evoked Potentials. J Clin Neurophysiol 2023; 40:331-338. [PMID: 34482314 DOI: 10.1097/wnp.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Previously, we showed that a three-pulse train of weak transcranial magnetic stimulation (TMS) pulses-a superconditioning (SC) train-when followed by a stronger TMS pulse could enhance the inhibition or facilitation of the resultant motor evoked potential (MEP) compared with that seen with traditional dual-pulse inputs. The purpose of the present study was to establish the relative minimum intensity of SC pulses needed to influence MEP output and whether this differed for upper- versus lower-limb muscles. METHODS We examined 33 older adult subjects, targeting abductor pollicis brevis and tibialis anterior muscles. Older subjects were included in the anticipation of using findings from this study to guide further studies in persons with amyotrophic lateral sclerosis. Three-pulse trains of SC inputs of different intensities were delivered either 1 millisecond before (for inhibition) or 10 millisecond before (for facilitation) a stronger TMS test pulse. Motor evoked potential magnitudes for SC +test sets were normalized to test input responses and were compared within and between subjects. RESULTS AND CONCLUSIONS For inhibition, the minimum intensity of SC pulses needed to influence the follow-on MEP was found to be 60% of the target muscle's resting three-pulse MEP threshold for most abductor pollicis brevis and tibialis anterior muscles (2-millisecond interpulse intervals). For facilitation, somewhat higher intensities (70%) were typically needed to cause facilitation. Both values of SC pulses for inhibition/facilitation are considerably lower than the intensity of the conditioning pulse-often reported as 80% of the single-pulse threshold-typically used in dual-pulse TMS paradigms. This approach may allow testing of upper motor neuron function using weaker stimulus pulse intensities than are typically employed, improving testing compliance in persons whose thresholds are elevated because of injury or disease.
Collapse
Affiliation(s)
- Blair M Calancie
- Department of Neurosurgery, Upstate Medical University, Syracuse, New York, U.S.A
| | - Stella Chin
- College of Medicine, Upstate Medical University, Syracuse, New York, U.S.A.; and
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, Upstate Medical University, Syracuse, New York, U.S.A
| |
Collapse
|
4
|
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11081191. [PMID: 36009818 PMCID: PMC9405388 DOI: 10.3390/biology11081191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive paralysis due to the loss of particular neurons in our nervous system called motor neurons, that exert voluntary control of all our skeletal muscles. It is not entirely understood why motor neurons are particularly vulnerable in ALS, neither is it completely clear why certain groups of motor neurons, including those that regulate eye movement, are rather resilient to this disease. However, both vulnerability and resilience to ALS likely reflect cell intrinsic properties of different motor neuron subpopulations as well as non-cell autonomous events regulated by surrounding cell types. In this review we dissect the particular properties of different motor neuron types and their responses to disease that may underlie their respective vulnerabilities and resilience. Disease progression in ALS involves multiple cell types that are closely connected to motor neurons and we here also discuss their contributions to the differential vulnerability of motor neurons. Abstract Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS.
Collapse
|
5
|
Javed S, Hussain A, Shah PA, Raza SA, Anwer UU, Shamim R, Rasool F, Hafiz MA, Bukhari NI. Development of Optimized Sumatriptan-Prochlorperazine Combined Orodispersible Films Without Disintegrant: in vitro, ex vivo and in vivo Characterization. AAPS PharmSciTech 2022; 23:156. [PMID: 35655105 DOI: 10.1208/s12249-022-02307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sumatriptan succinate and prochlorperazine maleate are a clinically proven combination for treating migraine and associated nausea and vomiting. Classical oral dosage forms are not frequently workable in migraine because of the associated nausea/vomiting, and no effective fixed dose combination is available. Thus, the aim of the study was to optimize a combined sumatriptan-prochlorperazine orodispersible film for rapid release of drugs. Orodispersible films were prepared by solvent casting method using varied amounts of polyvinyl alcohol and glycerol as film former and plasticizer, respectively, along with fixed levels of other ingredients employing central composite design. The optimum film (VF) demonstrated disintegration and total dispersion times as 21 s and 2.3 min, respectively. Tensile strength and Young's modulus were 8.86 ± 0.37 MPa and 24.15 ± 0.07 MPa, respectively. The in vitro T80% of both drugs from the ODF was achieved within 4 min. The film was palatable and disintegrated in 2 min in buccal cavity of human volunteers. Permeation study through goat mucosa demonstrated 100% permeation of both drugs within 15 min. X-Ray diffraction and differential scanning calorimetry supported drugs being amorphous and Fourier transform infrared demonstrated drug-excipient compatibility in optimized film. A judicious combination of sumatriptan succinate and prochlorperazine maleate could be prepared in orodispersible films for the possible relief of migraine.
Collapse
|
6
|
Wainger BJ, Macklin EA, Vucic S, McIlduff CE, Paganoni S, Maragakis NJ, Bedlack R, Goyal NA, Rutkove SB, Lange DJ, Rivner MH, Goutman SA, Ladha SS, Mauricio EA, Baloh RH, Simmons Z, Pothier L, Kassis SB, La T, Hall M, Evora A, Klements D, Hurtado A, Pereira JD, Koh J, Celnik PA, Chaudhry V, Gable K, Juel VC, Phielipp N, Marei A, Rosenquist P, Meehan S, Oskarsson B, Lewis RA, Kaur D, Kiskinis E, Woolf CJ, Eggan K, Weiss MD, Berry JD, David WS, Davila-Perez P, Camprodon JA, Pascual-Leone A, Kiernan MC, Shefner JM, Atassi N, Cudkowicz ME. Effect of Ezogabine on Cortical and Spinal Motor Neuron Excitability in Amyotrophic Lateral Sclerosis: A Randomized Clinical Trial. JAMA Neurol 2021; 78:186-196. [PMID: 33226425 DOI: 10.1001/jamaneurol.2020.4300] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor nervous system. Clinical studies have demonstrated cortical and spinal motor neuron hyperexcitability using transcranial magnetic stimulation and threshold tracking nerve conduction studies, respectively, although metrics of excitability have not been used as pharmacodynamic biomarkers in multi-site clinical trials. Objective To ascertain whether ezogabine decreases cortical and spinal motor neuron excitability in ALS. Design, Setting, and Participants This double-blind, placebo-controlled phase 2 randomized clinical trial sought consent from eligible participants from November 3, 2015, to November 9, 2017, and was conducted at 12 US sites within the Northeast ALS Consortium. Participants were randomized in equal numbers to a higher or lower dose of ezogabine or to an identical matched placebo, and they completed in-person visits at screening, baseline, week 6, and week 8 for clinical assessment and neurophysiological measurements. Interventions Participants were randomized to receive 600 mg/d or 900 mg/d of ezogabine or a matched placebo for 10 weeks. Main Outcomes and Measures The primary outcome was change in short-interval intracortical inhibition (SICI; SICI-1 was used in analysis to reflect stronger inhibition from an increase in amplitude) from pretreatment mean at screening and baseline to the full-dose treatment mean at weeks 6 and 8. The secondary outcomes included levels of cortical motor neuron excitability (including resting motor threshold) measured by transcranial magnetic stimulation and spinal motor neuron excitability (including strength-duration time constant) measured by threshold tracking nerve conduction studies. Results A total of 65 participants were randomized to placebo (23), 600 mg/d of ezogabine (23), and 900 mg/d of ezogabine (19 participants); 45 were men (69.2%) and the mean (SD) age was 58.3 (8.8) years. The SICI-1 increased by 53% (mean ratio, 1.53; 95% CI, 1.12-2.09; P = .009) in the 900-mg/d ezogabine group vs placebo group. The SICI-1 did not change in the 600-mg/d ezogabine group vs placebo group (mean ratio, 1.15; 95% CI, 0.87-1.52; P = .31). The resting motor threshold increased in the 600-mg/d ezogabine group vs placebo group (mean ratio, 4.61; 95% CI, 0.21-9.01; P = .04) but not in the 900-mg/d ezogabine group vs placebo group (mean ratio, 1.95; 95% CI, -2.64 to 6.54; P = .40). Ezogabine caused a dose-dependent decrease in excitability by several other metrics, including strength-duration time constant in the 900-mg/d ezogabine group vs placebo group (mean ratio, 0.73; 95% CI, 0.60 to 0.87; P < .001). Conclusions and Relevance Ezogabine decreased cortical and spinal motor neuron excitability in participants with ALS, suggesting that such neurophysiological metrics may be used as pharmacodynamic biomarkers in multisite clinical trials. Trial Registration ClinicalTrials.gov Identifier: NCT02450552.
Collapse
Affiliation(s)
- Brian J Wainger
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA.,Harvard Stem Cell Institute, Cambridge.,Broad Institute of MIT and Harvard, Cambridge
| | - Eric A Macklin
- Harvard Medical School, Boston MA.,Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Courtney E McIlduff
- Harvard Medical School, Boston MA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sabrina Paganoni
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts
| | | | - Richard Bedlack
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Namita A Goyal
- Department of Neurology, University of California Irvine, Irvine
| | - Seward B Rutkove
- Harvard Medical School, Boston MA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Dale J Lange
- Department of Neurology, Hospital for Special Surgery, New York, New York
| | - Michael H Rivner
- Department of Neurology, Augusta University Medical Center, Augusta, Georgia
| | | | - Shafeeq S Ladha
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | | | - Robert H Baloh
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, California
| | - Zachary Simmons
- Department of Neurology, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Lindsay Pothier
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston
| | - Sylvia Baedorf Kassis
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston
| | - Thuong La
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston
| | - Meghan Hall
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Armineuza Evora
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston
| | - David Klements
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston
| | - Aura Hurtado
- Harvard Medical School, Boston MA.,Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Joao D Pereira
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA
| | - Joan Koh
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston
| | - Pablo A Celnik
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Vinay Chaudhry
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Karissa Gable
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Vern C Juel
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Nicolas Phielipp
- Department of Neurology, University of California Irvine, Irvine
| | - Adel Marei
- Department of Neurology, Hospital for Special Surgery, New York, New York
| | - Peter Rosenquist
- Department of Psychiatry, Augusta University Medical Center, Augusta, Georgia
| | - Sean Meehan
- School of Kinesiology, University of Michigan, Ann Arbor
| | | | - Richard A Lewis
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, California
| | - Divpreet Kaur
- Department of Neurology, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | | | - Clifford J Woolf
- Harvard Medical School, Boston MA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Kevin Eggan
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA.,Harvard Stem Cell Institute, Cambridge.,Broad Institute of MIT and Harvard, Cambridge.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | | | - James D Berry
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA
| | - William S David
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA
| | - Paula Davila-Perez
- Harvard Medical School, Boston MA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Joan A Camprodon
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA.,Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Alvaro Pascual-Leone
- Harvard Medical School, Boston MA.,Marcus Institute and Center for Memory Health, Hebrew SeniorLife, Boston, Massachusetts.,Institut Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Nazem Atassi
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA
| | - Merit E Cudkowicz
- The Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston.,Harvard Medical School, Boston MA
| |
Collapse
|
7
|
Jara JH, Sheets PL, Nigro MJ, Perić M, Brooks C, Heller DB, Martina M, Andjus PR, Ozdinler PH. The Electrophysiological Determinants of Corticospinal Motor Neuron Vulnerability in ALS. Front Mol Neurosci 2020; 13:73. [PMID: 32508590 PMCID: PMC7248374 DOI: 10.3389/fnmol.2020.00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The brain is complex and heterogeneous. Even though numerous independent studies indicate cortical hyperexcitability as a potential contributor to amyotrophic lateral sclerosis (ALS) pathology, the mechanisms that are responsible for upper motor neuron (UMN) vulnerability remain elusive. To reveal the electrophysiological determinants of corticospinal motor neuron (CSMN, a.k.a UMN in mice) vulnerability, we investigated the motor cortex of hSOD1G93A mice at P30 (postnatal day 30), a presymptomatic time point. Glutamate uncaging by laser scanning photostimulation (LSPS) revealed altered dynamics especially within the inhibitory circuitry and more specifically in L2/3 of the motor cortex, whereas the excitatory microcircuits were unchanged. Observed microcircuitry changes were specific to CSMN in the motor column. Electrophysiological evaluation of the intrinsic properties in response to the microcircuit changes, as well as the exon microarray expression profiles of CSMN isolated from hSOD1G93A and healthy mice at P30, revealed the presence of a very dynamic set of events, ultimately directed to establish, maintain and retain the balance at this early stage. Also, the expression profile of key voltage-gated potassium and sodium channel subunits as well as of the inhibitory GABA receptor subunits and modulatory proteins began to suggest the challenges CSMN face at this early age. Since neurodegeneration is initiated when neurons can no longer maintain balance, the complex cellular events that occur at this critical time point help reveal how CSMN try to cope with the challenges of disease manifestation. This information is critically important for the proper modulation of UMNs and for developing effective treatment strategies.
Collapse
Affiliation(s)
- Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick L Sheets
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maximiliano José Nigro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Mina Perić
- Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Carolyn Brooks
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel B Heller
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marco Martina
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Pavle R Andjus
- Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - P Hande Ozdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Superconditioning TMS for examining upper motor neuron function in MND. Exp Brain Res 2019; 237:2087-2103. [PMID: 31175383 DOI: 10.1007/s00221-019-05573-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/30/2019] [Indexed: 01/09/2023]
Abstract
We used transcranial magnetic stimulation (TMS) of motor cortex, including a novel four-pulse superconditioning (TMSsc) paradigm, in repeated examinations of motor-evoked potentials (MEPs) in eight subjects with motor neuron disease (MND), including seven with amyotrophic lateral sclerosis (ALS). The goals were: (1) to look for evidence of cortical hyperexcitability, including a reduction in short-interval intracortical inhibition (SICI); and (2) to examine the utility of using TMSsc for quantifying upper motor neuron function during MND progression. Testing of abductor pollicis brevis (APB) and tibialis anterior (TA) muscles bilaterally was carried out every 3 months in MND subjects for up to 2 years; results were compared to those from a cohort of 15 control subjects. Measures of SICI were not significantly different between control and MND subjects for either APB or TA muscles. Other measures of cortical excitability, including TMS threshold and MEP amplitude, were consistent with lowered cortical excitability in MND subjects. Certain combinations of superconditioning TMS were capable of causing stronger inhibition or facilitation of MEPs compared to dual-pulse TMS, for both APB and TA target muscles. Moreover, there were multiple cases in which target muscles unresponsive to strong single-pulse TMS, whether at rest or when tested with an active contraction, showed an MEP in response to TMSsc optimized for facilitation. Our findings suggest that a multi-faceted neurophysiologic protocol for examining upper motor neuron function in MND subjects might benefit from inclusion of TMSsc testing.
Collapse
|
9
|
Calancie B, Wang D, Young E, Alexeeva N. Four-pulse transcranial magnetic stimulation using multiple conditioning inputs. Normative MEP responses. Exp Brain Res 2018; 236:1205-1218. [PMID: 29473092 DOI: 10.1007/s00221-018-5212-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
A four-pulse pattern of transcranial magnetic stimulation (TMS) was compared to traditional dual-pulse TMS for its ability to modulate motor cortical excitability. This novel pattern consisted of a three-pulse train of subthreshold conditioning pulses followed by a suprathreshold test pulse (i.e., SC-T). The intervals between these superconditioning (SC) pulses (1, 3, or 6 ms) and the follow-on test pulse (1, 3, 10, or 25 ms) were varied, and the resultant MEPs were compared to those elicited by: (1) single-pulse TMS; and (2) dual-pulse conditioning-test (C-T) TMS with either short (3 ms) or long (10 ms) intervals to elicit short-interval intracortical inhibition (SICI) or intracortical facilitation (ICF), respectively. Testing included abductor pollicis brevis (APB) and tibialis anterior (TA) in 15 neurologically normal adults. For superconditioning inputs, 10 ms test intervals caused especially strong facilitation of the test MEP, while 1 ms test intervals were particularly effective at causing inhibition of the test response. For both muscles and across all subjects, the most effective of the 12 SC-T inputs tested for causing either facilitation or inhibition was-with rare exception-superior to the dual-pulse TMS input for causing facilitation (i.e., ICF) or inhibition (i.e., SICI), while the overall magnitude of effect was more pronounced in APB compared to TA. Nevertheless, after normalization, the impact of a superconditioning input train on the test MEP was similar in APB and TA muscles, suggesting similar mechanisms of action. Limited findings from a single subject with amyotrophic lateral sclerosis (ALS) are included to further illustrate the potential advantages of using a train of conditioning pulses preceding a TMS test pulse to selectively investigate abnormal motor cortical excitatory and inhibitory circuitry.
Collapse
Affiliation(s)
- Blair Calancie
- Department of Neurosurgery, Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13104, USA.
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13104, USA
| | - Eufrosina Young
- Department of Neurology, Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13104, USA
| | - Natalia Alexeeva
- Department of Neurosurgery, Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13104, USA
| |
Collapse
|
10
|
Excitatory-inhibitory imbalance in the brain of the wobbler mouse model of amyotrophic lateral sclerosis substantiated by riluzole and diazepam. Neurosci Lett 2017; 658:85-90. [DOI: 10.1016/j.neulet.2017.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/09/2017] [Accepted: 08/13/2017] [Indexed: 12/13/2022]
|
11
|
Diana A, Pillai R, Bongioanni P, O'Keeffe AG, Miller RG, Moore DH. Gamma aminobutyric acid (GABA) modulators for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 2017; 1:CD006049. [PMID: 28067943 PMCID: PMC6953368 DOI: 10.1002/14651858.cd006049.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Imbalance of gamma aminobutyric acid (GABA) and related modulators has been implicated as an important factor in the pathogenesis of amyotrophic lateral sclerosis (ALS), which is also known as motor neuron disease (MND). In this context, the role and mechanism of action of gabapentin and baclofen have been extensively investigated, although with conflicting results. This is the first systematic review to assess clinical trials of GABA modulators for the treatment of ALS. OBJECTIVES To examine the efficacy of gabapentin, baclofen, or other GABA modulators in delaying the progression of ALS, and to evaluate adverse effects of these interventions SEARCH METHODS On 16 August 2016, we searched the Cochrane Neuromuscular Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL Plus, AMED, and LILACS. In addition, we checked the bibliographies of the trials found in order to identify any other trials, and contacted trial authors to identify relevant unpublished results or additional clinical trials. On 30 August 2016, we searched two clinical trials registries. SELECTION CRITERIA Types of studies: double-blind randomized controlled trials (RCTs) or quasi-RCTsTypes of participants: adults with a diagnosis of probable or definite ALSTypes of interventions: gabapentin, baclofen, or other GABA modulators compared with placebo, no treatment, or each otherPrimary outcome: survival at one year from study enrollmentSecondary outcomes: individual rate of decline of maximum voluntary isometric contraction (MVIC), expressed as arm megascore; rate of decline of per cent predicted forced vital capacity (FVC); rate of decline of ALS Functional Rating Scale (ALSFRS); health-related quality of life; survival evaluated by pooling hazards; and adverse events DATA COLLECTION AND ANALYSIS: At least two review authors independently checked titles and abstracts identified by the searches. The review authors obtained and independently analyzed original individual participant data from each included study; additional review authors and the Cochrane Neuromuscular Managing Editor checked the outcome data. Two authors independently assessed the risk of bias in included studies. Data collection and analysis At least two review authors independently checked titles and abstracts identified by the searches. The review authors obtained and independently analyzed original individual participant data from each included study; additional review authors and the Cochrane Neuromuscular Managing Editor checked the outcome data. Two authors independently assessed the risk of bias in included studies. MAIN RESULTS We identified two double-blind RCTs of gabapentin treatment in ALS for inclusion in this review. We found no eligible RCTs of baclofen or other GABA modulators. The selected studies were phase II and phase III trials, which lasted six and nine months, respectively. They were highly comparable because both were comparisons of oral gabapentin and placebo, performed by the same investigators. The trials enrolled 355 participants with ALS: 80 in the gabapentin group and 72 in the placebo group in the first (phase II) trial and 101 in the gabapentin group and 102 in the placebo group in the second (phase III) trial. Neither trial was long enough to report survival at one year, which was our primary outcome. We found little or no difference in estimated one-year survival between the treated group and the placebo group (78% versus 77%, P = 0.63 by log-rank test; high-quality evidence). We also found little or no difference in the rate of decline of MVIC expressed as arm megascore, or rate of FVC decline (high-quality evidence). One trial investigated monthly decline in the ALSFRS and quality of life measured using the 12-Item Short Form Survey (SF-12) and found little or no difference between groups (moderate-quality evidence). The trials reported similar adverse events. Complaints that were clearly elevated in those taking gabapentin, based on analyses of the combined data, were light-headedness, drowsiness, and limb swelling (high-quality evidence). Fatigue and falls occurred more frequently with gabapentin than with placebo in one trial, but when we combined the data for fatigue from both trials, there was no clear difference between the groups. We assessed the overall risk of bias in the included trials as low. AUTHORS' CONCLUSIONS According to high-quality evidence, gabapentin is not effective in treating ALS. It does not extend survival, slow the rate of decline of muscle strength, respiratory function and, based on moderate-quality evidence, probably does not improve quality of life or slow monthly decline in the ALSFRS. Other GABA modulators have not been studied in randomized trials.
Collapse
Affiliation(s)
- Andrea Diana
- University of CagliariDepartment of Biomedical SciencesCitta Universitaria di Monserrato (Cagliari)Monserrato (Cagliari)Italy09042
| | - Rita Pillai
- University of CagliariDepartment of Biomedical SciencesCitta Universitaria di Monserrato (Cagliari)Monserrato (Cagliari)Italy09042
| | - Paolo Bongioanni
- University of PisaNeurorehabilitation Unit, Department of NeuroscienceVia Paradisa, 2PisaItaly56100
| | - Aidan G O'Keeffe
- University College LondonDepartment of Statistical Science1‐19 Torrington PlaceLondonUKWC1E 6BT
| | - Robert G Miller
- California Pacific Medical CenterForbes Norris ALS Research Center2324 Sacramento Street, Suite 150San FranciscoUSA94115
| | - Dan H Moore
- California Pacific Medical CenterResearch Institute475 Brannan St Suite 220San FranciscoCAUSA94107
| | | |
Collapse
|
12
|
Liepert J, Mingers D, Heesen C, Bäumer T, Weiller C. Motor cortex excitability and fatigue in multiple sclerosis: a transcranial magnetic stimulation study. Mult Scler 2016; 11:316-21. [PMID: 15957514 DOI: 10.1191/1352458505ms1163oa] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigated electrophysiological correlates of fatigue in patients with multiple sclerosis (MS). Transcranial magnetic stimulation (TMS) was used to explore motor excitability in three groups of subjects: MS patients with fatigue (MS-F), MS patients without fatigue (MS-NF) and healthy control subjects. All participants had to perform a fatiguing hand-grip exercise. TMS was performed prior to and after the exercise. Prior to the motor task, MS-F patients had less inhibition in the primary motor cortex compared to both other groups. Postexercise, intracortical inhibition was still reduced in the MS-F patients compared to the MS-NF patients. In MS-F patients the postexercise time interval for normalization of the motor threshold was correlated with the fatigue severity. We conclude that MS patients with fatigue have an impairment of inhibitory circuits in their primary motor cortex. The results also indicate that fatigue severity is associated with an exercise-induced reduction of membrane excitability.
Collapse
Affiliation(s)
- J Liepert
- Department of Neurology, University Hospital Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Clark R, Blizzard C, Dickson T. Inhibitory dysfunction in amyotrophic lateral sclerosis: future therapeutic opportunities. Neurodegener Dis Manag 2015; 5:511-25. [DOI: 10.2217/nmt.15.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In amyotrophic lateral sclerosis, motor neuron hyperexcitability and inhibitory dysfunction is emerging as a potential causative link in the dysfunction and degeneration of the motoneuronal circuitry that characterizes the disease. Interneurons, as key regulators of excitability, may mediate much of this imbalance, yet we know little about the way in which inhibitory deficits perturb excitability. In this review, we explore inhibitory control of excitability and the potential contribution of altered inhibition to amyotrophic lateral sclerosis disease processes and vulnerabilities, identifying important windows of therapeutic opportunity and potential interventions, specifically targeting inhibitory control at key disease stages.
Collapse
Affiliation(s)
- Rosemary Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Catherine Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| |
Collapse
|
14
|
Bolu A, Balikci A, Erdem M, Öznur T, Çelik C, Uzun Ö. Cortical Excitability and Agressive Behavior in Post-Traumatic Stress Disorder. Noro Psikiyatr Ars 2015; 52:73-77. [PMID: 28360680 DOI: 10.5152/npa.2015.7031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/27/2013] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Hyperarousal and alertness play an important role in the clinical presentation of Post-traumatic stress disorder (PTSD). Strenuous effort has been made to shed light on the mechanisms that cause these symptoms of patients. Based on the claim that there is a relationship between some subtypes of hyperarousal symptoms and aggression in patients with PTSD, we aimed to examine the relationship between electrophysiological measurements that was measured through transcranial magnetic stimulation (TMS) and aggression scale scores of PTSD patients in this study. METHODS The study included 37 patients with a diagnosis of PTSD according to DSM-IV criteria and 25 healthy volunteers. Electrophysiological measurements of participants were made with TMS. The Buss Perry Aggression Questionnaires was administered to patients and control group. RESULTS In the patient group, a positive correlation was found between scores of aggression and arousal symptoms. Motor excitability threshold, one of TMS measurements, which is a sign of cortical excitability, was significantly lower in the patient group than the control group. There was a negative correlation between aggression scale scores and the parameters of motor excitability threshold and cortical silent period which both shows cortical excitability of the patients. CONCLUSION We concluded that there was an increase in cortical excitability in PTSD patients and we suggest that this increase might be associated with hyperarousal symptoms and aggressive behavior.
Collapse
Affiliation(s)
- Abdullah Bolu
- Department of Psychiatry, Aircrew Health Research and Training Center, Eskişehir, Turkey
| | - Adem Balikci
- Department of Psychiatry, Gülhane Military Medical Academy, Ankara, Turkey
| | - Murat Erdem
- Department of Psychiatry, Gülhane Military Medical Academy, Ankara, Turkey
| | - Taner Öznur
- Department of Psychiatry, Gülhane Military Medical Academy, Ankara, Turkey
| | - Cemil Çelik
- Department of Psychiatry, Gülhane Military Medical Academy, Ankara, Turkey
| | - Özcan Uzun
- Department of Psychiatry, Gülhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
15
|
Thielsen KD, Moser JM, Schmitt-John T, Jensen MS, Jensen K, Holm MM. The Wobbler mouse model of amyotrophic lateral sclerosis (ALS) displays hippocampal hyperexcitability, and reduced number of interneurons, but no presynaptic vesicle release impairments. PLoS One 2013; 8:e82767. [PMID: 24349357 PMCID: PMC3859636 DOI: 10.1371/journal.pone.0082767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. It is a fatal degenerative disease, best recognized for its debilitating neuromuscular effects. ALS however also induces cognitive impairments in as many as 50% of affected individuals. Moreover, many ALS patients demonstrate cortical hyperexcitability, which has been shown to precede the onset of clinical symptoms. The wobbler mouse is a model of ALS, and like ALS patients the wobbler mouse displays cortical hyperexcitability. Here we investigated if the neocortical aberrations of the wobbler mouse also occur in the hippocampus. Consequently, we performed extracellular field excitatory postsynaptic potential recordings in the CA1 region of the hippocampus on acute brain slices from symptomatic (P45-P60) and presymptomatic (P17-P21) wobbler mice. Significant increased excitation of hippocampal synapses was revealed by leftward shifted input/output-curves in both symptomatic and presymptomatic wobbler mice, and substantiated by population spike occurrence analyses, demonstrating that the increased synaptic excitation precedes the onset of visible phenotypic symptoms in the mouse. Synaptic facilitation tested by paired-pulse facilitation and trains in wobbler and control mice showed no differences, suggesting the absence of presynaptic defects. Immunohistochemical staining revealed that symptomatic wobbler mice have a lower number of parvalbumin positive interneurons when compared to controls and presymptomatic mice. This study reveals that the wobbler mouse model of ALS exhibits hippocampal hyperexcitability. We suggest that the hyperexcitability could be caused by increased excitatory synaptic transmission and a concomitant reduced inhibition due to a decreased number of parvalbumin positive interneurons. Thus we substantiate that wobbler brain impairments are not confined to the motor cortex, but extend to the hippocampus. Importantly, we have revealed more details of the early pathophysiology in asymptomatic animals, and studies like the present may facilitate the development of novel treatment strategies for earlier intervention in ALS patients in the future.
Collapse
Affiliation(s)
- Karina D. Thielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob M. Moser
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas Schmitt-John
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Kimmo Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mai Marie Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Mohammadi B, Krampfl K, Kollewe K, Seyfadini A, Bufler J, Dengler R. Correlation between distal motor latency and compound muscle action potential in amyotrophic lateral sclerosis. Neurol Res 2013; 29:425-8. [PMID: 17535550 DOI: 10.1179/016164107x159261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder, characterized by a selective progressive degeneration of the motor system. Electromyography is essential for the diagnosis of ALS. The measurement of motor conduction of peripheral nerves is of major importance to recognize other possible causes of progressive muscle wasting. However, there are also pathologic changes in nerve conduction studies in ALS patients. METHODS In this study we analysed the values of distal motor latency (DML), compound muscle action potential (CMAP) and motor nerve conduction velocity (MNCV) in 95 patients with definite ALS. RESULTS We found slight slowing of MNCV and moderate to strong reduction of CMAP and a prolongation of DML. We found no significant correlation between MNCV and CMAP. DISCUSSION The main finding of the present work was the negative correlation between DML and CMAP. It is interpreted as a very distal axonal damage as the main reason for prolongation of DML in ALS patients.
Collapse
Affiliation(s)
- Bahram Mohammadi
- Department of Neurology and Clinical Neurophysiology, Medical School of Hannover, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Vucic S, Lin CSY, Cheah BC, Murray J, Menon P, Krishnan AV, Kiernan MC. Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2013; 136:1361-70. [PMID: 23616585 DOI: 10.1093/brain/awt085] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Riluzole, a benzothiazole derivative, has been shown to be effective in prolonging survival in amyotrophic lateral sclerosis. The mechanisms by which riluzole exerts neuroprotective effects in amyotrophic lateral sclerosis remains to be fully elucidated, although inhibition of glutamatergic transmission and modulation of Na+ channel function have been proposed. In an attempt to determine the mechanisms by which riluzole exerts neuroprotective effects, in particular to dissect the relative contributions of inhibition of glutamatergic transmission and Na+ channel modulation, the present study utilized a combination of cortical and peripheral axonal excitability approaches to monitor changes in excitability and function in patients with amyotrophic lateral sclerosis. Cortical assessment was undertaken by utilising the threshold tracking transcranial magnetic stimulation (TMS) technique and combined with peripheral axonal excitability studies in 25 patients with amyotrophic lateral sclerosis. Studies were performed at baseline and repeated when patients were receiving riluzole 100 mg/day. At the time of second testing all patients were tolerating the medication well. Motor evoked potential and compound muscle action potential responses were recorded over the abductor pollicis brevis muscle. At baseline, features of cortical hyperexcitability were evident in patients with amyotrophic lateral sclerosis, indicated by marked reduction in short interval intracortical inhibition (P < 0.001) and cortical silent period duration (P < 0.001), as well as an increase in the motor evoked potential amplitude (P < 0.01). Riluzole therapy partially normalized cortical excitability by significantly increasing short interval intracortical inhibition (short interval intracortical inhibitionbaseline 0.5 ± 1.8%; short interval intracortical inhibitionON riluzole 7.9 ± 1.7%, P < 0.01). In contrast, riluzole did not exert any modulating effect on cortical silent period duration (P = 0.45) or motor evoked potential amplitude (P = 0.31). In terms of peripheral nerve function, axonal excitability studies established that, relative to control subjects, patients with amyotrophic lateral sclerosis had significant increases in depolarizing threshold electrotonus [amyotrophic lateral sclerosisbaseline TEd (90-100 ms) 49.1 ± 1.8%; controlsTEd (90-100 ms) 45.2 ± 0.6%, P < 0.01] and superexcitability (amyotrophic lateral sclerosisbaseline 30.1 ± 2.3%; control subjects 23.4 ± 1.0%, P < 0.01) at baseline. Following institution of riluzole therapy there was a significant reduction in superexcitability (amyotrophic lateral sclerosisbaseline 30.1 ± 2.3%; amyotrophic lateral sclerosisON riluzole 27.3 ± 2.3%, P < 0.05) and refractoriness at 2 ms (amyotrophic lateral sclerosisbaseline 98.7 ± 10.7%; amyotrophic lateral sclerosisON riluzole 67.8 ± 9.3%, P < 0.001). In conclusion, the present study has established that riluzole exerts effects on both central and peripheral nerve function, interpreted as partial normalization of cortical hyperexcitability and reduction of transient Na+ conductances. Taken together, these findings suggest that the neuroprotective effects of riluzole in amyotrophic lateral sclerosis are complex, with evidence of independent effects across both compartments of the nervous system.
Collapse
Affiliation(s)
- Steve Vucic
- Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW 2031, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Bae JS, Simon NG, Menon P, Vucic S, Kiernan MC. The puzzling case of hyperexcitability in amyotrophic lateral sclerosis. J Clin Neurol 2013; 9:65-74. [PMID: 23626643 PMCID: PMC3633193 DOI: 10.3988/jcn.2013.9.2.65] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 12/11/2022] Open
Abstract
The development of hyperexcitability in amyotrophic lateral sclerosis (ALS) is a well-known phenomenon. Despite controversy as to the underlying mechanisms, cortical hyperexcitability appears to be closely related to the interplay between excitatory corticomotoneurons and inhibitory interneurons. Hyperexcitability is not a static phenomenon but rather shows a pattern of progression in a spatiotemporal aspect. Cortical hyperexcitability may serve as a trigger to the development of anterior horn cell degeneration through a 'dying forward' process. Hyperexcitability appears to develop during the early disease stages and gradually disappears in the advanced stages of the disease, linked to the destruction of corticomotorneuronal pathways. As such, a more precise interpretation of these unique processes may provide new insight regarding the pathophysiology of ALS and its clinical features. Recently developed technologies such as threshold tracking transcranial magnetic stimulation and automated nerve excitability tests have provided some clues about underlying pathophysiological processes linked to hyperexcitability. Additionally, these novel techniques have enabled clinicians to use the specific finding of hyperexcitability as a useful diagnostic biomarker, enabling clarification of various ALS-mimic syndromes, and the prediction of disease development in pre-symptomatic carriers of familial ALS. In terms of nerve excitability tests for peripheral nerves, an increase in persistent Na+ conductances has been identified as a major determinant of peripheral hyperexcitability in ALS, inversely correlated with the survival in ALS. As such, the present Review will focus primarily on the puzzling theory of hyperexcitability in ALS and summarize clinical and pathophysiological implications for current and future ALS research.
Collapse
Affiliation(s)
- Jong Seok Bae
- Department of Neurology, College of Medicine, Inje University, Busan, Korea. ; Neuroscience Research Australia, Sydney, Australia
| | | | | | | | | |
Collapse
|
19
|
Yamamura O, Nakachi R, Ikawa M, Hamano T, Yoneda M, Yamashita Y. [Medical cooperation using IT networks--From the medical care experience of a patient with terminal amyotrophic lateral sclerosis (ALS)]. Rinsho Shinkeigaku 2013; 53:29-32. [PMID: 23328063 DOI: 10.5692/clinicalneurol.53.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have created an IT network with a chat feature and have provided at-home medical care to one ALS patient through hospital-home cooperation. The IT network was operated by staff involved in hospital and at-home medical care, who recorded the details of the medical care they provided in the chat server installed at the University of Fukui Hospital via cellular phones or personal computers. During the 51-day operating period of the network, information was entered 118 times; all staff could browse this information. Hospital staff supported home medical care staff by sending replies to the questions of home staff. This experience suggested that the use of the IT network could increase the level of contribution by neurology specialists in home medical care.
Collapse
Affiliation(s)
- Osamu Yamamura
- Department of Neurology, Faculty of Medical Science, University of Fukui Hospital
| | | | | | | | | | | |
Collapse
|
20
|
Over-expression of N-type calcium channels in cortical neurons from a mouse model of Amyotrophic Lateral Sclerosis. Exp Neurol 2012; 247:349-58. [PMID: 23142186 DOI: 10.1016/j.expneurol.2012.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 12/13/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) mediate calcium entry into neuronal cells in response to membrane depolarisation and play an essential role in a variety of physiological processes. In Amyotrophic Lateral Sclerosis (ALS), a fatal neurodegenerative disease caused by motor neuron degeneration in the brain and spinal cord, intracellular calcium dysregulation has been shown, while no studies have been carried out on VGCCs. Here we show that the subtype N-type Ca(2+) channels are over expressed in G93A cultured cortical neurons and in motor cortex of G93A mice compared to Controls. In fact, by western blotting, immunocytochemical and electrophysiological experiments, we observe higher membrane expression of N-type Ca(2+) channels in G93A neurons compared to Controls. G93A cortical neurons filled with calcium-sensitive dye Fura-2, show a net calcium entry during membrane depolarization that is significantly higher compared to Control. Analysis of neuronal vitality following the exposure of neurons to a high K(+) concentration (25 mM, 5h), shows a significant reduction of G93A cellular survival compared to Controls. N-type channels are involved in the G93A higher mortality because ω-conotoxin GVIA (1 μM), which selectively blocks these channels, is able to abolish the higher G93A mortality when added to the external medium. These data provide robust evidence for an excess of N-type Ca(2+) expression in G93A cortical neurons which induces a higher mortality following membrane depolarization. These results may be central to the understanding of pathogenic pathways in ALS and provide novel molecular targets for the design of rational therapies for the ALS disorder.
Collapse
|
21
|
Neural precursors (NPCs) from adult L967Q mice display early commitment to "in vitro" neuronal differentiation and hyperexcitability. Exp Neurol 2012; 236:307-18. [PMID: 22634210 DOI: 10.1016/j.expneurol.2012.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 12/12/2022]
Abstract
The pathogenic factors leading to selective degeneration of motoneurons in ALS are not yet understood. However, altered functionality of voltage-dependent Na(+) channels may play a role since cortical hyperexcitability was described in ALS patients and riluzole, the only drug approved to treat ALS, seems to decrease glutamate release via blockade or inactivation of voltage-dependent Na(+) channels. The wobbler mouse, a murine model of motoneuron degeneration, shares some of the clinical features of human ALS. At early stages of the wobbler disease, increased cortical hyperexcitability was observed. Moreover, riluzole reduced motoneuron loss and muscular atrophy in treated wobbler mice. Here, we focussed our attention on specific electrophysiological properties, like voltage-activated Na(+) currents and underlying regenerative electrical activity, as read-outs of the neuronal maturation process of neural stem/progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of adult early symptomatic wobbler mice. In self-renewal conditions, the rate of wobbler NPC proliferation "in vitro" was 30% lower than that of healthy mice. Conversely, the number of wobbler NPCs displaying early neuronal commitment and action potentials was significantly higher. Upon switching from proliferative to differentiative conditions, NPCs underwent significant changes in the key properties of voltage gated Na(+) currents. The most notable finding, in cells with neuronal morphology, was an increase in Na(+) current density that strictly correlated with an increased probability to generate action potentials. This feature was remarkably more pronounced in neurons differentiated from wobbler NPCs that upon sustained stimulation, displayed short trains of pathological facilitation. In agreement with this result, an increase in the number of c-Fos positive cells, a surrogate marker of neuronal network activation, was observed in the mesial cortex of the wobbler mice "in situ". Thus these findings, all together, suggest that a state of early neuronal hyperexcitability may be a major contributor of motoneuron vulnerability.
Collapse
|
22
|
Vaccaro A, Tauffenberger A, Aggad D, Rouleau G, Drapeau P, Parker JA. Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS One 2012; 7:e31321. [PMID: 22363618 PMCID: PMC3283630 DOI: 10.1371/journal.pone.0031321] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/05/2012] [Indexed: 12/12/2022] Open
Abstract
Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- The Research Centre of the University of Montreal Hospital Centre, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Arnaud Tauffenberger
- The Research Centre of the University of Montreal Hospital Centre, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Dina Aggad
- The Research Centre of the University of Montreal Hospital Centre, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Guy Rouleau
- The Research Centre of the University of Montreal Hospital Centre, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Drapeau
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - J. Alex Parker
- The Research Centre of the University of Montreal Hospital Centre, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
23
|
Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 2011; 17:4-31. [PMID: 20236142 DOI: 10.1111/j.1755-5949.2009.00116.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of adults which preferentially attacks the neuromotor system. Riluzole has been used as the only approved treatment for amyotrophic lateral sclerosis since 1995, but its mechanism(s) of action in slowing the progression of this disease remain obscure. Searching PubMed for "riluzole" found 705 articles published between January 1996 and June 2009. A systematic review of this literature found that riluzole had a wide range of effects on factors influencing neural activity in general, and the neuromotor system in particular. These effects occurred over a large dose range (<1 μM to >1 mM). Reported neural effects of riluzole included (in approximate ascending order of dose range): inhibition of persistent Na(+) current = inhibition of repetitive firing < potentiation of calcium-dependent K(+) current < inhibition of neurotransmitter release < inhibition of fast Na(+) current < inhibition of voltage-gated Ca(2+) current = promotion of neuronal survival or growth factors < inhibition of voltage-gated K(+) current = modulation of two-pore K(+) current = modulation of ligand-gated neurotransmitter receptors = potentiation of glutamate transporters. Only the first four of these effects commonly occurred at clinically relevant concentrations of riluzole (plasma levels of 1-2 μM with three- to four-fold higher concentrations in brain tissue). Treatment of human ALS patients or transgenic rodent models of ALS with riluzole most commonly produced a modest but significant extension of lifespan. Riluzole treatment was well tolerated in humans and animals. In animals, despite in vitro evidence that riluzole may inhibit rhythmic motor behaviors, in vivo administration of riluzole produced relatively minor effects on normal respiration parameters, but inhibited hypoxia-induced gasping. This effect may have implications for the management of hypoventilation and sleep-disordered breathing during end-stage ALS in humans.
Collapse
Affiliation(s)
- Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld. 4072, Australia.
| |
Collapse
|
24
|
Cortical excitability of amyotrophic lateral sclerosis: Transcranial magnetic stimulation study. Neurophysiol Clin 2011; 41:73-9. [DOI: 10.1016/j.neucli.2011.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/26/2011] [Accepted: 03/21/2011] [Indexed: 12/13/2022] Open
|
25
|
Kollewe K, Münte TF, Samii A, Dengler R, Petri S, Mohammadi B. Patterns of cortical activity differ in ALS patients with limb and/or bulbar involvement depending on motor tasks. J Neurol 2010; 258:804-10. [DOI: 10.1007/s00415-010-5842-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 11/24/2022]
|
26
|
Nieto-Gonzalez JL, Moser J, Lauritzen M, Schmitt-John T, Jensen K. Reduced GABAergic Inhibition Explains Cortical Hyperexcitability in the Wobbler Mouse Model of ALS. Cereb Cortex 2010; 21:625-35. [DOI: 10.1093/cercor/bhq134] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Long-term motor cortex stimulation for amyotrophic lateral sclerosis. Brain Stimul 2009; 3:22-7. [PMID: 20633427 DOI: 10.1016/j.brs.2009.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/27/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Motor cortex stimulation has been proposed for treatment of amyotrophic lateral sclerosis (ALS) and preliminary studies have reported a slight reduction of disease progression using both invasive and noninvasive repetitive stimulation of the motor cortex. OBJECTIVE The aim of this proof of principle study was to investigate the effects of motor cortex stimulation performed for a prolonged period (about 2 years) on ALS progression. METHODS Two patients were included in the study; the first patient was treated with monthly cycles of repetitive transcranial magnetic stimulation (rTMS) and the second one was treated with chronic epidural motor cortex stimulation. The rate of progression of the disease before and during treatment was compared. RESULTS The treatments were well tolerated by the patients. Both patients deteriorated during treatment; however, the patient treated with rTMS showed a slight reduction in deterioration rate. CONCLUSIONS Although we cannot be sure whether the effects observed in the patient treated with rTMS can be attributed to this form of stimulation, our study set the groundwork for possible future studies investigating the effects of rTMS, for a prolonged period, on a larger group of ALS patients.
Collapse
|
28
|
Attarian S, Pouget J, Schmied A. Changes in cortically induced inhibition in amyotrophic lateral sclerosis with time. Muscle Nerve 2009; 39:310-7. [PMID: 19208411 DOI: 10.1002/mus.21137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Changes in intracortical inhibition have been detected by means of paired-pulse transcranial magnetic stimulation (TMS) based on electromyographic recordings in many neurological or psychiatric disorders, including amyotrophic lateral sclerosis (ALS). By contrast, inhibitory responses have been generally overlooked in single motor unit (MU) studies in patients with ALS. The aim of this study was to investigate the TMS-induced inhibitory responses of single MUs in peristimulus time histograms and the changes observed with time. For this purpose, 263 MUs were tested in 10 ALS patients in two to four recording sessions. Upon subdividing the data into epochs corresponding to mean disease durations of 12, 20, 32, 43, and 168 months, we found that inhibitory responses occurred more frequently than normal throughout the course of the disease and were stronger than normal during the first year after disease onset. This finding argues against the hypothesis that loss of inhibition may be part of the pathogenic process in ALS.
Collapse
Affiliation(s)
- Shahram Attarian
- Department of Neurology and Neuromuscular Diseases, CHU La Timone, 264 rue Saint-Pierre, 13385 Marseille, France.
| | | | | |
Collapse
|
29
|
Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C. Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 2009; 215:368-79. [DOI: 10.1016/j.expneurol.2008.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/06/2008] [Accepted: 11/08/2008] [Indexed: 12/11/2022]
|
30
|
Costa HJZR, da Silva CF, Costa MP, Lazarini PR. Evaluation of the systemic use of riluzole in post-traumatic facial nerve regeneration: experimental study in rabbits. Acta Otolaryngol 2007; 127:1222-5. [PMID: 17851939 DOI: 10.1080/00016480701203982] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSIONS Riluzole promoted increase and/or preservation of axon density in the animals treated with this drug as compared to the control group; it did not increase the mean diameter of facial nerve fibres as compared to the non-treated group; and it did not provide a better functional motor recovery than in the control group. OBJECTIVE Traumatic peripheral facial paralysis is a frequent affection. In incomplete nerve injuries, systemic drugs acting on regeneration may decrease the patient's period of morbidity. This study aimed to determine the effect of the drug riluzole on regeneration of the facial nerve of rabbits submitted to post-traumatic facial paralysis. MATERIALS AND METHODS Eighteen rabbits were submitted to compression of the facial nerve and divided into control (A) and treated (B) groups. The animals were sacrificed 4 weeks after the injury and their nerves were studied regarding density of myelinated axons and measure of external axon diameters. RESULTS Partial functional recovery was observed within 2 weeks and complete recovery 5 weeks after injury. Mean neural density was 12,679.7 axons/mm2 (SD+/-237.5) in group A, and 19,073.8 axons/mm2 (SD+/-3549.9) in group B. Group A presented less than two-thirds the density of group B. There was no statistical difference in axon diameters between the studied groups.
Collapse
|
31
|
Guatteo E, Carunchio I, Pieri M, Albo F, Canu N, Mercuri NB, Zona C. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels' activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol Dis 2007; 28:90-100. [PMID: 17706428 DOI: 10.1016/j.nbd.2007.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/28/2007] [Accepted: 07/01/2007] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem and motor cortex. By combining electrophysiological recordings with imaging techniques, clearance/buffering capacity of cultured spinal cord motor neurons after a calcium accumulation has been analyzed in response to AMPA receptors' (AMPARs') activation and to depolarizing stimuli in a genetic mouse model of ALS (G93A). Our studies demonstrate that the amplitude of the calcium signal in response to AMPARs' or voltage-dependent calcium channels' activation is not significantly different in controls and G93A motor neurons. On the contrary, in G93A motor neurons, the [Ca(2+)](i) recovery to basal level is significantly slower compared to control neurons following AMPARs but not voltage-dependent calcium channels' activation. This difference was not observed in G93A cultured cortical neurons. This observation is the first to indicate a specific alteration of the calcium clearance linked to AMPA receptors' activation in G93A motor neurons and the involvement of AMPA receptor regulatory proteins controlling both AMPA receptor functionality and the sequence of events connected to them.
Collapse
Affiliation(s)
- Ezia Guatteo
- Fondazione S. Lucia, Centro Europeo Ricerca sul Cervello, Via del Fosso di Fiorano, 00173 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Lorenzo LE, Barbe A, Portalier P, Fritschy JM, Bras H. Differential expression of GABAA and glycine receptors in ALS-resistant vs. ALS-vulnerable motoneurons: possible implications for selective vulnerability of motoneurons. Eur J Neurosci 2007; 23:3161-70. [PMID: 16820006 DOI: 10.1111/j.1460-9568.2006.04863.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Summary Amyotrophic lateral sclerosis (ALS) is a devastating motoneuronal degenerative disease, which is inevitably fatal in adults. ALS is characterized by an extensive loss of motoneurons in the cerebrospinal axis, except for those motoneurons that control eye movements and bladder contraction. The reason for this selectivity is not known. Systematic differences have been found in the organization of excitatory synaptic transmission in ALS-resistant vs. ALS-susceptible motor nuclei. However, although motoneurons express high levels of glycine receptors (GlyR) and GABA(A) receptors (GABA(A)R), no such studies have been carried out yet for inhibitory synaptic transmission. In this study, we compared the subunit composition, patterns of expression, density and synaptic localization of inhibitory synaptic receptors in ALS-resistant (oculomotor, trochlear and abducens) and ALS-vulnerable motoneurons (trigeminal, facial and hypoglossi). Triple immunofluorescent stainings of the major GABA(A)R subunits (alpha1, alpha2, alpha3, and alpha5), the GlyR alpha1 subunit and gephyrin, were visualized by confocal microscopy and analysed quantitatively. A strong correlation was observed between the vulnerability of motoneurons and the subunit composition of GABA(A)R, the GlyR/GABA(A)R density ratios and the incidence of synaptic vs. extrasynaptic GABA(A)R. These differences contrast strikingly with the uniform gephyrin cluster density and synaptic GlyR levels recorded in all motor nuclei examined. These results suggest that the specific patterns of inhibitory receptor organization observed might reflect functional differences that are relevant to the physiopathology of ALS.
Collapse
|
33
|
Petri S, Kollewe K, Grothe C, Hori A, Dengler R, Bufler J, Krampfl K. GABA(A)-receptor mRNA expression in the prefrontal and temporal cortex of ALS patients. J Neurol Sci 2006; 250:124-32. [PMID: 17011586 DOI: 10.1016/j.jns.2006.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 08/04/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022]
Abstract
There is evidence that excitotoxic cell death is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). Electrophysiological and histological studies support the pathophysiological concept of an impaired inhibitory, namely GABAergic, control of the motoneurons in the cerebral cortex of ALS patients. Recently, pathological, neuropsychological and functional imaging data have challenged the view that ALS is a disorder restricted to the motor system. The aim of our study was to investigate the expression of the most abundant GABA(A)-receptor subunit mRNAs and the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) in the prefrontal, temporal, occipital and cerebellar cortex of ALS patients compared to tissue of control persons. We performed in situ hybridization histochemistry (ISH) on human post-mortem cortex sections of ALS patients (n=5) and age-matched controls with no history of neurological disease (n=5). In the prefrontal and temporal cortex of ALS patients, we detected significantly reduced mRNA expression of the alpha1-subunit, while the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) was significantly upregulated in these regions. In the occipital and cerebellar cortex, we did not see disease-specific differences of the mRNA expression of the investigated subunits.
Collapse
Affiliation(s)
- Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30623 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Mohammadi B, Krampfl K, Petri S, Bogdanova D, Kossev A, Bufler J, Dengler R. Selective and nonselective benzodiazepine agonists have different effects on motor cortex excitability. Muscle Nerve 2006; 33:778-84. [PMID: 16598788 DOI: 10.1002/mus.20531] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a useful method to study pharmacological effects on motor cortex excitability. Zolpidem is a selective agonist of the benzodiazepine receptor subtype BZ1 and has a distinct pharmacological profile compared to diazepam. To study the different effects of these two drugs on the cortical inhibitory system, TMS was performed before and after administration of a single oral dose of zolpidem (10 mg) and diazepam (5 mg) in six healthy volunteers. TMS tests included the determination of resting and active motor threshold (MT) and measurements of the amplitudes of motor evoked potentials, intracortical facilitation (ICF), short-latency intracortical inhibition (SICI), and long-latency intracortical inhibition (LICI), and determination of the cortical silent period (CSP). Both drugs were without effect on the active or resting MT and decreased the ICF. Prolongation of the CSP and enhancement of LICI only in the presence of zolpidem point to a specific BZ1-related mechanism underlying the long-lasting component of cortical inhibition. This selective modulation of the CSP and the LICI points to a specific role of BZ1 receptors in the control of inhibitory neuronal loops within the primary motor cortex.
Collapse
Affiliation(s)
- Bahram Mohammadi
- Department of Neurology and Clinical Neurophysiology, Medical School of Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
OBJECTIVE To investigate motor cortex excitability in stroke patients and explore excitability changes induced by an intense physiotherapy. METHODS We studied 12 chronic stroke patients (6 cortical, 6 subcortical lesions) before and after participation in 12 days of constraint-induced movement therapy. Transcranial magnetic stimulation was applied to test intracortical inhibition (ICI), intracortical facilitation, silent periods, amplitudes of motor evoked potentials, and motor thresholds. Motor function was assessed by the Motor Activity Log, the Wolf Motor Function Test, and the Modified Ashworth Scale for spasticity. RESULTS Motor evoked potential amplitudes and motor thresholds were inversely correlated, indicating that both parameters reflect the function of corticospinal pathways. Before therapy, a motor cortex disinhibition was found in the affected hemisphere. This disinhibition was stronger in patients with cortical lesions. The amount of disinhibition was correlated with the degree of spasticity. After therapy, ICI changes were more pronounced in the affected hemisphere compared with the unaffected side. Both ICI decreases and increases were observed. Motor function tests indicated an improvement in all patients. CONCLUSIONS Motor cortical disinhibition is present in chronic stroke patients. Therapy-associated changes of motor cortex excitability mainly occur in the lesioned hemisphere by up-regulation or down-regulation of ICI. We replicate that constraint-induced movement therapy improves motor functions in the chronic stage after stroke.
Collapse
Affiliation(s)
- Joachim Liepert
- Department of Neurology, University Hospital Eppendorf, Hamburg, Germany.
| |
Collapse
|
36
|
Su TZ, Feng MR, Weber ML. Mediation of Highly Concentrative Uptake of Pregabalin by L-Type Amino Acid Transport in Chinese Hamster Ovary and Caco-2 Cells. J Pharmacol Exp Ther 2005; 313:1406-15. [PMID: 15769862 DOI: 10.1124/jpet.104.082255] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pregabalin (PGB) is a novel drug under development for the treatment of epilepsy, neuropathic pain, fibromyalgia, and generalized anxiety disorder. In this study, we investigated PGB transport in rats, mammalian cell lines, and Xenopus laevis oocytes. In contrast to gabapentin (GBP), PGB absorption in rats showed unique linear pharmacokinetics. PGB entered CHO and Caco-2 cells predominately via Na(+)-independent processes. Uptake of PGB was mutually exclusive with leucine, GBP and 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid, the substrates preferential for system L. The preloaded PGB in CHO cells was exchangeable with leucine, but at a lower exchange rate than that of leucine and GBP. Dixon plots showed competitive inhibition of leucine uptake by PGB, with a K(i) value very close to the K(m) value for PGB uptake (377 versus 363 microM). At an extracellular concentration of 300 microM, the intracellular PGB concentration in CHO cells reached 1.5- and 23-fold higher than that of GBP and leucine, respectively. In contrast, at clinically relevant concentrations, PGB seemed not to interact with GABA transport in GAT1, GAT2, and GAT3 cell lines, system y(+), b(0,+), B(0,+), and B(0) transport activities in Caco-2 and NBL-1 cells, and the b(0,+)-like transport activity in rBAT cRNA-injected X. laevis oocytes. Taken together, these results suggest that L-type transport is the major transport route for PGB and GBP uptake in mammalian cells. The differential affinity of PGB and GBP at L-type system leads to more concentrative accumulation of PGB than GBP, which may facilitate PGB transmembrane absorption in vivo.
Collapse
Affiliation(s)
- T Z Su
- Department of Molecular Sciences, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
37
|
Weiss T, Miltner WHR, Liepert J, Meissner W, Taub E. Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block. Eur J Neurosci 2004; 20:3413-23. [PMID: 15610174 DOI: 10.1111/j.1460-9568.2004.03790.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mature human primary somatosensory cortex displays a striking plastic capacity to reorganize itself in response to changes in sensory input. Following the elimination of afferent return, produced by either amputation, deafferentation by dorsal rhizotomy, or nerve block, there is a well-known but little-understood 'invasion' of the deafferented region of the brain by the cortical representation zones of still-intact portions of the brain adjacent to it. We report here that within an hour of abolishing sensation from the radial and medial three-quarters of the hand by pharmacological blockade of the radial and median nerves, magnetic source imaging showed that the cortical representation of the little finger and the skin beneath the lower lip, whose intact cortical representation zones are adjacent to the deafferented region, had moved closer together, presumably because of their expansion across the deafferented area. A paired-pulse transcranial magnetic stimulation procedure revealed a motor cortex disinhibition for two muscles supplied by the unaffected ulnar nerve. In addition, two notable perceptual changes were observed: increased two-point discrimination ability near the lip and mislocalization of touch of the intact ulnar portion of the fourth finger to the neighbouring third finger whose nerve supply was blocked. We suggest that disinhibition within the somatosensory system as a functional correlate for the known enlargement of cortical representation zones might account for not only the 'invasion' phenomenon, but also for the observed behavioural correlates of the nerve block.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Biological and Clinical Psychology, Friedrich-Schiller-University Jena, Am Steiger 3 Haus 1, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
38
|
Bonifazi M, Ginanneschi F, della Volpe R, Rossi A. Effects of gonadal steroids on the input–output relationship of the corticospinal pathway in humans. Brain Res 2004; 1011:187-94. [PMID: 15157805 DOI: 10.1016/j.brainres.2004.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
Most of our knowledge about gonadal steroid effects on the nervous system come from studies of limbic structures, while virtually nothing is known about the action of these hormones on the motor system. We carried out experiments on six healthy volunteer males to determine the threshold and gain of the input-output relationship (i.e. stimulus intensity vs. response size) of the corticospinal motoneurones in relation to the transient increase of gonadal steroids induced by a single intramuscular injection of human chorionic gonadotropin (hCG). The motor cortex was excited by focal transcranial magnetic stimuli and the evoked responses from the first dorsal interosseous (FDI) were recorded with surface electromyographic electrodes. In some experiments, the threshold and recruitment curve of the soleus H reflex were determined to assess the gonadal steroid effects on spinal motoneurones. All the subjects showed a significant decrease of cortical motor threshold concomitant with a significant increase of testosterone and oestradiol plasma concentrations. By contrast, there was no significant change of the slope of the curve expressing the relationship between the intensity of magnetic stimulation and the size of the muscle response. Both the threshold and slope of the H reflex were unaffected by the gonadal steroid levels. Latencies of the maximal FDI response to cortical and cervical magnetic stimulation were also unmodified. We conclude that gonadal steroids are involved in regulating the threshold of corticospinal motoneurones in humans. Our observations confirm that the threshold and gain of corticospinal motoneurones are determined by different neural mechanisms.
Collapse
Affiliation(s)
- Marco Bonifazi
- Dipartimento di Fisiologia, Università degli Studi di Siena, 53100, Siena, Italy
| | | | | | | |
Collapse
|
39
|
Maekawa S, Al-Sarraj S, Kibble M, Landau S, Parnavelas J, Cotter D, Everall I, Leigh PN. Cortical selective vulnerability in motor neuron disease: a morphometric study. ACTA ACUST UNITED AC 2004; 127:1237-51. [PMID: 15130949 DOI: 10.1093/brain/awh132] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroimaging and neuropsychological studies have revealed that the primary motor cortex (PMC) and the extramotor cortical areas are functionally abnormal in motor neuron disease (MND, amyotrophic lateral sclerosis), but the nature of the cortical lesions that underlie these changes is poorly understood. In particular, there have been few attempts to quantify neuronal loss in the PMC and in other cortical areas in MND. We used SMI-32, an antibody against an epitope on non-phosphorylated neurofilament heavy chain, to analyse the size and density of SMI-32-positive cortical pyramidal neurons in layer V of the PMC, the dorsolateral prefrontal cortex (DLPFC) and the supragenual anterior cingulate cortex (ACC) in 13 MND and eight control subjects. There was a statistically significant reduction in the density of SMI-32-immunoreactive (IR) pyramidal neurons within cortical layer V in the PMC, the DLPFC and the ACC in MND subjects compared with controls [t (19) = 2.91, P = 0.009; estimated reduction 25%; 95% CI = 8%, 40%]. In addition, we studied the density and size of interneurons immunoreactive for the calcium-binding proteins calbindin-D(28K) (CB), parvalbumin (PV) and calretinin (CR) in the same areas (PMC, DLPFC and ACC). Statistically significant differences in the densities of CB-IR neurons were observed within cortical layers V (P = 0.003) and VI (P = 0.001) in MND cases compared with controls. The densities of CR- and PV-IR neurons were not significantly different between MND and control cases, although there were trends towards reductions of CR-IR neuronal density within the same layers and of PV-IR neuronal density within cortical layer VI. Loss of pyramidal neurons and of GABAergic interneurons is more widespread than has been appreciated and is present in areas associated with neuroimaging and cognitive abnormalities in MND. These findings support the notion that MND should be considered a multisystem disorder.
Collapse
Affiliation(s)
- S Maekawa
- Department of Neurology, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Caramia MD, Palmieri MG, Desiato MT, Boffa L, Galizia P, Rossini PM, Centonze D, Bernardi G. Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clin Neurophysiol 2004; 115:956-65. [PMID: 15003779 DOI: 10.1016/j.clinph.2003.11.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Recent functional and imaging studies have substantially contributed to extend the concept of multiple sclerosis (MS), classically regarded as a disease limited to the myelin axonal sheath. Several findings, in fact, point to a parallel involvement of neuronal components of the central nervous system (CNS) in the course of MS. In the present study, therefore, we explored, in MS patients, some characteristics of central motor pathways related to changes of neuronal excitability as measured using transcranial magnetic stimulation (TMS). METHODS Seventy-nine patients affected by relapsing-remitting (RR) MS were examined using single and paired TMS in order to assess excitability changes in the hand motor cortex occurring during relapse and/or remission of the disease. The analyzed parameters were: motor-evoked potential (MEP) threshold, silent period (SP), intracortical inhibition (ICI) with paired pulses from 1 to 6 ms interstimulus intervals (ISIs), and central motor conduction time (CMCT). RESULTS The analysis of variance exhibited a strong correlation (P<0.001) between the clinical phase and the type of excitability changes: 'relapsing' patients showed increased threshold and reduced SP duration. 'Relapsing' patients also displayed a significant lack of normal intracortical inhibition (ICI). By contrast, 'remitting' patients showed a significant SP prolongation with normal motor thresholds. CONCLUSIONS The present findings reveal changes in cortical excitability that might play a role in the pathophysiology of MS symptoms. In particular, the relapsing phase of MS has been found to be associated with cortical hyperexcitability irrespective of the site of clinical manifestation or new plaque formation. These results might help to explain the puzzling picture of neurological symptoms observed in MS patients during different phases of the disease. SIGNIFICANCE Alterations of neuronal components of the CNS play a role in MS.
Collapse
Affiliation(s)
- M Donatella Caramia
- Dipartimento di Neuroscienze, Clinica Neurologica, Università di Tor Vergata, and Fondazione S Lucia, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
OBJECTIVE To explore whether patients with myopathy present changes in motoneuronal excitability. METHODS Patients with well-defined myopathies were studied with single and paired pulse transcranial magnetic stimulations and electrical nerve stimulations to explore neuronal motor excitability. Motor-evoked potentials were recorded from the clinically unaffected first dorsal interosseous muscle (n=10) and the paretic deltoid muscle (n=8). RESULTS Compared to an age-matched healthy control group, myopathic patients showed a reduction of intracortical inhibition, enhancements of alpha-motoneuron excitability and increased amplitudes of motor-evoked potentials during target muscle contraction. These alterations were present in clinically affected and clinically unaffected muscles. CONCLUSION In myopathy, nervous system excitability may be altered, presenting as a motor disinhibition on cortical and subcortical levels.
Collapse
Affiliation(s)
- Joachim Liepert
- Department of Neurology, University of Hamburg, University Hospital Eppendorf, Martini Strasse 52, D-20246 Hamburg, Germany.
| | | | | |
Collapse
|
42
|
Pieri M, Albo F, Gaetti C, Spalloni A, Bengtson CP, Longone P, Cavalcanti S, Zona C. Altered excitability of motor neurons in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett 2003; 351:153-6. [PMID: 14623129 DOI: 10.1016/j.neulet.2003.07.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Various evidence suggests that amyotrophic lateral sclerosis (ALS) selectively affects motor neuron functioning, but electrophysiological alterations of single motor neurons in ALS remains to be documented. In the present work, the excitability of motor neurons has been tested in a transgenic mouse model of a familial form of ALS, associated with a mutation in Cu,Zn superoxide dismutase (Gly(93)-->Ala). Patch-clamp recordings of membrane potential in transgenic mice motor neurons showed that they fire with increased frequency and shorter duration compared to motor neurons from control mice. The passive membrane properties of these neurons were equivalent however. Such results suggest that an altered motor neuron excitability accompanies an ALS associated mutation and that may contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Massimo Pieri
- Department of Neuroscience, University of Rome "Tor Vergata", Via Montpellier, 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive tool for the electrical stimulation of neural tissue, including cerebral cortex, spinal roots, and cranial and peripheral nerves. TMS can be applied as single pulses of stimulation, pairs of stimuli separated by variable intervals to the same or different brain areas, or as trains of repetitive stimuli at various frequencies. Single stimuli can depolarise neurons and evoke measurable effects. Trains of stimuli (repetitive TMS) can modify excitability of the cerebral cortex at the stimulated site and also at remote areas along functional anatomical connections. TMS might provide novel insights into the pathophysiology of the neural circuitry underlying neurological and psychiatric disorders, be developed into clinically useful diagnostic and prognostic tests, and have therapeutic uses in various diseases. This potential is supported by the available studies, but more work is needed to establish the role of TMS in clinical neurology.
Collapse
Affiliation(s)
- Masahito Kobayashi
- Laboratory for Magnetic Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
44
|
Weber M. Emergent Measure for Clinical Trials: TMS - con. AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY, RESEARCH GROUP ON MOTOR NEURON DISEASES 2003; 3 Suppl 1:S113-6. [PMID: 12396828 DOI: 10.1080/146608202320374499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Markus Weber
- Department of Neurology, Kantonsspital St.Gallen, 9007 St.Gallen, Switzerland
| |
Collapse
|
45
|
Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N. Different mechanisms contribute to motor cortex hyperexcitability in amyotrophic lateral sclerosis. Clin Neurophysiol 2002; 113:1688-97. [PMID: 12417221 DOI: 10.1016/s1388-2457(02)00288-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Different physiological approaches demonstrated motor system hyperexcitability in amyotrophic lateral sclerosis (ALS), probably reflecting excitotoxic mechanisms. Transcranial magnetic stimulation (TMS) showed that both increased excitability of corticomotoneurons and reduced intracortical inhibition (ICI) contribute to motor cortex hyperexcitability, but the importance of these factors in inducing this cortical dysfunction is unknown. The aim of the study was to establish how different mechanisms interact to promote motor system hyperexcitability in ALS in relation to clinical features. METHODS The resting motor threshold (RMT), the motor evoked potential (MEP) recruitment curve and the cortical silent period (CSP) to single-pulse TMS were evaluated in 35 patients with ALS. Early ICI and intracortical facilitation (ICF) and late ICI were evaluated by paired TMS. RESULTS The main abnormal TMS findings were: (a) a steeper MEP recruitment curve associated with a lowering of the RMT; (b) reduced or even absent early and late ICI; (c) reduced CSP lengthening with increasing TMS intensity. ICF was not affected. RMT increased and the MEP recruitment curve became less steep with longer disease duration, but they did not correlate with the motor deficit, the type of motoneuron affection and the decrease of ICI. Impairment of early and late ICI were significantly correlated to each other, to disease severity and to clinical evidence of upper motor neuron involvement. CONCLUSIONS Different and partially independent mechanisms contribute to motor cortex hyperexcitability in ALS. The increased gain in MEP recruitment with a lowering of the RMT appears to be a primary event reflecting an increase in the strength of corticospinal projections, probably related to changes in the ion-channel permeability of the neuronal membrane. On the other hand, inhibitory functions linked to multiple neurotransmitter systems decline with disease progression. Both depletion of specific subpopulations of intracortical GABAergic neurons and mechanisms involved in motor cortex reorganization following progressive neuronal loss have been considered to account for the impaired inhibition. The clarification of the importance of these factors in the pathogenesis of ALS may have diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Giampietro Zanette
- Department of Neurological Sciences and Vision, Section of Clinical Neurology, University of Verona, Ospedale Policlinico G.B. Rossi, piazzale Scuro, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Transcranial magnetic stimulation (TMS) has been used increasingly to probe the physiology of the human cortex. Besides measuring directly the cortical excitability in motor and visual systems, this noninvasive method can be used to study short- and long-term cortical plasticity. One possible method to examine basic mechanisms underlying cortical excitability and plasticity in humans is the combination of TMS and pharmacologic interventions. In this review the author describes TMS paradigms used to study mechanisms of plasticity in the intact human motor system and its excitability using pharmacologic methods.
Collapse
|
47
|
Desiato MT, Bernardi G, Hagi H A, Boffa L, Caramia MD. Transcranial magnetic stimulation of motor pathways directed to muscles supplied by cranial nerves in amyotrophic lateral sclerosis. Clin Neurophysiol 2002; 113:132-40. [PMID: 11801435 DOI: 10.1016/s1388-2457(01)00724-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In amyotrophic lateral sclerosis (ALS), transcranial magnetic stimulation (TMS) detects remarkable abnormalities of central motor circuits: cortical excitability threshold, silent period (SP) duration and intra-cortical inhibition. TMS directed to cranio-facial musculature was performed in ALS patients in order: (1) to document the neurophysiological involvement of motor central and peripheral cranial pathways by evaluating changes of threshold and SP; (2) to discover a possible correlation between the clinical picture and abnormal excitability properties. METHODS Motor evoked potentials (MEPs) were recorded from masseter, genioglossus and orbicularis oris muscles of both sides in 25 ALS patients and 25 controls, in response to TMS delivered over the face M1 area and the vertex. RESULTS TMS gave rise to two orders of responses: bilateral MEPs during contraction represented the central responses, and motor action potentials (MAPs) during rest represented the peripheral responses. MEPs were followed by SPs, which increased linearly with increasing TMS intensity (r=0.8). At least one of the analyzed parameters was abnormal in all patients: central abnormalities (increased active threshold, delayed MEPs, reduced SP) were found in 96% of patients, alone or combined with abnormalities of the MAPs (reduced area and/or prolonged latency). The reduction of SP was linearly related to the Norris score (r=0.95). CONCLUSIONS Our study shows that TMS is able to detect the involvement of multiple cranial muscles in ALS. This finding offers often pre-clinical information about the disease picture. Therefore, it can be employed as a valuable means for early diagnosis.
Collapse
Affiliation(s)
- Maria Teresa Desiato
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Ospedale S. Eugenio, Piazzale Umanesimo, 10, 00144 Rome, Italy
| | | | | | | | | |
Collapse
|
48
|
Abstract
In this review, we present evidence for the role of gamma-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABA(A) receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl(-) gradient, reduction in ATP, increase in intracellular Ca(2+), generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABA(A) receptor activity with agonists and allosteric modulators. Some of these strategies are quite efficacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for specific types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.
Collapse
Affiliation(s)
- R D Schwartz-Bloom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
49
|
Mohammadi B, Krampfl K, Moschref H, Dengler R, Bufler J. Interaction of the neuroprotective drug riluzole with GABA(A) and glycine receptor channels. Eur J Pharmacol 2001; 415:135-40. [PMID: 11274991 DOI: 10.1016/s0014-2999(01)00847-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Riluzole is used as therapeutic agent in amyotrophic lateral sclerosis. We investigated the interaction of riluzole with recombinant GABA (gamma-aminobutyric acid)(A) receptor channels (alpha(1)beta(2)gamma(2)-subunits) and glycine receptor channels (alpha(1)beta-subunits) transiently expressed in HEK293 cells. For electrophysiological experiments, the patch-clamp technique in combination with tools for ultrafast solution exchange was used. Saturating concentrations of GABA or glycine were applied with different concentrations of riluzole to outside-out patches containing alpha(1)beta(2)gamma(2) GABA(A) receptor channels or alpha(1)beta-glycine receptor channels on their surface, respectively. The current declined after application of GABA or glycine with three time constants of desensitization to a steady-state current amplitude. Application of riluzole resulted in a shift to fast desensitized states at both receptors. The proportion of the time constants of fast desensitization increased and the time constants of slow desensitization and the steady-state current decreased whereas the maximal current amplitudes were not affected by riluzole. The data of the study demonstrate for the first time interaction of GABAergic and glycinergic currents with riluzole under physiological conditions.
Collapse
Affiliation(s)
- B Mohammadi
- Neurological Department, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | | | | | | |
Collapse
|
50
|
Stefan K, Kunesch E, Benecke R, Classen J. Effects of riluzole on cortical excitability in patients with amyotrophic lateral sclerosis. Ann Neurol 2001. [DOI: 10.1002/ana.107] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|