1
|
Zhang W, Fu J, Du J, Liu X, Cheng J, Wei C, Xu Y, Fu J. A disintegrin and metalloproteinase domain 10 expression inhibition by the small molecules adenosine, cordycepin and N6, N6-dimethyladenosine and immune regulation in malignant cancers. Front Immunol 2024; 15:1434027. [PMID: 39211038 PMCID: PMC11357967 DOI: 10.3389/fimmu.2024.1434027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
A disintegrin and metalloproteinase domain 10 (ADAM10), a member of the ADAM family, is a cellular surface protein with potential adhesion and protease/convertase functions. The expression regulations in cancers by natural products [adenosine (AD) and its analogs, cordycepin (CD), and N6, N6-dimethyladenosine (m6 2A)], and immune regulation are unclear. As results, AD, CD, and m6 2A inhibited ADAM10 expression in various cancer cell lines, indicating their roles in anti-cancer agents. Further molecular docking with ADAM10 protein found the binding energies of all docking groups were <-7 kcal/mol for all small-molecules (AD, CD and m6 2A), suggesting very good binding activities. In addition, analysis of the immunomodulatory roles in cancer showed that ADAM10 was negatively correlated with immunomodulatory genes such as CCL27, CCL14, CCL25, CXCR5, HLA-B, HLA-DOB1, LAG3, TNFRSF18, and TNFRSF4 in bladder urothelial carcinoma, thymoma, breast invasive carcinoma, TGCT, kidney renal papillary cell carcinoma, SKCM and thyroid carcinoma, indicating the immune-promoting roles for ADAM10. LAG3 mRNA levels were reduced by both AD and CD in vivo. ADAM10 is also negatively associated with tumor immunosuppression and interrelated with the immune infiltration of tumors. Overall, the present study determined ADAM10 expression by AD, CD and m6 2A, and in AD or CD/ADAM10/LAG3 signaling in cancers, and suggested a potential method for immunotherapy of cancers by targeting ADAM10 using the small molecules AD, CD and m6 2A.
Collapse
Affiliation(s)
- Wenqian Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
2
|
Wang Y, Ding M, Chi J, Wang T, Zhang Y, Li Z, Li Q. Based on network pharmacology and bioinformatics to analyze the mechanism of action of Astragalus membranaceus in the treatment of vitiligo and COVID-19. Sci Rep 2023; 13:3884. [PMID: 36890149 PMCID: PMC9993359 DOI: 10.1038/s41598-023-29207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 03/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. However, the treatment of vitiligo combined with COVID-19 has not been reported. Astragalus membranaceus (AM) has a therapeutic effect on patients with vitiligo and COVID-19. This study aims to discover its possible therapeutic mechanisms and provide potential drug targets. Using the Chinese Medicine System Pharmacological Database (TCMSP), GEO database and Genecards websites and other databases, AM target, vitiligo disease target, and COVID-19 related gene set were established. Then find the crossover genes by taking the intersection. Then use GO, KEGG enrichment analysis, and PPI network to discover its underlying mechanism. Finally, by importing drugs, active ingredients, crossover genes, and enriched signal pathways into Cytoscape software, a "drug-active ingredient-target signal pathway-" network is constructed. TCMSP screened and obtained 33 active ingredients including baicalein (MOL002714), NEOBAICALEIN (MOL002934), Skullcapflavone II (MOL002927), and wogonin (MOL000173), which acted on 448 potential targets. 1166 differentially expressed genes for vitiligo were screened by GEO. CIVID-19 related genes were screened by Genecards. Then by taking the intersection, a total of 10 crossover genes (PTGS2, CDK1, STAT1, BCL2L1, SCARB1, HIF1A, NAE1, PLA2G4A, HSP90AA1, and HSP90B1) were obtained. KEGG analysis found that it was mainly enriched in signaling pathways such as IL-17 signaling pathway, Th17 cell differentiation, Necroptosis, NOD-like receptor signaling pathway. Five core targets (PTGS2, STAT1, BCL2L1, HIF1A, and HSP90AA1) were obtained by analyzing the PPI network. The network of "active ingredients-crossover genes" was constructed by Cytoscape, and the 5 main active ingredients acting on the 5 core crossover genes acacetin, wogonin, baicalein, bis2S)-2-ethylhexyl) benzene-1,2-dicarboxylate and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone. The core crossover genes obtained by PPI and the core crossover genes obtained by the "active ingredient-crossover gene" network are intersected to obtain the three most important core genes (PTGS2, STAT1, HSP90AA1). AM may act on PTGS2, STAT1, HSP90AA1, etc. through active components such as acacetin, wogonin, baicalein, bis2S)-2-ethylhexyl) benzene-1,2-dicarboxylate and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone to activate IL-17 signaling pathway, Th17 cell differentiation, Necroptosis, NOD-like receptor signaling pathway, Kaposi sarcoma-associated herpesvirus infection, and VEGF signaling pathway and other signaling pathways to achieve the effect of treating vitiligo and COVID-19.
Collapse
Affiliation(s)
- Yaojun Wang
- Graduate School, Hebei North University, Zhangjiakou, 075000, China.,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Ming Ding
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Jiaoni Chi
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Tao Wang
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Yue Zhang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Zhimin Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, China
| | - Qiang Li
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China. .,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China.
| |
Collapse
|
3
|
Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front Immunol 2022; 13:834942. [PMID: 35450063 PMCID: PMC9016159 DOI: 10.3389/fimmu.2022.834942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
As the new year of 2020 approaches, an acute respiratory disease quietly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. Subsequently, COVID-19 broke out on a global scale and formed a global public health emergency. To date, the destruction that has lasted for more than two years has not stopped and has caused the virus to continuously evolve new mutant strains. SARS-CoV-2 infection has been shown to cause multiple complications and lead to severe disability and death, which has dealt a heavy blow to global development, not only in the medical field but also in social security, economic development, global cooperation and communication. To date, studies on the epidemiology, pathogenic mechanism and pathological characteristics of SARS-CoV-2-induced COVID-19, as well as target confirmation, drug screening, and clinical intervention have achieved remarkable effects. With the continuous efforts of the WHO, governments of various countries, and scientific research and medical personnel, the public's awareness of COVID-19 is gradually deepening, a variety of prevention methods and detection methods have been implemented, and multiple vaccines and drugs have been developed and urgently marketed. However, these do not appear to have completely stopped the pandemic and ravages of this virus. Meanwhile, research on SARS-CoV-2-induced COVID-19 has also seen some twists and controversies, such as potential drugs and the role of vaccines. In view of the fact that research on SARS-CoV-2 and COVID-19 has been extensive and in depth, this review will systematically update the current understanding of the epidemiology, transmission mechanism, pathological features, potential targets, promising drugs and ongoing clinical trials, which will provide important references and new directions for SARS-CoV-2 and COVID-19 research.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- The Third People’s Hospital of Hefei, The Third Clinical College of Anhui Medical University, Hefei, China
| | - Zhen Wang
- Anhui Provincial Children’s Hospital, Children’s Hospital of Fudan University-Anhui Campus, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan-Cai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Yang F, Zhang Q, Ji X, Zhang Y, Li W, Peng S, Xue F. Machine Learning Applications in Drug Repurposing. Interdiscip Sci 2022; 14:15-21. [PMID: 35066811 PMCID: PMC8783773 DOI: 10.1007/s12539-021-00487-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
The coronavirus disease (COVID-19) has led to an rush to repurpose existing drugs, although the underlying evidence base is of variable quality. Drug repurposing is a technique by taking advantage of existing known drugs or drug combinations to be explored in an unexpected medical scenario. Drug repurposing, hence, plays a vital role in accelerating the pre-clinical process of designing novel drugs by saving time and cost compared to the traditional de novo drug discovery processes. Since drug repurposing depends on massive observed data from existing drugs and diseases, the tremendous growth of publicly available large-scale machine learning methods supplies the state-of-the-art application of data science to signaling disease, medicine, therapeutics, and identifying targets with the least error. In this article, we introduce guidelines on strategies and options of utilizing machine learning approaches for accelerating drug repurposing. We discuss how to employ machine learning methods in studying precision medicine, and as an instance, how machine learning approaches can accelerate COVID-19 drug repurposing by developing Chinese traditional medicine therapy. This article provides a strong reasonableness for employing machine learning methods for drug repurposing, including during fighting for COVID-19 pandemic.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Qi Zhang
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Xiaokang Ji
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Yanchun Zhang
- Institute for Sustainable Industries & Liveable Citie, Victoria University, Melbourne, Australia
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001 China
| | - Wentao Li
- School of Computer Science, National University of Defense Technology, Changsha, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
- School of Computer Science, National University of Defense Technology, Changsha, China
- Peng Cheng Lab, Shenzhen, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| |
Collapse
|
5
|
Efficacy and Safety of Lianhua Qingke Tablets in the Treatment of Mild and Common-Type COVID-19: A Randomized, Controlled, Multicenter Clinical Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8733598. [PMID: 35186107 PMCID: PMC8853799 DOI: 10.1155/2022/8733598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
Background Lianhua Qingke (LH) tablets is an effective traditional Chinese medicine against various viral infections, especially in relieving coughing. However, its effects on COVID-19 are unknown. Methods To examine the therapeutic effectiveness of LH tablets in COVID-19 patients with mild and common types, a randomized, multicenter, controlled study was carried out. COVID-19 cases were randomized to undergo routine treatment with or without LH tablets (4 tablets, three times a day) for 14 days. The primary endpoints were the rate of achieving clinical symptom resolution and the corresponding time. Results There were 144 participants in the full analysis set (72 each in the LH and control groups). The LH group participants had elevated symptom alleviation rate at 14 days compared with control cases (FAS: 98.61% vs. 84.72%, p = 0.0026). In comparison with control group participants, the LH group participants had reduced median time to clinical symptom alleviation (median: 4 vs. 7 days, p < 0.0001). Higher resolution rates of coughing (98.44% vs. 84.51%, p = 0.0045) and expectoration (100% vs. 82.35%, p = 0.0268) were observed in the LH group. Times to recovery of fever (median: 2 vs. 3 days, p = 0.0007), coughing (median: 4 vs. 7 days, p < 0.0001), and expectoration (median: 3 vs. 6 days, p < 0.0001) were also notably shorter in the LH group. Moreover, the LH group had elevated improvement rates in chest computed tomography signs (FAS: 86.11% vs. 72.22%, p = 0.0402) and clinical cure at day 28 (FAS: 83.33% vs. 68.06%, p = 0.0326). However, no differences were found in the laboratory test and viral assay. Serious adverse events were not detected. Conclusion These preliminary findings indicate LH tablets may be effective in symptomatic COVID-19, especially in relieving coughing. This trial was registered in Chinese Clinical Trial Registry (ChiCTR2100042069).
Collapse
|
6
|
Xia KY, Zhao Z, Shah T, Wang JY, Baloch Z. Composition, Clinical Efficiency, and Mechanism of NHC-Approved “Three Chinese Medicines and Three Chinese Recipes” for COVID-19 Treatment. Front Pharmacol 2022; 12:781090. [PMID: 35185537 PMCID: PMC8855106 DOI: 10.3389/fphar.2021.781090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been regularly prescribed to treat and prevent diseases for thousands of years in the eastern part of the Asian continent. Thus, when the coronavirus disease 2019 (COVID-19) epidemic started, TCM was officially incorporated as a strategy by the National Health Commission (NHC) for the treatment of COVID-19 infection. TCMs were used to treat COVID-19 and had a significant effect on alleviating symptoms, delaying disease progression, improving the cure rate, and reducing the mortality rate in China. Therefore, China’s National Health Commission officially approved Qingfei Paidu decoction, Xuanfei Baidu decoction, Huashi Baidu decoction, Lianhua Qingwen capsules, Jinhua Qinggan granules, and Xuebijing for COVID-19 treatment. This review evaluates and summarizes the use of TCMs against infectious diseases and the composition, clinical efficacy, and mechanisms of the NHC-approved “three Chinese medicines and three Chinese recipes” for COVID-19 treatment. The three Chinese medicines and three Chinese recipes have been demonstrated to be highly effective against COVID-19, but there is a lack of in vivo or in vitro evidence. Most of the available data related to the potential mechanism of the three Chinese medicines and three Chinese recipes is based on virtual simulation or prediction, which is acquired via molecular docking and network pharmacology analysis. These predictions have not yet been proven. Therefore, there is a need for high-quality in vivo and in vitro and clinical studies by employing new strategies and technologies such as genomics, metabolomics, and proteomics to verify the predicted mechanisms of these drug’s effects on COVID-19.
Collapse
Affiliation(s)
- Ke-Yao Xia
- Faculty of Traditional Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zeyuan Zhao
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Taif Shah
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jing-Yi Wang
- Faculty of Traditional Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zulqarnain Baloch,
| |
Collapse
|
7
|
Feng S, Song F, Guo W, Tan J, Zhang X, Qiao F, Guo J, Zhang L, Jia X. Potential Genes Associated with COVID-19 and Comorbidity. Int J Med Sci 2022; 19:402-415. [PMID: 35165525 PMCID: PMC8795808 DOI: 10.7150/ijms.67815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Hypertension, diabetes mellitus, and coronary artery disease are common comorbidities and dangerous factors for infection and serious COVID-19. Polymorphisms in genes associated with comorbidities may help observe susceptibility and disease severity variation. However, specific genetic factors and the extent to which they can explain variation in susceptibility of severity are unclear. Therefore, we evaluated candidate genes associated with COVID-19 and hypertension, diabetes mellitus, and coronary artery disease. In particular, we performed searches against OMIM, NCBI, and other databases, protein-protein interaction network construction, and GO and KEGG pathway enrichment analyses. Results showed that the associated overlapping genes were TLR4, NLRP3, MBL2, IL6, IL1RN, IL1B, CX3CR1, CCR5, AGT, ACE, and F2. GO and KEGG analyses yielded 302 GO terms (q < 0.05) and 29 signaling pathways (q < 0.05), respectively, mainly including coronavirus disease-COVID-19 and cytokine-cytokine receptor interaction. IL6 and AGT were central in the PPI, with 8 and 5 connections, respectively. In this study, we identified 11 genes associated with both COVID-19 and three comorbidities that may contribute to infection and disease severity. The key genes IL6 and AGT are involved in regulating immune response, cytokine activity, and viral infection. Therefore, RAAS inhibitors, AGT antisense nucleotides, cytokine inhibitors, vitamin D, fenofibrate, and vaccines regulating non-immune and immune factors could be potential strategies to prevent and cure COVID-19. The study provides a basis for further investigation of genes and pathways with predictive value for the risk of infection and prognosis and could help guide drug and vaccine development to improve treatment efficacy and the development of personalised treatments, especially for COVID-19 individuals with common comorbidities.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fuqiang Song
- Department of medical Laboratory, The General Hospital of Western Theater Command, Chengdu, China
| | | | - Jishan Tan
- Department of medical Laboratory, The General Hospital of Western Theater Command, Chengdu, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fengling Qiao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Tianyu Z, Xiaoli C, Yaru W, Min Z, Fengli Y, Kan H, Li C, Jing L. New tale on LianHuaQingWen: IL6R/IL6/IL6ST complex is a potential target for COVID-19 treatment. Aging (Albany NY) 2021; 13:23913-23935. [PMID: 34731090 PMCID: PMC8610116 DOI: 10.18632/aging.203666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
LianHuaQingWen (LHQW) improves clinical symptoms and alleviates the severity of COVID-19, but the mechanism is unclear. This study aimed to investigate the potential molecular targets and mechanisms of LHQW in treating COVID-19 using a network pharmacology-based approach and molecular docking analysis. The main active ingredients, therapeutic targets of LHQW, and the pathogenic targets of COVID-19 were screened using the TCMSP, UniProt, STRING, and GeneCards databases. According to the “Drug-Ingredients-Targets-Disease” network, Interleukin 6 (IL6) was identified as the core target, and quercetin, luteolin, and wogonin as the active ingredients of LHQW associated with IL6. The response to lipopolysaccharide was the most significant biological process identified by gene ontology enrichment analysis, and AGE-RAGE signaling pathway activation was prominent based on the interaction between LHQW and COVID-19. Protein-protein docking analysis showed that IL6 receptor (IL6R)/IL6/IL6 receptor subunit beta (IL6ST) and Spike protein were mainly bound via conventional hydrogen bonds. Furthermore, protein-small molecule docking showed that all three active ingredients could bind stably in the binding model of IL6R/IL6 and IL6ST. Our findings suggest that LHQW may inhibit the lipopolysaccharide-mediated inflammatory response and regulate the AGE-RAGE signaling pathway through IL6. In addition, the N-terminal domain of the S protein of COVID-19 has a good binding activity to IL6ST, and quercetin and wogonin in LHQW may affect IL6ST-mediated IL6 signal transduction and a large number of signaling pathways downstream to other cytokines by directly affecting protein-protein interaction. These findings suggest the potential molecular mechanism by which LHQW inhibits COVID-19 through the regulation of IL6R/IL6/IL6ST.
Collapse
Affiliation(s)
- Zhao Tianyu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Cui Xiaoli
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Wang Yaru
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Zhang Min
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Yue Fengli
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - He Kan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Chen Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Li Jing
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| |
Collapse
|