1
|
Lin W. Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200018. [PMID: 37288166 PMCID: PMC10242408 DOI: 10.1002/ggn2.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/09/2023]
Abstract
The era of next-generation sequencing has increased the pace of gene discovery in the field of pediatric movement disorders. Following the identification of novel disease-causing genes, several studies have aimed to link the molecular and clinical aspects of these disorders. This perspective presents the developing stories of several childhood-onset movement disorders, including paroxysmal kinesigenic dyskinesia, myoclonus-dystonia syndrome, and other monogenic dystonias. These stories illustrate how gene discovery helps focus the research efforts of scientists trying to understand the mechanisms of disease. The genetic diagnosis of these clinical syndromes also helps clarify the associated phenotypic spectra and aids the search for additional disease-causing genes. Collectively, the findings of previous studies have led to increased recognition of the role of the cerebellum in the physiology and pathophysiology of motor control-a common theme in many pediatric movement disorders. To fully exploit the genetic information garnered in the clinical and research arenas, it is crucial that corresponding multi-omics analyses and functional studies also be performed at scale. Hopefully, these integrated efforts will provide us with a more comprehensive understanding of the genetic and neurobiological bases of movement disorders in childhood.
Collapse
Affiliation(s)
- Wei‐Sheng Lin
- Department of PediatricsTaipei Veterans General HospitalTaipei11217Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| |
Collapse
|
2
|
Massimino CR, Portale L, Sapuppo A, Pizzo F, Sciuto L, Romano C, Salafia S, Falsaperla R. PRRT2 Related Epilepsies: A Gene Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
PRRT2 encodes for proline-rich transmembrane protein 2 involved in synaptic vesicle fusion and presynaptic neurotransmitter release. Mutations in human PRRT2 have been related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with choreoathetosis, benign familial infantile epilepsies, and hemiplegic migraine. PRRT2 mutations cause neuronal hyperexcitability, which could be related to basal ganglia or cortical circuits dysfunction, leading to paroxysmal disorders. PRRT2 is expressed in the cerebral cortex, basal ganglia, and cerebellum. Approximately, 90% of pathogenic variants are inherited and 10% are de novo. Paroxysmal attacks in PKD are characterized by dystonia, choreoathetosis, and ballismus. In the benign familial infantile epilepsy (BFIE), seizures are usually focal with or without generalization, usually begin between 3 and 12 months of age and remit by 2 years of age. In 30% of cases of PRRT2-associated PKD, there is an association with BFIE, and this entity is referred to as PKD with infantile convulsions (PKD/IC). PRRT2 mutations are the cause of benign family childhood epilepsy and PKD/IC. On the other hand, PRRT2 mutations do not seem to correlate with other types of epilepsy. The increasing incidence of hemiplegic migraine in families with PRRT2-associated PKD or PKD/IC suggests a common disease pathway, and it is possible to assert that BFIE, paroxysmal kinesigenic dyskinesia, and PKD with IC belong to a continuous disease spectrum of PRRT2-associated diseases.
Collapse
Affiliation(s)
- Carmela Rita Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Romano
- Italian Blind Union, Catania section, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
3
|
Li C, Ma Y, Zhang K, Gu J, Tang F, Chen S, Cao L, Li S, Jin Y. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells. Oncotarget 2018; 7:53611-53627. [PMID: 27449084 PMCID: PMC5288209 DOI: 10.18632/oncotarget.10680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is an episodic movement disorder with autosomal-dominant inheritance and marked variability in clinical manifestations. Proline-rich transmembrane protein 2 (PRRT2) has been identified as a causative gene of PKD, but the molecular mechanism underlying the pathogenesis of PKD still remains a mystery. The phenotypes and transcriptional patterns of the PKD disease need further clarification. Here, we report the generation and neural differentiation of iPSC lines from two familial PKD patients with c.487C>T (p. Gln163X) and c.573dupT (p. Gly192Trpfs*8) PRRT2 mutations, respectively. Notably, an extremely lower efficiency in neural conversion from PKD-iPSCs than control-iPSCs is observed by a step-wise neural differentiation method of dual inhibition of SMAD signaling. Moreover, we show the high expression level of PRRT2 throughout the human brain and the expression pattern of PRRT2 in other human tissues for the first time. To gain molecular insight into the development of the disease, we conduct global gene expression profiling of PKD cells at four different stages of neural induction and identify altered gene expression patterns, which peculiarly reflect dysregulated neural transcriptome signatures and a differentiation tendency to mesodermal development, in comparison to control-iPSCs. Additionally, functional and signaling pathway analyses indicate significantly different cell fate determination between PKD-iPSCs and control-iPSCs. Together, the establishment of PKD-specific in vitro models and the illustration of transcriptome features in PKD cells would certainly help us with better understanding of the defects in neural conversion as well as further investigations in the pathogenesis of the PKD disease.
Collapse
Affiliation(s)
- Chun Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Ma
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Cao
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
4
|
Weber YG, Biskup S, Helbig KL, Von Spiczak S, Lerche H. The role of genetic testing in epilepsy diagnosis and management. Expert Rev Mol Diagn 2017; 17:739-750. [PMID: 28548558 DOI: 10.1080/14737159.2017.1335598] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. More than 500 epilepsy-associated genes have been described in the literature. Most of these genes play an important role in neuronal excitability, cortical development or synaptic transmission. A growing number of genetic variations have implications on diagnosis and prognostic or therapeutic advice in terms of a personalized medicine. Area covered: The review presents the different forms of genetic epilepsies with respect to their underlying genetic and functional pathophysiology and aims to give advice for recommended genetic testing. Moreover, it discusses ethical and legal guidelines, costs and technical limitations which should be considered. Expert commentary: Genetic testing is an important component in the diagnosis and treatment of many forms of epilepsy.
Collapse
Affiliation(s)
- Yvonne G Weber
- a Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research , University of Tübingen , Tubingen , Germany
| | - Saskia Biskup
- b CeGaT GmbH , Center for Genomics and Transcriptomics , Tübingen , Germany
| | - Katherine L Helbig
- c Division of Clinical Genomics , Ambry Genetics , Aliso Viejo , CA , USA
| | - Sarah Von Spiczak
- d Department of Neuropediatrics , University Medical Center Schleswig-Holstein, Christian Albrechts University , Kiel , Germany.,e Northern German Epilepsy Center for Children and Adolescents , Schwentinental-Raisdorf , Germany
| | - Holger Lerche
- a Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research , University of Tübingen , Tubingen , Germany
| |
Collapse
|
5
|
Novel Locus for Paroxysmal Kinesigenic Dyskinesia Mapped to Chromosome 3q28-29. Sci Rep 2016; 6:25790. [PMID: 27173777 PMCID: PMC4865737 DOI: 10.1038/srep25790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is characterized by recurrent and brief attacks of dystonia or chorea precipitated by sudden movements. It can be sporadic or familial. Proline-Rich Transmembrane Protein 2 (PRRT2) has been shown to be a common causative gene of PKD. However, less than 50% of patients with primary PKD harbor mutations in PRRT2. The aim of this study is to use eight families with PKD to identify the pathogenic PRRT2 mutations, or possible novel genetic cause of PKD phenotypes. After extensive clinical investigation, direct sequencing and mutation analysis of PRRT2 were performed on patients from eight PKD families. A genome-wide STR and SNP based linkage analysis was performed in one large family that is negative for pathogenic PRRT2 mutations. Using additional polymorphic markers, we identified a novel gene locus on chromosome 3q in this PRRT2-mutation-negative PKD family. The LOD score for the region between markers D3S1314 and D3S1256 is 3.02 and we proposed to designate this locus as Episodic Kinesigenic Dyskinesia (EKD3). Further studies are needed to identify the causative gene within this locus.
Collapse
|
6
|
Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, Larsen LHG, Eiberg H, Nothnagel M, Thiele H, Altmüller J, Syrbe S, Merkenschlager A, Bast T, Steinhoff B, Nürnberg P, Mang Y, Bakke Møller L, Gellert P, Heron SE, Dibbens LM, Weckhuysen S, Dahl HA, Biskup S, Tommerup N, Hjalgrim H, Lerche H, Beniczky S, Weber YG. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016; 79:428-36. [PMID: 26677014 DOI: 10.1002/ana.24580] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Benign familial infantile seizures (BFIS), paroxysmal kinesigenic dyskinesia (PKD), and their combination-known as infantile convulsions and paroxysmal choreoathetosis (ICCA)-are related autosomal dominant diseases. PRRT2 (proline-rich transmembrane protein 2 gene) has been identified as the major gene in all 3 conditions, found to be mutated in 80 to 90% of familial and 30 to 35% of sporadic cases. METHODS We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed cliniconeurophysiological workup. RESULTS In 3 families with a total of 16 affected members, we identified the same, cosegregating heterozygous missense mutation (c.4447G>A; p.E1483K) in SCN8A, encoding a voltage-gated sodium channel. A founder effect was excluded by linkage analysis. All individuals except 1 had normal cognitive and motor milestones, neuroimaging, and interictal neurological status. Fifteen affected members presented with afebrile focal or generalized tonic-clonic seizures during the first to second year of life; 5 of them experienced single unprovoked seizures later on. One patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal electroencephalogram (EEG) was normal in all cases but 2. Five of 16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered by stretching, motor initiation, or emotional stimuli. In 1 case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum of combined epileptic and dyskinetic syndromes.
Collapse
Affiliation(s)
- Elena Gardella
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Felicitas Becker
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rikke S Møller
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University Hospitals, University of Leipzig, Leipzig, Germany
| | | | - Hans Eiberg
- RC-LINK, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Steffen Syrbe
- Department of Woman and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Andreas Merkenschlager
- Department of Woman and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | | | | | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Yuan Mang
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Pia Gellert
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark
| | - Sarah E Heron
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Leanne M Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | - Saskia Biskup
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Hjalgrim
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sándor Beniczky
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University, Aarhus, Denmark
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum ofPRRT2-associated paroxysmal diseases. Brain 2015; 138:3476-95. [DOI: 10.1093/brain/awv317] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 02/01/2023] Open
|
8
|
Møller RS, Dahl HA, Helbig I. The contribution of next generation sequencing to epilepsy genetics. Expert Rev Mol Diagn 2015; 15:1531-8. [DOI: 10.1586/14737159.2015.1113132] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Abstract
As noted in the separate introduction to this special topic section, episodic and electrical disorders can appear quite different clinically and yet share many overlapping features, including attack precipitants, therapeutic responses, natural history, and the types of genes that cause many of the genetic forms (i.e., ion channel genes). Thus, as we mapped and attempted to clone genes causing other episodic disorders, ion channels were always outstanding candidates when they mapped to the critical region of linkage in such a family. However, some of these disorders do not result from mutations in channels. This realization has opened up large and exciting new areas for the pathogenesis of these disorders. In some cases, the mutations occur in genes of unknown function or without understanding of molecular pathogenesis. Recently, emerging insights into a fascinating group of episodic movement disorders, the paroxysmal dyskinesias, and study of the causative genes and proteins are leading to the emerging concept of episodic electric disorders resulting from synaptic dysfunction. Much work remains to be done, but the field is evolving rapidly. As it does, we have come to realize that the molecular pathogenesis of electrical and episodic disorders is more complex than a scenario in which such disorders are simply due to mutations in the primary determinants of membrane excitability (channels).
Collapse
|
10
|
Brockmann K. Episodic movement disorders: from phenotype to genotype and back. Curr Neurol Neurosci Rep 2014; 13:379. [PMID: 23963607 DOI: 10.1007/s11910-013-0379-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Episodic dyskinetic movement disorders are a heterogeneous group of rare conditions. Paroxysmal dyskinesias constitute the core of this group and usually exhibit normal interepisodic neurologic findings. Contrariwise, episodic dyskinesias occur as a particular feature of complex chronic neurologic disorders. Conjunction of accurate phenotyping with up-to-date methods of molecular genetics recently provided remarkable new insights concerning the genetic causes of episodic dyskinesia. The identification of heterozygous mutations in the PRRT2 gene in paroxysmal kinesigenic dyskinesia as well as in benign familial infantile seizures linked episodic movement disorders with epilepsy. Alternating hemiplegia of childhood, the prototype of a chronic multisystem disease with episodic dyskinesia as a clinical hallmark, was recently found to be caused by heterozygous de novo mutations in the ATP1A3 gene. The clinical spectra of PRRT2 as well as of ATP1A3 mutations are still expanding. This review summarizes new genetic findings and clinical aspects in episodic dyskinesias.
Collapse
Affiliation(s)
- Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, Georg August University Göttingen, Germany.
| |
Collapse
|
11
|
Junewar V, Sahu R, Shukla R. Paroxysmal kinesigenic dyskinesia: a frequently misdiagnosed movement disorder. BMJ Case Rep 2014; 2014:bcr-2014-203681. [PMID: 24569354 DOI: 10.1136/bcr-2014-203681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Vivek Junewar
- Department of Neurology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | | | |
Collapse
|
12
|
Abstract
Epilepsy represents a diverse group of disorders with primary and secondary genetic etiologies, as well as non-genetic causes. As more causative genes are identified, genetic testing is becoming increasingly important in the evaluation and management of epilepsy. This article outlines the clinical approach to epilepsy patients, with emphasis on genetic testing. Specific targeted tests are available for numerous individual genetic causes of epilepsy. Broader screening tests, such as chromosome microarray analysis and whole exome sequencing, have also been developed. As a standardized protocol for genetic testing has not been established, individualized diagnostic approaches to epilepsy patients should be used.
Collapse
Affiliation(s)
- Rohini Coorg
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
13
|
Petrucci S, Valente EM. Genetic issues in the diagnosis of dystonias. Front Neurol 2013; 4:34. [PMID: 23596437 PMCID: PMC3622056 DOI: 10.3389/fneur.2013.00034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/27/2013] [Indexed: 12/29/2022] Open
Abstract
Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting and repetitive movements and abnormal postures. Several causative genes have been identified, but their genetic bases still remain elusive. Primary Torsion Dystonias (PTDs), in which dystonia is the only clinical sign, can be inherited in a monogenic fashion, and many genes and loci have been identified for autosomal dominant (DYT1/TOR1A; DYT6/THAP1; DYT4/TUBB4a; DYT7; DYT13; DYT21; DYT23/CIZ1; DYT24/ANO3; DYT25/GNAL) and recessive (DYT2; DYT17) forms. However most sporadic cases, especially those with late-onset, are likely multifactorial, with genetic and environmental factors interplaying to reach a threshold of disease. At present, genetic counseling of dystonia patients remains a difficult task. Recently non-motor clinical findings in dystonias, new highlights in the pathophysiology of the disease, and the availability of high-throughput genome-wide techniques are proving useful tools to better understand the complexity of PTD genetics. We briefly review the genetic basis of the most common forms of hereditary PTDs, and discuss relevant issues related to molecular diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Simona Petrucci
- Neurogenetics Unit, CSS-Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo, Italy ; Department of Experimental Medicine, "Sapienza" University of Rome Rome, Italy
| | | |
Collapse
|
14
|
Silveira-Moriyama L, Gardiner AR, Meyer E, King MD, Smith M, Rakshi K, Parker A, Mallick AA, Brown R, Vassallo G, Jardine PE, Guerreiro MM, Lees AJ, Houlden H, Kurian MA. Clinical features of childhood-onset paroxysmal kinesigenic dyskinesia with PRRT2 gene mutations. Dev Med Child Neurol 2013; 55:327-34. [PMID: 23363396 DOI: 10.1111/dmcn.12056] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2012] [Indexed: 11/27/2022]
Abstract
AIM To define better the phenotype and genotype of familial and sporadic cases of paroxysmal kinesigenic dyskinesia (PKD) caused by mutations in the PRRT2 gene presenting in the paediatric age group. METHOD We report the detailed clinical and molecular genetic features of 11 patients (six females, five males) with childhood-onset PRRT2-mutation-positive PKD. RESULTS Mean age at disease onset was 8 years 7.5 months (range 5-11y), and clinical presentation was characterized by daily short paroxysmal episodes of dystonia/dyskinesia. Most patients also had non-kinesigenic attacks in addition to the classical movement-induced paroxysmal episodes. One family demonstrated great phenotypic variability with PKD, infantile convulsions, and/or hemiplegic migraine affecting different family members with the same mutation. All patients in whom antiepileptics (carbamazepine/phenytoin) were tried showed a dramatic improvement with complete abolition of dyskinetic episodes. INTERPRETATION Our case series provides a detailed clinical description of patients with PRRT2-PKD, and reports a spectrum of disease-causing mutations, thereby expanding both the clinical phenotype and mutation spectrum of disease.
Collapse
|
15
|
Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, Wali GM, Counihan T, Schapira AH, Spacey SD, Valente EM, Silveira-Moriyama L, Teive HAG, Raskin S, Sander JW, Lees A, Warner T, Kullmann DM, Wood NW, Hanna M, Houlden H. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 2012; 79:2115-21. [PMID: 23077024 DOI: 10.1212/wnl.0b013e3182752c5a] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The proline-rich transmembrane protein (PRRT2) gene was recently identified using exome sequencing as the cause of autosomal dominant paroxysmal kinesigenic dyskinesia (PKD) with or without infantile convulsions (IC) (PKD/IC syndrome). Episodic neurologic disorders, such as epilepsy, migraine, and paroxysmal movement disorders, often coexist and are thought to have a shared channel-related etiology. To investigate further the frequency, spectrum, and phenotype of PRRT2 mutations, we analyzed this gene in 3 large series of episodic neurologic disorders with PKD/IC, episodic ataxia (EA), and hemiplegic migraine (HM). METHODS The PRRT2 gene was sequenced in 58 family probands/sporadic individuals with PKD/IC, 182 with EA, 128 with HM, and 475 UK and 96 Asian controls. RESULTS PRRT2 genetic mutations were identified in 28 out of 58 individuals with PKD/IC (48%), 1/182 individuals with EA, and 1/128 individuals with HM. A number of loss-of-function and coding missense mutations were identified; the most common mutation found was the p.R217Pfs*8 insertion. Males were more frequently affected than females (ratio 52:32). There was a high proportion of PRRT2 mutations found in families and sporadic cases with PKD associated with migraine or HM (10 out of 28). One family had EA with HM and another large family had typical HM alone. CONCLUSIONS This work expands the phenotype of mutations in the PRRT2 gene to include the frequent occurrence of migraine and HM with PKD/IC, and the association of mutations with EA and HM and with familial HM alone. We have also extended the PRRT2 mutation type and frequency in PKD and other episodic neurologic disorders.
Collapse
Affiliation(s)
- Alice R Gardiner
- Department of Molecular Neuroscience and Reta Lila Weston Laboratories, MRC Centre for Neuromuscular Diseases, Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Groffen AJA, Klapwijk T, van Rootselaar AF, Groen JL, Tijssen MAJ. Genetic and phenotypic heterogeneity in sporadic and familial forms of paroxysmal dyskinesia. J Neurol 2012; 260:93-9. [PMID: 22752065 PMCID: PMC3535363 DOI: 10.1007/s00415-012-6592-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/23/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
Abstract
Paroxysmal dyskinesia (PxD) is a group of movement disorders characterized by recurrent episodes of involuntary movements. Familial paroxysmal kinesigenic dyskinesia (PKD) is caused by PRRT2 mutations, but a distinct etiology has been suggested for sporadic PKD. Here we describe a cohort of patients collected from our movement disorders outpatient clinic in the period 1996–2011. Fifteen patients with sporadic PxD and 23 subjects from three pedigrees with familial PKD were screened for mutations in candidate genes. PRRT2 mutations co-segregated with PKD in two families and occurred in two sporadic cases of PKD. No mutations were detected in patients with non-kinesigenic or exertion-induced dyskinesia, and none in other candidate genes including PNKD1 (MR-1) and SLC2A1 (GLUT1). Thus, PRRT2 mutations also cause sporadic PKD as might be expected given the variable expressivity and reduced penetrance observed in familial PKD. Further genetic heterogeneity is suggested by the absence of candidate gene mutations in both sporadic and familial PKD suggesting a contribution of other genes or non-coding regions.
Collapse
Affiliation(s)
- Alexander J. A. Groffen
- Departments of Clinical Genetics and Functional Genomics, Center of Neurogenomics and Cognitive Research (CNCR), VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Thom Klapwijk
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Justus L. Groen
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marina A. J. Tijssen
- Department of Neurology AB 51, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
17
|
Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 2012; 57:338-41. [PMID: 22399141 DOI: 10.1038/jhg.2012.23] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD (MIM128000)) is a neurological disorder characterized by recurrent attacks of involuntary movements. Benign familial infantile convulsion (BFIC) is also one of a neurological disorder characterized by clusters of epileptic seizures. The BFIC1 (MIM601764), BFIC2 (MIM605751) and BFIC4 (MIM612627) loci have been mapped to chromosome 19q, 16p and 1p, respectively, while BFIC3 (MIM607745) is caused by mutations in SCN2A on chromosome 2q24. Furthermore, patients with BFIC have been observed in a family concurrently with PKD. Both PKD and BFIC2 are heritable paroxysmal disorders and map to the same region on chromosome 16. Recently, the causative gene of PKD, the protein-rich transmembrane protein 2 (PRRT2), has been detected using whole-exome sequencing. We performed mutation analysis of PRRT2 by direct sequencing in 81 members of 17 families containing 15 PKD families and two BFIC families. Direct sequencing revealed that two mutations, c.649dupC and c.748C>T, were detected in all members of the PKD and BFIC families. Our results suggest that BFIC2 is caused by a truncated mutation that also causes PKD. Thus, PKD and BFIC2 are genetically identical and may cause convulsions and involuntary movements via a similar mechanism.
Collapse
|
18
|
Lee HY, Huang Y, Bruneau N, Roll P, Roberson EDO, Hermann M, Quinn E, Maas J, Edwards R, Ashizawa T, Baykan B, Bhatia K, Bressman S, Bruno MK, Brunt ER, Caraballo R, Echenne B, Fejerman N, Frucht S, Gurnett CA, Hirsch E, Houlden H, Jankovic J, Lee WL, Lynch DR, Mohammed S, Müller U, Nespeca MP, Renner D, Rochette J, Rudolf G, Saiki S, Soong BW, Swoboda KJ, Tucker S, Wood N, Hanna M, Bowcock AM, Szepetowski P, Fu YH, Ptáček LJ. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2011; 1:2-12. [PMID: 22832103 DOI: 10.1016/j.celrep.2011.11.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/21/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) is an episodic movement disorder with autosomal-dominant inheritance and high penetrance, but the causative genetic mutation is unknown. We have now identified four truncating mutations involving the gene PRRT2 in the vast majority (24/25) of well-characterized families with PKD/IC. PRRT2 truncating mutations were also detected in 28 of 78 additional families. PRRT2 encodes a proline-rich transmembrane protein of unknown function that has been reported to interact with the t-SNARE, SNAP25. PRRT2 localizes to axons but not to dendritic processes in primary neuronal culture, and mutants associated with PKD/IC lead to dramatically reduced PRRT2 levels, leading ultimately to neuronal hyperexcitability that manifests in vivo as PKD/IC.
Collapse
Affiliation(s)
- Hsien-Yang Lee
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang JL, Cao L, Li XH, Hu ZM, Li JD, Zhang JG, Liang Y, San-A, Li N, Chen SQ, Guo JF, Jiang H, Shen L, Zheng L, Mao X, Yan WQ, Zhou Y, Shi YT, Ai SX, Dai MZ, Zhang P, Xia K, Chen SD, Tang BS. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 2011; 134:3493-3501. [PMID: 22120146 PMCID: PMC3235563 DOI: 10.1093/brain/awr289] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Paroxysmal kinesigenic dyskinesias is a paroxysmal movement disorder characterized by recurrent, brief attacks of abnormal involuntary movements induced by sudden voluntary movements. Although several loci, including the pericentromeric region of chromosome 16, have been linked to paroxysmal kinesigenic dyskinesias, the causative gene has not yet been identified. Here, we identified proline-rich transmembrane protein 2 (PRRT2) as a causative gene of paroxysmal kinesigenic dyskinesias by using a combination of exome sequencing and linkage analysis. Genetic linkage mapping with 11 markers that encompassed the pericentromeric of chromosome 16 was performed in 27 members of two families with autosomal dominant paroxysmal kinesigenic dyskinesias. Then, the whole-exome sequencing was performed in three patients from these two families. By combining the defined linkage region (16p12.1–q12.1) and the results of exome sequencing, we identified an insertion mutation c.649_650InsC (p.P217fsX7) in one family and a nonsense mutation c.487C>T (p.Q163X) in another family. To confirm our findings, we sequenced the exons and flanking introns of PRRT2 in another three families with paroxysmal kinesigenic dyskinesias. The c.649_650InsC (p.P217fsX7) mutation was identified in two of these families, whereas a missense mutation, c.796C>T (R266W), was identified in another family with paroxysmal kinesigenic dyskinesias. All of these mutations completely co-segregated with the phenotype in each family. None of these mutations was identified in 500 normal unaffected individuals of matched geographical ancestry. Thus, we have identified PRRT2 as the first causative gene of paroxysmal kinesigenic dyskinesias, warranting further investigations to understand the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011; 43:1252-5. [DOI: 10.1038/ng.1008] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/20/2011] [Indexed: 11/08/2022]
|
21
|
Unterberger I, Trinka E. Diagnosis and treatment of paroxysmal dyskinesias revisited. Ther Adv Neurol Disord 2011; 1:4-11. [PMID: 21180566 DOI: 10.1177/1756285608095119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Paroxysmal dyskinesias (PDs) are a rare group of hyperkinetic movement disorders mainly characterized by their episodic nature. Neurological examination may be entirely normal between the attacks. Three main types of PDs can be distinguished based on their precipitating events - (i) paroxysmal kinesigenic dyskinesias (PKD), (ii) paroxysmal non-kinesigenic dyskinesias (PNKD) and (iii) paroxysmal exercise-induced (exertion-induced) dyskinesias (PED). The diagnosis of PDs is based on their clinical presentation and precipitating events. Substantial progress has been made in the field of genetics and PDs. Treatment options mainly include anticonvulsants and benefit of treatment is depending on the type of PD. Most important differential diagnosis are non-epileptic psychogenic, non-epileptic organic and epileptic attack disorders, especially nocturnal frontal lobe epilepsy.
Collapse
Affiliation(s)
- Iris Unterberger
- Medizinische Universität Innsbruck, Universitätsklinik für Neurologie, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | |
Collapse
|
22
|
Espeche A, Cersosimo R, Caraballo RH. Benign infantile seizures and paroxysmal dyskinesia: A well-defined familial syndrome. Seizure 2011; 20:686-91. [DOI: 10.1016/j.seizure.2011.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022] Open
|
23
|
Lalli S, Canavese C, Zorzi G, Nardocci N, Albanese A. Diagnostic issues in childhood and adult dystonia. ACTA ACUST UNITED AC 2011; 5:483-500. [DOI: 10.1517/17530059.2011.615831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Abstract
Paroxysmal movement disorders are a relatively rare and heterogenous group of conditions manifesting as episodic dyskinesia lasting a brief duration. Three forms are clearly recognized, namely, paroxysmal kinesigenic (PKD), nonkinisegenic (PNKD), and exercise induced (PED). There have been major advances in the understanding of the pathophysiological mechanisms and the genetics of these disorders, leading to better clinical definitions based on genotype-phenotype correlations in the familial idiopathic forms. PKD is genetically heterogenous, but there is linkage to chromosome 16 in a number of families. PNKD is due to mutations of the MR-1 gene. PED is genetically heterogenous, but a number of familial and sporadic cases may be due to GLUT-1 gene mutations. The GLUT1 gene-related form of PED may respond to a ketogenic diet. Potassium and calcium channel mutations underlie the 2 main forms of episodic ataxia (EA1 and EA2), whereas benign torticollis of infancy may also be a calcium channel disorder.
Collapse
Affiliation(s)
- Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| |
Collapse
|
25
|
Abstract
Paroxysmal dyskinesias are a rare group of movement disorders affecting both adults and children. Based on the events that precipitate the abnormal movements, they are subdivided into paroxysmal kinesigenic dyskinesia (PKD), precipitated by sudden voluntary movements; paroxysmal nonkinesigenic dyskinesia (PNKD), which occurs at rest; paroxysmal exertion-induced dyskinesia (PED), occurring after prolonged exercise; and paroxysmal hypnogenic dyskinesia (PHD), which occurs in sleep. Paroxysmal dyskinesias can be sporadic, familial (autosomal dominant inheritance), or secondary to other disorders. Recent genetic discoveries may aid us in elucidating the pathophysiology of these disorders. PKD has been linked to the pericentromeric region of chromosome 16, PNKD is associated with mutations in the myofibrillogenesis regulator 1 (MR-1) gene on the long arm of chromosome 2 (2q32-36 locus), and PED is associated with mutations in the glucose transporter gene, GLUT1, responsible for glucose transport across the blood-brain barrier. Lifestyle modification to avoid precipitating factors is important in the management of paroxysmal dyskinesias. Medical therapies have not been examined in controlled trials. Nevertheless, anticonvulsants have been found to be extremely effective in treating PKD and are sometimes useful in other types, suggesting that these disorders may indeed represent forms of channelopathies. Drugs such as acetazolamide, anticholinergics, levodopa, and tetrabenazine have been inconsistently successful. In rare cases with medically refractory symptoms, deep brain stimulation has also been employed. Development of successful treatments for the different paroxysmal dyskinesias rests on elucidating the pathophysiology and targeting therapy to treat the underlying perturbation.
Collapse
Affiliation(s)
- Shyamal H Mehta
- Shyamal H. Mehta, MD, PhD Movement Disorders Program, Department of Neurology, 1429 Harper Street, HF-1121, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
26
|
Abstract
Paroxysmal choreodystonic disorders or paroxysmal dyskinesias are a heterogeneous group of movement disorders characterized by recurrent attacks of abnormal involuntary movements. They are classified into four categories according to the precipitant, duration of attacks, and etiology: (1) paroxysmal kinesigenic dyskinesia (PKD), in which attacks are brief and induced by sudden voluntary movements; (2) paroxysmal nonkinesigenic dyskinesia (PNKD), in which attacks occur spontaneously; (3) paroxysmal exertion-induced dyskinesia (PED), in which attacks are brought on by prolonged exercise; and (4) paroxysmal hypnogenic dyskinesia (PHD), in which attacks occur during sleep. Among them, PHD is currently known to be a form of mesial frontal-lobe epilepsy, and has been given the term "autosomal-dominant nocturnal frontal lobe epilepsy" (ANDFLE) in some familiar cases with an autosomal-dominant inheritance. The clinical, etiological and pathophysiological features of PKD, PNKD, and PED are reviewed.
Collapse
Affiliation(s)
- Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| | | |
Collapse
|
27
|
Infantile convulsions with paroxysmal dyskinesia (ICCA syndrome) and copy number variation at human chromosome 16p11. PLoS One 2010; 5:e13750. [PMID: 21060786 PMCID: PMC2966418 DOI: 10.1371/journal.pone.0013750] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background Benign infantile convulsions and paroxysmal dyskinesia are episodic cerebral disorders that can share common genetic bases. They can be co-inherited as one single autosomal dominant trait (ICCA syndrome); the disease ICCA gene maps at chromosome 16p12-q12. Despite intensive and conventional mutation screening, the ICCA gene remains unknown to date. The critical area displays highly complicated genomic architecture and is the site of deletions and duplications associated with various diseases. The possibility that the ICCA syndrome is related to the existence of large-scale genomic alterations was addressed in the present study. Methodology/Principal Findings A combination of whole genome and dedicated oligonucleotide array comparative genomic hybridization coupled with quantitative polymerase chain reaction was used. Low copy number of a region corresponding to a genomic variant (Variation_7105) located at 16p11 nearby the centromere was detected with statistical significance at much higher frequency in patients from ICCA families than in ethnically matched controls. The genomic variant showed no apparent difference in size and copy number between patients and controls, making it very unlikely that the genomic alteration detected here is ICCA-specific. Furthermore, no other genomic alteration that would directly cause the ICCA syndrome in those nine families was detected in the ICCA critical area. Conclusions/Significance Our data excluded that inherited genomic deletion or duplication events directly cause the ICCA syndrome; rather, they help narrowing down the critical ICCA region dramatically and indicate that the disease ICCA genetic defect lies very close to or within Variation_7105 and hence should now be searched in the corresponding genomic area and its surrounding regions.
Collapse
|
28
|
|
29
|
Espeche A. Benign infantile seizures: A prospective study. Epilepsy Res 2010; 89:96-103. [DOI: 10.1016/j.eplepsyres.2009.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/29/2009] [Accepted: 10/29/2009] [Indexed: 11/17/2022]
|
30
|
Wang X, Sun W, Zhu X, Li L, Du T, Mao W, Wu X, Wei H, Zhu S, Sun Y, Liu Y, Niu N, Wang Y, Liu Y. Paroxysmal kinesigenic choreoathetosis: evidence of linkage to the pericentromeric region of chromosome 16 in four Chinese families. Eur J Neurol 2010; 17:800-7. [PMID: 20158512 DOI: 10.1111/j.1468-1331.2009.02929.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Paroxysmal kinesigenic choreoathetosis (PKC) is an autosomal dominant condition characterized by abnormal involuntary movements precipitated by sudden movement. The pericentromeric region of chromosome 16 has been linked to PKC by several reports. This study was to localize and identify PKC gene in four Chinese PKC families. METHODS Genetic linkage mapping with eight markers spanning chromosome 16p12-q13 was performed in 43 family members. Genome-wide single nucleotide polymorphism (SNP) scans were performed on four individuals in Family 1 in which infantile convulsion (IC) was co-inherited with PKC. RESULTS Individuals in Family 1 presented with both IC and paroxysmal choreoathetosis (ICCA), and Families 2, 3, and 4 presented only with PKC. Evidence for linkage was found with a maximum two-point LOD score of 4.89 for D16S690 (theta = 0.0) and a maximum multipoint LOD score was 5.34 between D16S3080 and D16S3136. Haplotype analysis showed the disease locus was between D16S3093 and D16S3057. A total of 84 SNPs spanned on 16q12.1-q13 was not segregated with the PKC phenotype, which defined an unlinked region from rs9933187 to rs8044753. Thus, the critical region of the PKC gene is across the pericentromeric region of chromosome 16, and most likely maps to a region of 20.5 Mb (6.2 cM) between D16S3093 and rs9933187 (16p11.2-q12.1). CONCLUSION The assignment of the locus for PKC to the pericentromeric region of chromosome 16 is confirmed and putatively narrowed in the present study.
Collapse
Affiliation(s)
- X Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schneider SA, Paisan-Ruiz C, Garcia-Gorostiaga I, Quinn NP, Weber YG, Lerche H, Hardy J, Bhatia KP. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord 2010; 24:1684-8. [PMID: 19630075 DOI: 10.1002/mds.22507] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Paroxysmal exercise-induced dyskinesias (PED) are involuntary intermittent movements triggered by prolonged physical exertion. Autosomal dominant inheritance may occur. Recently, mutations in the glucose transporter 1 (GLUT1) gene (chr. 1p35-p31.3) have been identified as a cause in some patients with autosomal dominant PED. Mutations in this gene have previously been associated with the GLUT1 deficiency syndrome. We performed mutational analysis in 10 patients with apparently sporadic PED. We identified two novel GLUT1 mutations, at least one likely to be de-novo, in two of our patients. Onset was in early childhood. One of our patients had a predating history of childhood absence epilepsy and a current history of hemiplegic migraine as well as a family history of migraine. The other patient had no other symptoms apart from PED. Brain MRI showed cerebellar atrophy in one case. Mutations in GLUT1 are one cause of apparently sporadic PED. The detection of this has important implications for treatment as ketogenic diet has been reported to be beneficial.
Collapse
Affiliation(s)
- Susanne A Schneider
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Movement disorders in children: recent advances in management. Indian J Pediatr 2009; 76:531-6. [PMID: 19466386 DOI: 10.1007/s12098-009-0138-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
In recent years there has been a growing interest towards pediatric movement disorders (PMD). The data derived from the synthesis of clinical observation, neuroimaging, biochemical and, molecular genetics studies have allowed for the identification of a significant number of pediatric diseases featuring movement disorders. The purpose of this review is to outline an approach to the advances in management of dystonia, neurotransmitter disorders, tics, and paroxysmal dyskinetic syndromes starting in children younger than 18 yr of age.
Collapse
|
33
|
|
34
|
Kang H, Hu Q, Liu X, Xu F, Chen L, Zhu S. Clinical characteristics of paroxysmal kinesigenic choreoathetosis: Diagnosis, treatment and prognosis. ACTA ACUST UNITED AC 2009; 29:118-21. [DOI: 10.1007/s11596-009-0125-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Indexed: 10/19/2022]
|
35
|
Zhou J, Li G, Chen C, Liu D, Xiao B. Familial pure paroxysmal kinesigenic dyskinesia in Han population from the Chinese mainland: A new subtype? Epilepsy Res 2008; 80:171-9. [PMID: 18541410 DOI: 10.1016/j.eplepsyres.2008.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 03/28/2008] [Accepted: 04/05/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Jinxia Zhou
- Neurology Department of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | | | | | | | | |
Collapse
|
36
|
Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, Kempfle J, Wuttke TV, Weber Y, Lerche H, Afawi Z, Vandenberghe W, Korczyn AD, Berkovic SF, Ekstein D, Kivity S, Ryvlin P, Claes LRF, Deprez L, Maljevic S, Vargas A, Van Dyck T, Goossens D, Del-Favero J, Van Laere K, De Jonghe P, Van Paesschen W. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 2008; 131:1831-44. [PMID: 18577546 PMCID: PMC2442425 DOI: 10.1093/brain/awn113] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome.
Collapse
Affiliation(s)
- Arvid Suls
- Neurogenetics Group,VIB Department of Molecular Genetics, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weber YG, Jacob M, Weber G, Lerche H. A BFIS-like syndrome with late onset and febrile seizures: suggestive linkage to chromosome 16p11.2-16q12.1. Epilepsia 2008; 49:1959-64. [PMID: 18479394 DOI: 10.1111/j.1528-1167.2008.01646.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benign familial infantile seizures (BFIS) is a dominant idiopathic epilepsy with partial and secondarily generalized seizures with age of onsetr between 3 and 12 months. Here we describe a four-generation family with some characteristic features of BFIS but with unusual clinical signs, in eight affected members with an unusual clinical phenotype. Onset was consistently between 14 and 20 months of age with clusters of complex-partial or generalized tonic-clonic seizures and a high rate of febrile seizures, which have not been described for BFIS previously. All affected members showed multifocal interictal epileptiform discharges in the EEG. The known loci for benign familial neonatal/infantile seizures (BFNS/BFNIS), generalized epilepsy with febrile seizures plus (GEFS+) and the BFIS locus on chromosome 19q were excluded. Further genetic analysis showed suggestive linkage to the major BFIS locus on chromosome 16 between markers D16S690 and D16S3136. This ;;BFIS-like'' syndrome may enlarge the phenotypic spectrum of diseases linked to the chromosome 16 region.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Substantial progress has been made recently in understanding characteristic features of the paroxysmal dyskinesias and underlying genetic causes. This review summarizes the most important findings and discusses their implications. RECENT FINDINGS The classification of paroxysmal dyskinesias has been confusing until recently when descriptive schemes were advocated over historical terminology. The descriptive classification scheme has aided phenotypic characterization in genetic studies. Recent genetic studies have revealed causes for some of the more important forms of paroxysmal dyskinesias. In particular, the major form of paroxysmal nonkinesigenic dyskinesia has been shown not to be a channelopathy. Furthermore, substantial phenotypic homogeneity has been demonstrated with each type of paroxysmal dyskinesia. SUMMARY The recent phenotype characterization and genetic studies have provided important information that simplified the diagnosis and treatment of the paroxysmal dyskinesias. These advances enhance our understanding of mechanisms underlying paroxysmal nonepileptic as well as some epileptic disorders.
Collapse
|
39
|
Unterberger I, Dobesberger J, Walser G, Trinka E, Bauer G. Paroxysmale Dyskinesien. ZEITSCHRIFT FUR EPILEPTOLOGIE 2007. [DOI: 10.1007/s10309-007-0262-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Kikuchi T, Nomura M, Tomita H, Harada N, Kanai K, Konishi T, Yasuda A, Matsuura M, Kato N, Yoshiura KI, Niikawa N. Paroxysmal kinesigenic choreoathetosis (PKC): confirmation of linkage to 16p11-q21, but unsuccessful detection of mutations among 157 genes at the PKC-critical region in seven PKC families. J Hum Genet 2007; 52:334-341. [PMID: 17387577 DOI: 10.1007/s10038-007-0116-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
Paroxysmal kinesigenic choreoathetosis (PKC) is a paroxysmal movement disorder of unknown cause. Although the PKC-critical region (PKCCR) has been assigned to the pericentromeric region of chromosome 16 by several studies of families from various ethnic backgrounds, the causative gene has not yet been identified. In the present study, we performed linkage and haplotype analysis in four new families with PKC, as well as an intensive polymerase chain reaction (PCR) based mutation analysis in seven families for a total of 1,563 exons from 157 genes mapped around the PKCCR. Consequently, the linkage/haplotype analysis revealed that PKC was assigned to a 24-cM segment between D16S3131 and D16S408, the result confirming the previously defined PKCCR, but being unable to narrow it down. Although the mutation analysis of the 157 genes was unsuccessful at identifying any mutations that were shared by patients from the seven families, two nonsynonymous substitutions, i.e., 6186C>A in exon 3 of SCNN1G and 45842A>G in exon 29 of ITGAL, which were segregated with the disease in Families C and F, respectively, were not observed in more than 400 normal controls. Thus, one of the two genes, SCNN1G and ITGAL, could be causative for PKC, but we were not able to find any other mutations that explain the PKC phenotype.
Collapse
Affiliation(s)
- Taeko Kikuchi
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
- Department of Psychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Masayo Nomura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Hiroaki Tomita
- Department of Psychobiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Harada
- Kyushu Medical Science, Nagasaki, Japan
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Kazuaki Kanai
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Tohru Konishi
- Division of Pediatrics, Nagaoka Ryoikuen, Nagaoka, Japan
| | - Ayako Yasuda
- Department of Pediatrics, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Masato Matsuura
- Section of Biofunctional Informatics, Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobumasa Kato
- Department of Psychiatry, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan.
| | - Norio Niikawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
41
|
Vercueil L, de Saint Martin A, Hirsch E. Paroxysmal Dyskinesia. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Kato N, Sadamatsu M, Kikuchi T, Niikawa N, Fukuyama Y. Paroxysmal kinesigenic choreoathetosis: from first discovery in 1892 to genetic linkage with benign familial infantile convulsions. Epilepsy Res 2006; 70 Suppl 1:S174-84. [PMID: 16901678 DOI: 10.1016/j.eplepsyres.2006.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/07/2006] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
Paroxysmal kinesigenic choreoathetosis (PKC) is presently clearly designated as a familial movement disorder with autosomal dominant inheritance. We identified a family of PKC, in which 6 out of 23 members were affected, and 4 of the affected members had a history of infantile convulsions. Thus, this family was also considered as a case of infantile convulsions with paroxysmal choreoathetosis (ICCA). Video-EEG monitoring of two affected members suggested that PKC is less likely to be a form of reflex epilepsy, despite the existence of a history of infantile convulsions. Linkage analysis on eight Japanese families, including this family, defined the locus of PKC within the pericentromeric region of chromosome 16. ICCA and a form of autosomal dominant benign familial infantile convulsions (BFIC) were both mapped to the same or nearby region for PKC on chromosome 16. Additionally and quite unexpectedly, the locus of wet/dry ear wax (cerumen) was found to be located in the same region. Lastly, it was pointed out that the priority of the first discovery of PKC in the world should go to a Japanese psychiatrist, Shuzo Kure (1865-1932), who published the first detailed and almost complete description of a male patient with PKC in a Japanese medical journal in 1892.
Collapse
Affiliation(s)
- Nobumasa Kato
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan.
| | | | | | | | | |
Collapse
|
43
|
Specchio N, Vigevano F. The spectrum of benign infantile seizures. Epilepsy Res 2006; 70 Suppl 1:S156-67. [PMID: 16837167 DOI: 10.1016/j.eplepsyres.2006.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 01/12/2006] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Benign epilepsies during infancy are a wide topic, which needs both clinical and nosological clarifications. Already in 1963 Fukuyama reported patients with seizures during infancy with a benign outcome. In the late 80s and early 90s, Watanabe reported series of infants with complex partial seizures or partial seizures with secondary generalization, with a normal development before onset and a benign outcome. In the same years Vigevano focused on familial cases: he described several families with seizures with onset around the 6-month of age, and autosomal dominant mode of inheritance. To define this condition, he coined the term "benign familial infantile seizures" (BFIS). Afterwards, studying families with this phenotype, loci on chromosomes 19, 16 and 2 responsible for BFIS were detected. Similar loci were found in families affected by BFIS and subsequent choreoathetosis, and BFIS associated with familial hemiplegic migraine. In most recent years a new form of benign epilepsy has been proposed, with an intermediate onset between the neonatal and infantile age, which was defined with the term benign familial neonatal-infantile seizures (BFNIS). This condition could have some clinical and genetic features overlapping with BFIS. Seizures with a benign outcome have been reported also in infants during episode of mild gastroenteritis (BIS with MG) frequently with positive Rotavirus antigen. Lastly, sleep EEG abnormalities have been reported in children with a peculiar form of epilepsy by Capovilla, who defined this condition as benign infantile focal epilepsy with midline spikes and waves during sleep (BIMSE). Some of these entities have been included in the last classification proposed by the ILAE and have been differentiated in familial and non-familial forms. The aim of this review is to describe these entities, discuss their nosological aspects, pointing out the similarities and differences with benign neonatal seizures and benign focal epilepsies appearing later in life such as early-onset benign occipital seizure susceptibility syndrome (EBOSS), or benign epilepsy of childhood with centro-temporal spikes (BECTS).
Collapse
Affiliation(s)
- Nicola Specchio
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00165 Roma, Italy
| | | |
Collapse
|
44
|
Striano P, Lispi ML, Gennaro E, Madia F, Traverso M, Bordo L, Aridon P, Martinelli Boneschi F, Barone B, dalla Bernardina B, Bianchi A, Capovilla G, De Marco P, Dulac O, Gaggero R, Gambardella A, Nabbout R, Prud'homme JF, Day R, Vanadia F, Vecchi M, Veggiotti P, Vigevano F, Viri M, Minetti C, Zara F. Linkage analysis and disease models in benign familial infantile seizures: a study of 16 families. Epilepsia 2006; 47:1029-34. [PMID: 16822249 DOI: 10.1111/j.1528-1167.2006.00521.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Benign familial infantile seizures (BFIS) is a genetically heterogeneous condition characterized by partial seizures, onset age from 3 to 9 months, and favorable outcome. BFIS loci were identified on chromosomes 19q12-13.1 and 16p12-q12, allelic to infantile convulsions and choreathetosis. The identification of SCN2A mutations in families with only infantile seizures indicated that BFNIS and BFIS may show overlapping clinical features. Infantile seizures also were in a family with familial hemiplegic migraine and mutations in the ATP1A2 gene. We have examined the heterogeneous genetics of BFIS by means of linkage analysis. METHODS Sixteen families were examined. Probands underwent neurologic examination, at least one EEG recording, and, when possible, brain CT and MRI. Clinical information about relatives was collected. Families with SCN2A or ATP1A2 mutations were excluded from the study. Chromosome 16p and 19q loci were examined by linkage analysis using two models that differed in penetrance rate. Genetic heterogeneity was evaluated with both models. RESULTS Clinical information was available for 124 members of affected families. BFIS was diagnosed in 69 subjects. One patient without BFIS had a single febrile seizure, and another had rare episodes of paroxysmal dystonia. Evidence of linkage was obtained only for chromosome 16. Moreover, the high penetrance allowed the identification of genetic heterogeneity. CONCLUSIONS Our data confirm the relevance of the chromosome 16 locus in BFIS and suggest the presence of an additional locus. This study shows that the genetic model used affects the outcome of linkage analysis.
Collapse
Affiliation(s)
- Pasquale Striano
- Laboratory of Neurogenetics, Unit of Muscular and Neurodegenerative Disease, Istituto G. Gaslini, University of Genova, Genova, and Division of Neurology, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bruno MK, Hallett M, Gwinn-Hardy K, Sorensen B, Considine E, Tucker S, Lynch DR, Mathews KD, Swoboda KJ, Harris J, Soong BW, Ashizawa T, Jankovic J, Renner D, Fu YH, Ptacek LJ. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 2005; 63:2280-7. [PMID: 15623687 DOI: 10.1212/01.wnl.0000147298.05983.50] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Paroxysmal kinesigenic dyskinesia (PKD) is a rare disorder characterized by short episodes of involuntary movement attacks triggered by sudden voluntary movements. Although a genetic basis is suspected in idiopathic cases, the gene has not been discovered. Establishing strict diagnostic criteria will help genetic studies. METHODS The authors reviewed the clinical features of 121 affected individuals, who were referred for genetic study with a presumptive diagnosis of idiopathic PKD. RESULTS The majority (79%) of affected subjects had a distinctive homogeneous phenotype. The authors propose the following diagnostic criteria for idiopathic PKD based on this phenotype: identified trigger for the attacks (sudden movements), short duration of attacks (<1 minute), lack of loss of consciousness or pain during attacks, antiepileptic drug responsiveness, exclusion of other organic diseases, and age at onset between 1 and 20 years if there is no family history (age at onset may be applied less stringently in those with family history). In comparing familial and sporadic cases, sporadic cases were more frequently male, and infantile convulsions were more common in the familial kindreds. Females had a higher remission rate than males. An infantile-onset group with a different set of characteristics was identified. A clear kinesigenic trigger was not elicited in all cases, antiepileptic response was not universal, and some infants had attacks while asleep. CONCLUSIONS The diagnosis of idiopathic paroxysmal kinesigenic dyskinesia (PKD) can be made based on historical features. The correct diagnosis has implications for treatment and prognosis, and the diagnostic scheme may allow better focus in the search for the PKD gene(s).
Collapse
Affiliation(s)
- M K Bruno
- Department of Neurology, University of California, San Francisco, CA 94143-2922, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Callenbach PMC, van den Boogerd EH, de Coo RFM, ten Houten R, Oosterwijk JC, Hageman G, Frants RR, Brouwer OF, van den Maagdenberg AMJM. Refinement of the chromosome 16 locus for benign familial infantile convulsions. Clin Genet 2005; 67:517-25. [PMID: 15857419 DOI: 10.1111/j.1399-0004.2005.00445.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benign familial infantile convulsions (BFIC) is an autosomal dominantly inherited partial epilepsy syndrome of early childhood with remission before the age of 3 years. The syndrome has been linked to loci on chromosomes 1q23, 2q24, 16p12-q12, and 19q in various families. The aim of this study was to identify the responsible locus in four unrelated Dutch families with BFIC. Two of the tested families had pure BFIC; in one family, affected individuals had BFIC followed by paroxysmal kinesigenic dyskinesias at later age, and in one family, BFIC was accompanied by later-onset focal epilepsy in older generations. Linkage analysis was performed for the known loci on chromosomes 1q23, 2q24, 16p12-q12, and 19q. The two families with pure BFIC were linked to chromosome 16p12-q12. Using recombinants from these and other published families, the chromosome 16-candidate gene region was reduced from 21.4 Mb (4.3 cm) to 2.7 Mb (0.0 cm). For the other two families, linkage to any of the known loci was unlikely. In conclusion, we confirm the linkage of pure BFIC to chromosome 16p12-q12, with further refinement of the locus. Furthermore, the lack of involvement of the known loci in two of the families indicates further genetic heterogeneity for BFIC.
Collapse
Affiliation(s)
- P M C Callenbach
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Benign familial infantile convulsion is an autosomal dominant epilepsy syndrome characterized by seizures starting from 3 to 12 months and a favorable outcome. We present a Turkish family with benign familial infantile convulsions and report the clinical variability associated with this syndrome in three generations. All 11 affected members had benign infantile seizures, which were primarily generalized in all but one patient, who had partial seizures with secondary generalization. The seizures started within the first year and were accompanied by normal neurologic development and a good response to treatment with phenobarbital. In this family, the phenotype extended beyond infancy. The index patient had unilateral occipital spike and waves on electroencephalography (EEG), although he had no clinical seizures at 4 years of age. Follow-up EEG of this patient 1 year later showed that the discharges shifted to the occipital lobe of the other hemisphere. The grandmother of this patient had temporal lobe seizures as an adult, years after the remission of infantile convulsions. One of the patients experienced paroxysmal choreoathetosis during adolesence. Our findings highlight the intrafamilial phenotypic variability of benign familial infantile convulsions in a large pedigree with long-term follow-up.
Collapse
Affiliation(s)
- Ercan Demir
- Department of Pediatrics, Section of Pediatric Neurology, Ihsan Doğramaci Children's Hospital, Hacettepe University, Ankara, Turkey.
| | | | | | | |
Collapse
|
48
|
Xiao B, Deng FY, Xiong G, Wang K, Zhang J, Chen XD, Liu YZ, Deng HW. Clinical and genetic study on a new Chinese family with benign familial infantile seizures. Eur J Neurol 2005; 12:344-9. [PMID: 15804263 DOI: 10.1111/j.1468-1331.2004.00989.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three loci for benign familial infantile seizures (BFIS, traditionally named benign familial infantile convulsions) have been mapped to the chromosome regions of 19q12-13.1, 2q24, and 16p12-q12. We characterized the clinical features of a newly discovered Chinese family with BFIS and investigated whether it is linked to these loci. A four-generation Chinese family was investigated and nineteen family members were examined. Fourteen microsatellite markers covering the three BFIS loci on the chromosome regions of 19q12-13.1, 2q24, and 16p12-q12 were genotyped. Linkage analysis was performed. The main clinical features of our patients include onset of afebrile seizures between 3 and 10 months, normal psychomotor development, normal interictal electroencephalogram (EEG), and autosomal dominant inheritance. Magnetic resonance imaging (MRI) changes were found in the proband. Two-point LOD scores are < -2.0 at the recombination rate of 0.0 for all the markers on the 2q24 region. Multipoint LOD scores are < -3.0 for the regions of 19q12-13.1 and 16p12-q12. Linkage analysis showed no evidence that the disease gene of this BFIS family is linked to the chromosome regions previously identified as the critical regions of the disease. Another chromosome region harboring the disease gene may exist in the new Chinese family.
Collapse
Affiliation(s)
- B Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Margari L, Presicci A, Ventura P, Margari F, Perniola T. Channelopathy: hypothesis of a common pathophysiologic mechanism in different forms of paroxysmal dyskinesia. Pediatr Neurol 2005; 32:229-35. [PMID: 15797178 DOI: 10.1016/j.pediatrneurol.2004.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 12/13/2004] [Indexed: 11/28/2022]
Abstract
Paroxysmal dyskinesias are a rare heterogeneous group of neurologic disorders, characterized by transient sudden choreoathetoid or dystonic attacks without loss of consciousness. This study reports a family with six affected members in three generations, and two sporadic cases of paroxysmal dyskinesia. Familial cases of paroxysmal dyskinesia are affected by idiopathic long-lasting paroxysmal exertion-induced dyskinesia and the sporadic cases by idiopathic short-lasting paroxysmal kinesigenic dyskinesia. Familial cases also suffer from epilepsy, mainly of generalized type, with benign outcome; one sporadic case is affected by migraine. Results presented in this neurophysiologic study include electromyography, somatosensory evoked potentials by median nerve stimulation, somatosensory evoked potentials by posterior tibial nerve stimulation, motor evoked potentials by magnetic transcranial cortical stimulation, visual evoked potentials, brainstem auditory evoked potentials, blink reflex, reflex H, and electroencephalography. The clinical and neurophysiologic findings presented here suggest a condition of hyperexcitability at the muscular and brain level, perhaps as a result of an ion channel disorder, which is in agreement with reports in the literature.
Collapse
Affiliation(s)
- Lucia Margari
- Child Neuropsychiatric Service, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
50
|
Callenbach PMC, van den Maagdenberg AMJM, Frants RR, Brouwer OF. Clinical and genetic aspects of idiopathic epilepsies in childhood. Eur J Paediatr Neurol 2005; 9:91-103. [PMID: 15843076 DOI: 10.1016/j.ejpn.2004.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 12/11/2004] [Accepted: 12/14/2004] [Indexed: 11/27/2022]
Abstract
The identification of the first genes associated with idiopathic epilepsy has been an important breakthrough in the field of epilepsy research. In almost all cases these genes were found to encode components of voltage- or ligand-gated ion channels or functionally related structures. For many other idiopathic syndromes, there is linkage evidence to one or more chromosomes, but the genes have not yet been identified. Identification of the responsible genes and their gene products will further increase the knowledge of the pathogenic mechanisms involved in epilepsy, and will hopefully facilitate the development of drug targets for the effective treatment of epilepsy. This review gives an overview of the clinical characteristics and an update of genetic research of those idiopathic childhood epilepsies for which genes have been identified and the monogenic idiopathic childhood epilepsies for which mapping data are available.
Collapse
Affiliation(s)
- Petra M C Callenbach
- Department of Neurology, University Medical Centre Groningen, Hanzeplein 1/P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | |
Collapse
|