Schmelzer KR, Inceoglu B, Kubala L, Kim IH, Jinks SL, Eiserich JP, Hammock BD. Enhancement of antinociception by coadministration of nonsteroidal anti-inflammatory drugs and soluble epoxide hydrolase inhibitors.
Proc Natl Acad Sci U S A 2006;
103:13646-51. [PMID:
16950874 PMCID:
PMC1564210 DOI:
10.1073/pnas.0605908103]
[Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Combination therapies have long been used to treat inflammation while reducing side effects. The present study was designed to evaluate the therapeutic potential of combination treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) and previously undescribed soluble epoxide hydrolase inhibitors (sEHIs) in lipopolysaccharide (LPS)-challenged mice. NSAIDs inhibit cyclooxygenase (COX) enzymes and thereby decrease production of metabolites that lead to pain and inflammation. The sEHIs, such as 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), stabilize anti-inflammatory epoxy-eicosatrienoic acids, which indirectly reduce the expression of COX-2 protein. Here we demonstrate that the combination therapy of NSAIDs and sEHIs produces significantly beneficial effects that are additive for alleviating pain and enhanced effects in reducing COX-2 protein expression and shifting oxylipin metabolomic profiles. When administered alone, AUDA-BE decreased protein expression of COX-2 to 73 +/- 6% of control mice treated with LPS only without altering COX-1 expression and decreased PGE(2) levels to 52 +/- 8% compared with LPS-treated mice not receiving any therapeutic intervention. When AUDA-BE was used in combination with low doses of indomethacin, celecoxib, or rofecoxib, PGE(2) concentrations dropped to 51 +/- 7, 84 +/- 9, and 91 +/- 8%, respectively, versus LPS control, without disrupting prostacyclin and thromboxane levels. These data suggest that these drug combinations (NSAIDs and sEHIs) produce a valuable beneficial analgesic and anti-inflammatory effect while prospectively decreasing side effects such as cardiovascular toxicity.
Collapse