1
|
Sosa MKS, Boorman DC, Keay KA. The impact of sciatic nerve injury and social interactions testing on glucocorticoid receptor expression in catecholaminergic medullary cell populations. Brain Res 2023; 1819:148542. [PMID: 37604315 DOI: 10.1016/j.brainres.2023.148542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Paradoxically, while acute pain leads to transiently elevated corticosterone, chronic pain does not result in persistently elevated corticosterone. In the sciatic nerve chronic constriction injury (CCI) model of chronic pain, we have shown that the same nerve injury produces a range of behavioural outcomes, each associated with distinctive adaptations to the HPA-axis to achieve stable plasma corticosterone levels. We also demonstrated that CRF and GR expression in the paraventricular hypothalamus (PVH) was increased in rats that showed persistent changes to their social behaviours during Resident-Intruder testing ('Persistent Effect' rats) when compared to rats that showed no behavioural changes ('No Effect' rats). In this study, we investigated whether these changes were driven in part by altered sensitivity of the brainstem catecholaminergic pathways (known to regulate the PVH) to glucocorticoids. GR expression in adrenergic (C1,C2) and noradrenergic (A1,A2) cells was determined using immunohistochemistry in behaviourally tested CCI rats and in uninjured controls. We found no differences between Persistent Effect and No Effect rats in (1) the glucocorticoid sensitivity of these cells, or (2) the numbers of adrenergic and noradrenergic cells in each region. However, we discovered an overall reduction in GR expression in the non-catecholaminergic cells of these regions in both experimental groups when compared to uninjured controls, most likely attributable to the repeated Resident-Intruder testing. Taken together, these data suggest strongly that brainstem mechanisms are unlikely to play a key role in the rebalancing of the HPA-axis triggered by CCI, increasing the probability that these changes are driven by supra-hypothalamic regions.
Collapse
Affiliation(s)
- Maria K S Sosa
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales 2006, Australia
| | - Damien C Boorman
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
2
|
Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis. Brain Res Bull 2022; 182:12-25. [DOI: 10.1016/j.brainresbull.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022]
|
3
|
Differential responses of neurons in the rat caudal ventrolateral medulla to visceral and somatic noxious stimuli and their alterations in colitis. Brain Res Bull 2019; 152:299-310. [PMID: 31377442 DOI: 10.1016/j.brainresbull.2019.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
Visceral and somatic types of pain have been reported to manifest crucial differences not only in the experience, but also in their peripheral and central processing. However, the precise neuronal mechanisms that responsible for the modality-specific transmission of pain signals, especially at the supraspinal level, remain unclear. Very little is known also about the potential involvement of such mechanisms in the development of viscero-somatic hyperalgesia. Therefore, in the present study performed on urethane-anesthetized adult male Wistar rats we examined responses of neurons in the caudal ventrolateral medulla (CVLM)-the first site for supraspinal processing of both internal and external pain signals-to visceral (colorectal distension, CRD) and somatic (squeezing of the tail) noxious stimulations and evaluated alterations in response properties of these cells after the induction of colitis. It has been found out that the CVLM of healthy control rats, along with harboring of cells excited by both stimulations (23.7%), contained neurons that were activated by either visceral (31.9%) or somatic noxious stimuli (44.4%). In inflamed animals, the percentages of the visceral and somatic nociceptive cells were decreased (to 18.3% and 34.3%, correspondingly) and the number of bimodal neurons was increased (up to 47.4%); these alterations were associated with substantially enhanced responses of both the modality-specific and convergent CVLM neurons not only to CRD, but also to squeezing of the tail. Under these conditions, visceral and somatic pain stimuli induced similar changes in arterial blood pressure and respiratory rate, whereas in the absence of intestinal inflammation noxious CRD and tail stimulation evoked predominantly divergent autonomic reactions. The data obtained can benefit to a deeper understanding of the neuronal mechanisms that underlie differential supraspinal processing of visceral and somatic noxious stimuli and can potentially contribute to the realization of specific cardiovascular and respiratory accompaniments inherent to a particular type of pain. Therewith, results of the study elucidate colitis-induced alterations in these mechanisms, which may be responsible for the combined development of visceral hypersensitivity and somatic hyperalgesia.
Collapse
|
4
|
Kaddumi EG. Effect of distal esophageal irritation on the changes of cystometry parameters to esophagus and colon distentions in rats. Can J Physiol Pharmacol 2019; 97:766-772. [PMID: 31013433 DOI: 10.1139/cjpp-2019-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The coexistence of different visceral pathologies in patients suffering from irritable bowel syndrome, interstitial cystitis, and other pathologies, necessitates the study of these pathologies under complicated conditions. In the present study, cystometry recordings were used to investigate the effect of distal esophageal chemical irritation on the urinary bladder interaction with distal colon distention, distal esophageal distention, and electrical stimulation of abdominal branches of vagus nerve. Distal esophageal chemical irritation significantly decreased the intercontraction time via decreasing the voiding time. Also, distal esophageal chemical irritation significantly decreased the pressure amplitude by decreasing the maximum pressure. Following distal esophageal chemical irritation, distal esophageal distention was able to significantly decrease the intercontraction time by decreasing the storage time. However, 3 mL distal colon distention significantly increased the intercontraction time by increasing the storage time. On the other hand, following distal esophageal chemical irritation, electrical stimulation of abdominal branches of vagus nerve did not have any significant effect on intercontraction time. However, electrical stimulation of abdominal branches of vagus nerve significantly increased the pressure amplitude by increasing the maximum pressure. The results of this study demonstrate that urinary bladder function and interaction of bladder with other viscera can be affected by chemical irritation of distal esophagus.
Collapse
Affiliation(s)
- Ezidin G Kaddumi
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan.,Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
5
|
Panteleev SS, Sivachenko IB, Lyubashina OA. The central effects of buspirone on abdominal pain in rats. Neurogastroenterol Motil 2018; 30:e13431. [PMID: 30101506 DOI: 10.1111/nmo.13431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Buspirone, a partial agonist of the 5-HT1a receptor (5-HT1a R), owing to potential antinociceptive properties may be useful in treatment of abdominal pain in IBS patients. The pain-related effects of buspirone are mediated via the 5-HT1a Rs, specifically located within the ventrolateral medulla (VLM). The most animal studies of the 5-HT1a R involvement in pain control have been carried out with somatic behavioral tests. The 5-HT1a R contribution in visceral pain transmission within the VLM is unclear. The objective of our study was to evaluate the 5-HT1a R contribution in abdominal pain transmission within the VLM. METHODS Using animal model of abdominal pain (urethane-anaesthetized rats), based on the noxious colorectal distension (CRD) as pain stimulus we studied effects of buspirone (1.0-4.0 mg kg-1 , iv) on the CRD-induced VLM neuron and blood pressure responses as markers of abdominal pain before and after the 5-HT1a R blockade by antagonist, WAY 100,635. RESULTS The CRD induced a significant increase in VLM neuron activity up to 201.5 ± 18.0% and depressor reactions up to 68 ± 1.8% of baseline. Buspirone (1.0-4.0 mg kg-1 , iv) resulted in an inhibition of the CRD-induced neuron responses which were changed inversely with dose increase and decreased depressor reactions directly with dose increase. These effects were antagonized by intracerebroventricular WAY 100,635. CONCLUSION Buspirone exerts complex biphasic action on the pain-related VLM neuron activity inversely depending on dose. The final effect of buspirone depends on the functional balance between of activation the pre- and postsynaptic 5-HT1a Rs in mediating pain control networks.
Collapse
Affiliation(s)
- S S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, Saint Petersburg, Russia
| | - I B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - O A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, Saint Petersburg, Russia
| |
Collapse
|
6
|
Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 2018; 142:183-196. [PMID: 30031817 DOI: 10.1016/j.brainresbull.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
There is considerable clinical and experimental evidence that intestinal inflammation is associated with altered visceral nociceptive processing in the spinal cord and brain, but the underlying neuronal mechanisms, especially acting at the supraspinal level, remain unclear. Considering that the caudal ventrolateral medulla (CVLM) and the nucleus tractus solitarius (NTS) are the first sites for supraspinal processing of visceral pain signals, in the present study we evaluated the experimental colitis-induced changes in response properties of CVLM and NTS medullary neurons to noxious colorectal distension (CRD) in urethane-anesthetized adult male Wistar rats. To determine if gut inflammation alters the 5-HT3 receptor-dependent modulation of visceral pain-related CVLM and NTS cells, we examined the effects of intravenously administered selective 5-HT3 antagonist granisetron on ongoing and CRD-evoked activity of CVLM and NTS neurons in healthy control and colitic animals. In the absence of colonic pathology, the CVLM neurons were more excited by noxious CRD that the NTS cells, which demonstrated a greater tendency to be inhibited by the stimulation. The difference was eliminated after the development of colitis due to the increase in the proportion of CRD-excited neurons in both medullary regions associated with enhanced magnitude of the neuronal nociceptive responses. Intravenous granisetron (1 or 2 mg/kg) produced the dose-dependent suppression of the ongoing and evoked firing of CRD-excited cells within both the CVLM and NTS in normal conditions as well as was able to substantially reduce excitability of the caudal medullary neurons in the presence of colonic inflammation, arguing for the potential efficacy of the 5-HT3 receptor blockade with granisetron against both acute and inflammatory abdominal pain. Taken together, the data obtained can contribute to a deeper understanding of supraspinal serotonergic mechanisms responsible for the persistence of visceral hypersensitivity and hyperalgesia triggered by colonic inflammation.
Collapse
|
7
|
Lyubashina O, Sivachenko I. The 5-HT 4 receptor-mediated inhibition of visceral nociceptive neurons in the rat caudal ventrolateral medulla. Neuroscience 2017; 359:277-288. [DOI: 10.1016/j.neuroscience.2017.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/26/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
|
8
|
Lyubashina OA, Sivachenko IB, Panteleev SS, Nozdrachev AD. Effects of 5-HT3 receptor blockade on visceral nociceptive neurons in the ventrolateral reticular field of the rat medulla oblongata. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016040062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kaddumi EG. The influence of distal colon irritation on the changes of cystometry parameters to esophagus and colon distentions. Int Braz J Urol 2016; 42:594-602. [PMID: 27286126 PMCID: PMC4920580 DOI: 10.1590/s1677-5538.ibju.2015.0238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022] Open
Abstract
The co-occurrence of multiple pathologies in the pelvic viscera in the same patient, such as, irritable bowel syndrome and interstitial cystitis, indicates the complexity of viscero-visceral interactions and the necessity to study these interactions under multiple pathological conditions. In the present study, the effect of distal colon irritation (DCI) on the urinary bladder interaction with distal esophagus distention (DED), distal colon distention (DCD), and electrical stimulation of the abdominal branches of vagus nerve (abd-vagus) were investigated using cystometry parameters. The DCI significantly decreased the intercontraction time (ICT) by decreasing the storage time (ST); nonetheless, DED and Abd-vagus were still able to significantly decrease the ICT and ST following DCI. However, DCD had no effect on ICT following the DCI. The DCI, also, significantly decreased the Intravesical pressure amplitude (P-amplitude) by increasing the resting pressure (RP). Although DED has no effect on the P-amplitude, both in the intact and the irritated animals, the abd-vagus significantly increased the P-amplitude following DCI by increasing the maximum pressure (MP). In the contrary, 3mL DCD significantly increased the P-amplitude by increasing the MP and lost that effect following the DCI. Concerning the pressure threshold (PT), none of the stimuli had any significant changes in the intact animals. However, DCI significantly decreased the PT, also, the abd-vagus and 3mL DCD significantly decreased the PT. The results of this study indicate that chemical irritation of colon complicates the effects of mechanical irritation of esophagus and colon on urinary bladder function.
Collapse
Affiliation(s)
- Ezidin G Kaddumi
- Department of Basic Medical Sciences, Collage of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Kaddumi EG. Cervical vagotomy increased the distal colon distention to urinary bladder inhibitory reflex in male rats. Clin Auton Res 2015; 26:33-9. [PMID: 26607592 DOI: 10.1007/s10286-015-0326-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Many studies have demonstrated the convergence of vagal inputs into brainstem centers with inputs from the urinary bladder and colon, as well as the convergence of vagal inputs into other centers controlling the urinary bladder and colon reflexes. However, the effect of the vagal inputs on the interaction between the urinary bladder and other pelvic organs has not been studied. In this study, the effect of bilateral cervical vagotomy on the distal colon to urinary bladder reflex was examined. METHODS Changes to cystometry parameters in response to increased distal colon distensions (1, 2, and 3 ml) were tested in urethane-anesthetized male rats with or without bilateral cervical vagotomy. RESULTS In animals with intact vagus nerves, 1 and 2 ml distal colon distentions had no significant effects on micturition frequency; however, 3 ml distal colon distention significantly decreased the frequency of micturition cycles. Also, 3 ml distal colon distention inhibited micturition cycles in 37.5 % of these animals. On the other hand, following cervical vagotomy, 1 ml distal colon distention was enough to significantly decrease the frequency of micturition cycles and to inhibit the cycles in 75 % of the animals. CONCLUSION These results demonstrate the presence of supraspinal inhibitory regulation, via the vagus nerve, over the distal colon to urinary bladder inhibitory reflex.
Collapse
Affiliation(s)
- Ezidin G Kaddumi
- Department of Basic Medical Sciences (mail code 6677), Faculty of Medicine, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, P.O. Box 9515, Jeddah, 21423, Saudi Arabia.
| |
Collapse
|
11
|
The inhibitory effect of granisetron on ventrolateral medulla neuron responses to colorectal distension in rats. Eur J Pharmacol 2015; 749:49-55. [DOI: 10.1016/j.ejphar.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/17/2023]
|
12
|
Panneton WM, Gan Q, Livergood RS. A trigeminoreticular pathway: implications in pain. PLoS One 2011; 6:e24499. [PMID: 21957454 PMCID: PMC3177822 DOI: 10.1371/journal.pone.0024499] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/11/2011] [Indexed: 01/18/2023] Open
Abstract
Neurons in the caudalmost ventrolateral medulla (cmVLM) respond to noxious stimulation. We previously have shown most efferent projections from this locus project to areas implicated either in the processing or modulation of pain. Here we show the cmVLM of the rat receives projections from superficial laminae of the medullary dorsal horn (MDH) and has neurons activated with capsaicin injections into the temporalis muscle. Injections of either biotinylated dextran amine (BDA) into the MDH or fluorogold (FG)/fluorescent microbeads into the cmVLM showed projections from lamina I and II of the MDH to the cmVLM. Morphometric analysis showed the retrogradely-labeled neurons were small (area 88.7 µm(2)±3.4) and mostly fusiform in shape. Injections (20-50 µl) of 0.5% capsaicin into the temporalis muscle and subsequent immunohistochemistry for c-Fos showed nuclei labeled in the dorsomedial trigeminocervical complex (TCC), the cmVLM, the lateral medulla, and the internal lateral subnucleus of the parabrachial complex (PBil). Additional labeling with c-Fos was seen in the subnucleus interpolaris of the spinal trigeminal nucleus, the rostral ventrolateral medulla, the superior salivatory nucleus, the rostral ventromedial medulla, and the A1, A5, A7 and subcoeruleus catecholamine areas. Injections of FG into the PBil produced robust label in the lateral medulla and cmVLM while injections of BDA into the lateral medulla showed projections to the PBil. Immunohistochemical experiments to antibodies against substance P, the substance P receptor (NK1), calcitonin gene regulating peptide, leucine enkephalin, VRL1 (TPRV2) receptors and neuropeptide Y showed that these peptides/receptors densely stained the cmVLM. We suggest the MDH- cmVLM projection is important for pain from head and neck areas. We offer a potential new pathway for regulating deep pain via the neurons of the TCC, the cmVLM, the lateral medulla, and the PBil and propose these areas compose a trigeminoreticular pathway, possibly the trigeminal homologue of the spinoreticulothalamic pathway.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | |
Collapse
|
13
|
Wang L, Martínez V, Larauche M, Taché Y. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain. Brain Res 2009; 1247:79-91. [PMID: 18955037 PMCID: PMC3210201 DOI: 10.1016/j.brainres.2008.09.094] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
Little is known about the chemical coding of the brain neuronal circuitry activated by nociceptive signals of visceral origin. We characterized brain nuclei activated during isovolumetric phasic distension of the proximal colon (10 ml, 30 s on/off for 10 min) in conscious male rats, using Fos as a marker of neuronal activation and dual immunohistochemistry to visualize co-localization of Fos expression and oxytocin (OT), arginine-vasopressin (AVP), corticotrophin-releasing factor (CRF) or tyrosine hydroxylase (TH). Proximal colon distension, compared with sham distension, induced a robust increase in Fos-like immunoreactive (IR) neurons in the paraventricular nucleus (PVN), supraoptic nucleus (SON) and accessory neurosecretory nuclei of the hypothalamus, nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM), and to a lower extent, in the locus coeruleus (LC) and Barrington nucleus. Fos-IR neurons in the PVN after colon distension were identified in 81% of OT-IR, 18% AVP-IR and 16% CRF-IR neurons, while in the SON it represented 36% of OT-IR and 16% AVP-IR. Catecholaminergic cell groups in the pons (LC) and medulla (VLM, NTS) were also activated by proximal colon distension. Of the TH-IR neurons in VLM and NTS, 74% and 42% respectively were double labeled. These results indicate that colon distension stimulates OT-, AVP- and CRF-containing hypothalamic neurons, likely involved in the integration of colonic sensory information to modulate autonomic outflow and pain-related responses. Activation of medullary catecholaminergic centers might reflect the afferent and efferent limbs of the functional responses associated to visceral pain.
Collapse
Affiliation(s)
- Lixin Wang
- CURE: Digestive Diseases Research Center and Center for Neurobiological Stress, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
14
|
Rong PJ, Zhu B, Huang QF, Gao XY, Ben H, Li YH. Acupuncture inhibition on neuronal activity of spinal dorsal horn induced by noxious colorectal distention in rat. World J Gastroenterol 2005; 11:1011-7. [PMID: 15742405 PMCID: PMC4250762 DOI: 10.3748/wjg.v11.i7.1011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe how acupuncture stimulation influences the visceral nociception in rat and to clarify the interactions between acupuncture or somatic input and visceral nociceptive inputs in the spinal dorsal horn. These will provide scientific base for illustrating the mechanism of acupuncture on visceral pain.
METHODS: Experiments were performed on Sprague-Dawley rats and the visceral nociceptive stimulus was generated by colorectal distention (CRD). Unit discharges from individual single neuron were recorded extracellularly with glass-microelectrode in L1-3 spinal dorsal horn. Acupuncture stimulation was applied at contralateral heterotopic acupoint and ipsilateral homotopic acupoint, both of which were innervated by the same segments that innervate also the colorectal-gut.
RESULTS: The visceral nociception could be inhibited at the spinal level by the heterotopic somatic mechanical stimulation and acupuncture. The maximal inhibition was induced by acupuncture or the somatic noxious stimulation at spinal dorsal horn level with inhibiting rate of 68.61% and 60.79%, respectively (P<0.01 and <0.001). In reversible spinalized rats (cervical-thoracic cold block) both spontaneous activity and responses to CRD increased significantly in 16/20 units examined, indicating the existence of tonic descending inhibition. The inhibition of acupuncture on the noxious CRD disappeared totally in the reversible spinalized rats (P<0.001).
CONCLUSION: The inputs of noxious CRD and acupuncture may interact at the spinal level. The nociceptive visceral inputs could be inhibited by acupuncture applied to hetero-topic acupoint. The effect indicates that the spinal dorsal horn plays a significant role in mediating the inhibition of acupuncture and somatic stimulation on the neuronal response to the noxious visceral stimulation and the inhibition is modulated by upper cervical cord and/or supra-spinal center.
Collapse
Affiliation(s)
- Pei-Jing Rong
- Institute of Acupuncture, China Academy of Chinese Medicine, 16 Nanxiaojie of Dongzhimen, Beijing 100700, China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Visceral pain, although different from somatic pain in several important features, is not as widely researched and consequently our knowledge of neurophysiologic mechanisms as well as clinical management of visceral pain states remains unsatisfactory. Several recent studies have employed different visceral pain animal models to provide insight into the peripheral and central nervous system mechanisms underlying pain originating from the urinary bladder, ureter, and gastrointestinal tract. The effects of opioid and nonopioid drugs in these models have also been evaluated and are reviewed in this article. The importance of anatomic pathways relaying pain sensation in the central nervous system, particularly the newly described dorsal column pathway, is also discussed. In human subjects, new techniques like positron emission tomography are now being used to better understand visceral pain perception. Such findings deriving from basic animal research and human studies summarized in the present overview lead to a better understanding of visceral pain states and may be helpful in developing better treatment strategies to combat visceral pain states in the clinical setting.
Collapse
Affiliation(s)
- S K Joshi
- Department of Pharmacology, The University of Iowa College of Medicine, 2-302 Bowen Science Building, Iowa City, IA 52242, USA.
| | | |
Collapse
|