1
|
Zhang L, Tian R, Xiao J, Wang Y, Feng K, Chen G. Preliminary Study on Polymerization between Hemoglobin and Enzymes during the Preparation of PolyHb-SOD-CAT-CA. DOKL BIOCHEM BIOPHYS 2024; 518:463-474. [PMID: 39196524 DOI: 10.1134/s1607672924600477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
The objective of this study was to explore the influence of different factors on the aggregation effect on hemoglobin (Hb) and enzymes during the preparation of Polyhemoglobin-Superoxide dismutase-Catalase-Carbonic anhydrase (PolyHb-SOD-CAT-CA). Several factors including temperatures, pH values, Glutaraldehyde (GDA) amounts and enzymes amounts were investigated systematically to study their effects on the enzymes recoveries and polymerization rates including the Superoxide dismutase (SOD), Catalase (CAT) and Carbonic anhydrase (CA), as well as their effects on the molecular weight distribution of PolyHb-SOD-CAT-CA. Then the oxygen affinity and methemoglobin (MetHb) contents of obtained PolyHb-SOD-CAT-CA were measured to evaluate the effects of enzyme crosslinking on the properties of Polyhemoglobin (PolyHb) moieties in the molecular structure of obtained PolyHb-SOD-CAT-CA conjugate. The results showed that the enzyme recoveries and polymerization rates could be decreased with the temperatures increasing and could be generally kept stable in the physiological pH conditions, but presented only slight changes among the investigated enzyme amounts ranges. Although the GDA concentration increasing could promote the enzyme polymerization rates, the enzyme recoveries decreased in whole. The polymerization rate and molecular size of PolyHb-SOD-CAT-CA conjugate increased with the elevation of temperature and the concentration of GDA. Lastly, the P50 values, Hill coefficients, and MetHb contents of PolyHb-SOD-CAT-CA conjugate with different enzyme crosslinking degrees exhibited no obvious differences with each other. In conclusion, the polymerization reactions between enzymes and Hb molecules could be remarkably affected by temperatures, pH values, and GDA amounts, and the enzyme crosslinking presented no obvious effects on the Hb properties, especially about the oxygen affinity and oxidation degrees.
Collapse
Affiliation(s)
- Lili Zhang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Renci Tian
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Jiawei Xiao
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Yaoxi Wang
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China
| | - Kun Feng
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
| | - Gang Chen
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China.
| |
Collapse
|
2
|
Kuszynski DS, Christian BD, Bernard MP, Lauver DA. Evaluation of the Efficacy and Safety of Antiplatelet Therapeutics in Rabbits. Curr Protoc 2023; 3:e711. [PMID: 36921209 DOI: 10.1002/cpz1.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Hemostasis is a multifactorial process that involves vasoconstriction of blood vessels, activation of the coagulation cascade, and platelet aggregation. Inappropriate activation of hemostatic processes can result in thrombosis and tissue ischemia. In patients at risk for thrombotic events, antiplatelet therapeutic agents inhibit platelet activation, thereby reducing the incidence of pathologic clot formation. Platelets are activated by several endogenous chemical mediators, including adenosine diphosphate, thrombin, and thromboxane. These activation pathways serve as attractive drug targets. The protocols described in this article are designed to evaluate the preclinical efficacy and safety of novel antiplatelet therapeutics in rabbits. Here, we provide two protocols for blood collection, two for determining platelet activation, and one for assessing bleeding safety. Together, these protocols can be used to characterize the efficacy and safety of antiplatelet agents for hemostasis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Blood collection via the central ear artery Alternative Protocol 1: Blood collection via the jugular vein Basic Protocol 2: Platelet aggregation assessment via light transmission aggregometry Alternative Protocol 2: Platelet activation assessment via flow cytometry Basic Protocol 3: Determination of tongue bleeding time.
Collapse
Affiliation(s)
- Dawn S Kuszynski
- Therapeutic Systems Research Laboratories, Inc., Ann Arbor, Michigan
| | - Barbara D Christian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Matthew P Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - D Adam Lauver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
3
|
Gu X, Savla C, Palmer AF. Tangential flow filtration facilitated fractionation and PEGylation of low and high-molecular weight polymerized hemoglobins and their biophysical properties. Biotechnol Bioeng 2022; 119:176-186. [PMID: 34672363 PMCID: PMC8643326 DOI: 10.1002/bit.27962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Various types of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been developed as red blood cell substitutes for treating blood loss when blood is not available. Among those HBOCs, glutaraldehyde polymerized Hbs have attracted significant attention due to their facile synthetic route, and ability to expand the blood volume and deliver oxygen. Hemopure®, Oxyglobin®, and PolyHeme® are the most well-known commercially developed glutaraldehyde polymerized Hbs. Unfortunately, only Oxyglobin® was approved by the FDA for veterinary use in the United States, while Hemopure® and PolyHeme® failed phase III clinical trials due to their ability to extravasate from the blood volume into the tissue space which facilitated nitric oxide scavenging and tissue deposition of iron, which elicited vasoconstriction, hypertension and oxidative tissue injury. Fortunately, conjugation of poly (ethylene glycol) (PEG) on the surface of Hb is capable of reducing the vasoactivity of Hb by creating a hydration layer surrounding the Hb molecule, which increases its hydrodynamic diameter and reduces tissue extravasation. Several commercial PEGylated Hbs (MP4®, Sanguinate®, Euro-PEG-Hb) have been developed for clinical use with a longer circulatory half-life and improved safety compared to Hb. However, all of these commercial products exhibited relatively high oxygen affinity compared to Hb, which limited their clinical use. To dually address the limitations of prior generations of polymerized and PEGylated Hbs, this current study describes the PEGylation of polymerized bovine Hb (PEG-PolybHb) in both the tense (T) and relaxed (R) quaternary state via thiol-maleimide chemistry to produce an HBOC with low or high oxygen affinity. The biophysical properties of PEG-PolybHb were measured and compared with those of commercial polymerized and PEGylated HBOCs. T-state PEG-PolybHb possessed higher hydrodynamic volume and P50 than previous generations of commercial PEGylated Hbs. Both T- and R-state PEG-PolybHb exhibited significantly lower haptoglobin binding rates than the precursor PolybHb, indicating potentially reduced clearance by CD163 + monocytes and macrophages. Thus, T-state PEG-PolybHb is expected to function as a promising HBOC due to its low oxygen affinity and enhanced stealth properties afforded by the PEG hydration shell.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
4
|
Cao M, Zhao Y, He H, Yue R, Pan L, Hu H, Ren Y, Qin Q, Yi X, Yin T, Ma L, Zhang D, Huang X. New Applications of HBOC-201: A 25-Year Review of the Literature. Front Med (Lausanne) 2021; 8:794561. [PMID: 34957164 PMCID: PMC8692657 DOI: 10.3389/fmed.2021.794561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
If not cured promptly, tissue ischemia and hypoxia can cause serious consequences or even threaten the life of the patient. Hemoglobin-based oxygen carrier-201 (HBOC-201), bovine hemoglobin polymerized by glutaraldehyde and stored in a modified Ringer's lactic acid solution, has been investigated as a blood substitute for clinical use. HBOC-201 was approved in South Africa in 2001 to treat patients with low hemoglobin (Hb) levels when red blood cells (RBCs) are contraindicated, rejected, or unavailable. By promoting oxygen diffusion and convective oxygen delivery, HBOC-201 may act as a direct oxygen donor and increase oxygen transfer between RBCs and between RBCs and tissues. Therefore, HBOC-201 is gradually finding applications in treating various ischemic and hypoxic diseases including traumatic hemorrhagic shock, hemolysis, myocardial infarction, cardiopulmonary bypass, perioperative period, organ transplantation, etc. However, side effects such as vasoconstriction and elevated methemoglobin caused by HBOC-201 are major concerns in clinical applications because Hbs are not encapsulated by cell membranes. This study summarizes preclinical and clinical studies of HBOC-201 applied in various clinical scenarios, outlines the relevant mechanisms, highlights potential side effects and solutions, and discusses the application prospects. Randomized trials with large samples need to be further studied to better validate the efficacy, safety, and tolerability of HBOC-201 to the extent where patient-specific treatment strategies would be developed for various clinical scenarios to improve clinical outcomes.
Collapse
Affiliation(s)
- Min Cao
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhao
- Anesthesiology, Southwest Medicine University, Luzhou, China
| | - Hongli He
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Hu
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingjie Ren
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Qin
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueliang Yi
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yin
- Surgical Department, Chengdu Second People's Hospital, Chengdu, China
| | - Lina Ma
- Health Inspection and Quarantine, Chengdu Medical College, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Gu X, Bolden-Rush C, Cuddington CT, Belcher DA, Savla C, Pires IS, Palmer AF. Comprehensive characterization of tense and relaxed quaternary state glutaraldehyde polymerized bovine hemoglobin as a function of cross-link density. Biotechnol Bioeng 2020; 117:2362-2376. [PMID: 32472694 DOI: 10.1002/bit.27382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/08/2022]
Abstract
Previously, our lab developed high molecular weight (MW) tense (T) quaternary state glutaraldehyde polymerized bovine hemoglobins (PolybHbs) that exhibited reduced vasoactivity in several small animal models. In this study, we prepared PolybHb in the T and relaxed (R) quaternary state with ultrahigh MW (>500 kDa) with varying cross-link densities, and investigated the effect of MW on key biophysical properties (i.e., O2 affinity, cooperativity (Hill) coefficient, hydrodynamic diameter, polydispersity, polymer composition, viscosity, gaseous ligand-binding kinetics, auto-oxidation, and haptoglobin [Hp]-binding kinetics). To further optimize current PolybHb synthesis and purification protocols, we performed a comprehensive meta-data analysis to evaluate correlations between procedural parameters (i.e., cross-linker:bovine hemoglobin (bHb) molar ratio, gas-liquid exchange time, temperature during sodium dithionite addition, and number of diafiltration cycles) and the biophysical properties of both T- and R-state PolybHbs. Our results showed that, the duration of the fast-step auto-oxidation phase of R-state PolybHb increased with decreasing glutaraldehyde:bHb molar ratio. Additionally, T-state PolybHbs exhibited significantly higher bimolecular rate constants for binding to Hp and unimolecular O2 offloading rate constants compared to R-state PolybHbs. The methemoglobin (metHb) level in the final product was insensitive to the molar ratio of glutaraldehyde to bHb for all PolybHbs. During tangential flow filtration processing of the final product, 14 diafiltration cycles was found to yield the lowest metHb level.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Crystal Bolden-Rush
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Early Intervention in Ischemic Tissue with Oxygen Nanocarriers Enables Successful Implementation of Restorative Cell Therapies. Cell Mol Bioeng 2020; 13:435-446. [PMID: 33184576 DOI: 10.1007/s12195-020-00621-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023] Open
Abstract
Background Tissue ischemia contributes to necrosis and infection. While angiogenic cell therapies have emerged as a promising strategy against ischemia, current approaches to cell therapies face multiple hurdles. Recent advances in nuclear reprogramming could potentially overcome some of these limitations. However, under severely ischemic conditions necrosis could outpace reprogramming-based repair. As such, adjunctive measures are required to maintain a minimum level of tissue viability/activity for optimal response to restorative interventions. Methods Here we explored the combined use of polymerized hemoglobin (PolyHb)-based oxygen nanocarriers with Tissue Nano-Transfection (TNT)-driven restoration to develop tissue preservation/repair strategies that could potentially be used as a first line of care. Random-pattern cutaneous flaps were created in a mouse model of ischemic injury. PolyHbs with high and low oxygen affinity were synthesized and injected into the tissue flap at various timepoints of ischemic injury. The degree of tissue preservation was evaluated in terms of perfusion, oxygenation, and resulting necrosis. TNT was then used to deploy reprogramming-based vasculogenic cell therapies to the flaps via nanochannels. Reprogramming/repair outcomes were evaluated in terms of vascularity and necrosis. Results Flaps treated with PolyHbs exhibited a gradual decrease in necrosis as a function of time-to-intervention, with low oxygen affinity PolyHb showing the best outcomes. TNT-based intervention of the flap in combination with PolyHb successfully curtailed advanced necrosis compared to flaps treated with only PolyHb or TNT alone. Conclusions These results indicate that PolyHb and TNT technologies could potentially be synergistically deployed and used as early intervention measures to combat severe tissue ischemia.
Collapse
|
7
|
Estep TN. Haemoglobin-based oxygen carriers and myocardial infarction. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:593-601. [PMID: 30849245 DOI: 10.1080/21691401.2019.1573181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The incidence of investigator diagnosed myocardial infarction (MI) is greater in patients treated with haemoglobin-based oxygen carriers (HBOCs) than controls. Clinical trials and literature pertaining to possible HBOC toxicity mechanisms have been analyzed in order to identify possible reasons for this imbalance. MI diagnosis is hampered by potential interference of troponin assays by haemoglobin, haemolysis and bilirubin. Nevertheless, insofar as the reported incidence correlates with actual occurrence, there is a positive relationship between MI and HBOC dose and size. Preclinical and clinical data suggest that direct cardiac toxicity and coronary vasoconstriction are unlikely. More probable are detrimental intravascular interactions between HBOCs and components of the coagulation cascade, particularly dysfunctional endothelium. Elucidation of mechanisms is impeded by a lack of clinical data. Measurement of relevant biomarkers would be extremely useful in this regard and in improving patient selection criteria. Conduct of clinical trials in carefully selected patient populations after the development of improved protocols for MI diagnosis, along with concomitant biomarker data collection, is recommended.
Collapse
|
8
|
Alayash AI. Blood substitutes: why haven't we been more successful? Trends Biotechnol 2014; 32:177-85. [PMID: 24630491 PMCID: PMC4418436 DOI: 10.1016/j.tibtech.2014.02.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
Persistent safety concerns have stalled the development of viable hemoglobin (Hb)-based oxygen carriers (HBOCs). HBOCs have several advantages over human blood, including availability, long-term storage, and lack of infectious risk. The basis of HBOC toxicity is poorly understood, however, several mechanisms have been suggested, including Hb extravasation across the blood vessel wall, scavenging of endothelial nitric oxide (NO), oversupply of oxygen, and heme-mediated oxidative side reactions. Although there are some in vitro and limited animal studies supporting these mechanisms, heme-mediated reactivity appears to provide an alternative path that can explain some of the observed pathophysiological changes. Moreover, recent mechanistic and animal studies support a role for globin and heme scavengers in controlling oxidative toxicity associated with Hb infusion.
Collapse
Affiliation(s)
- Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
9
|
Martin AC, Le Bonniec B, Fischer AM, Marchand-Leroux C, Gaussem P, Samama CM, Godier A. Evaluation of recombinant activated factor VII, prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a rabbit model of bleeding and thrombosis. Int J Cardiol 2013; 168:4228-33. [DOI: 10.1016/j.ijcard.2013.07.152] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 01/18/2023]
|
10
|
Rameez S, Guzman N, Banerjee U, Fontes J, Paulaitis ME, Palmer AF, Patel RP, Honavar J. Encapsulation of hemoglobin inside liposomes surface conjugated with poly(ethylene glycol) attenuates their reactions with gaseous ligands and regulates nitric oxide dependent vasodilation. Biotechnol Prog 2012; 28:636-45. [DOI: 10.1002/btpr.1532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/06/2012] [Indexed: 01/03/2023]
|
11
|
Zhang N, Jia Y, Chen G, Cabrales P, Palmer AF. Biophysical properties and oxygenation potential of high-molecular-weight glutaraldehyde-polymerized human hemoglobins maintained in the tense and relaxed quaternary states. Tissue Eng Part A 2011; 17:927-40. [PMID: 20979534 DOI: 10.1089/ten.tea.2010.0353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent clinical evaluation of commercial glutaraldehyde-polymerized hemoglobins (PolyHbs) as transfusion solutions has demonstrated several adverse side effects. Chief among these is the hypertensive effect. Fortunately, previous studies have shown that the hypertensive effect can be attenuated by removing free hemoglobin (Hb) and low-molecular-weight (low-MW) PolyHbs from the PolyHb mixture. In this work, polymerized human Hb (PolyhHb) solutions were synthesized in two distinct quaternary states with high MW and subjected to extensive diafiltration to remove free Hb and low-MW PolyhHb components (<500 kDa). The resultant PolyhHb solutions possessed high MW, distinct quaternary state, distinct reactivities with O(2) and CO, similar NO deoxygenating rate constants, distinct autoxidation rate constants, high viscosity, and low colloid osmotic pressure. To preliminarily assess the ability of PolyhHb solutions to oxygenate surrounding tissues fed by a blood vessel, we evaluated the ability of PolyhHbs to transport O(2) to cultured hepatocytes in a mathematical model of a hollow fiber bioreactor. The structure of individual hollow fibers in the bioreactor is similar to that of a blood vessel and provides an easy way to assess the oxygenation potential of PolyhHbs without the need for expensive and time-consuming animal studies. It was observed that PolyhHbs with low O(2) affinities were more effective in oxygenating cultured hepatocytes inside the bioreactor than high O(2) affinity PolyhHbs. Taken together, our results show that it is possible to synthesize high-MW PolyhHbs with no free Hb and low-MW PolyhHb components that are capable of transporting O(2) to cultured cells/tissues.
Collapse
Affiliation(s)
- Ning Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
12
|
Does HBOC-201 (Hemopure) affect platelet function in orthopedic surgery: a single-site analysis from a multicenter study. Am J Ther 2010; 17:140-7. [PMID: 19417588 DOI: 10.1097/mjt.0b013e3181a2b08d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HBOC-201, Hemoglobin glutamer-250 (bovine), (Biopure Corp., Cambridge, MA) has been studied in an international, multicenter, pivotal Phase III trial. A subset analysis of use of blood products indicated that the HBOC-201 group required no more than the packed red blood cell (PRBC) group and was limited to less than 6% in both treatment groups. In a subset analysis from one site, platelet function using PFA-100 was assessed before and after transfusion, and compared those receiving HBOC-201 versus PRBC. After initial IRB approval, patient consent for the Phase III trial and blood draws for PFA-100, an additional IRB exemption for retrospective chart review was obtained. cEPI and cADP means were compared at seven time periods: true baseline(before starting surgery and anesthesia), before transfusion, after transfusion, 1 day, 2 days, 3 to 9 days and 21 or more days after transfusion. Twenty-seven (HBOC: n = 12, PRBC: n = 15) subjects were studied. Comparing data from before transfusion and baseline did not show statistically significant differences in any of cEPI or cADP measurements. cEPI means for the HBOC-201 group increased after transfusion compared to the true baseline (P = 0.01), before transfusion (P = 0.0004) and day 1 after transfusion (P = 0.002). cADP means for the HBOC-201 group were greater after transfusion compared to the true baseline (P = 0.05) and before transfusion (P = 0.005). In the PRBC group there were no significant difference in cEPI and cADP means between all of the time periods. Our study shows that HBOC-201 causes mild platelet dysfunction. Although there were significant changes after HBOC infusion and cEPI and cADP mean values were above the upper normal limit, they did not reach the non-closure time. Further controlled studies are needed to establish definitively the effects that HBOC-201 has on platelet function in patients.
Collapse
|
13
|
Zhang N, Palmer AF. Polymerization of human hemoglobin using the crosslinker 1,11-bis(maleimido)triethylene glycol for use as an oxygen carrier. Biotechnol Prog 2010; 26:1481-5. [DOI: 10.1002/btpr.467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Abrupt oxygen decrease influences thrombosis and bleeding in stenosed and endothelium-injured rabbit carotid arteries. Eur J Anaesthesiol 2008; 25:1002-8. [DOI: 10.1017/s0265021508004390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Charbonneau S, Girard F, Boudreault D, Ruel M, Hardy JF. Anesthetic technique does not affect the performance of a rabbit model of arterial cyclic flow reductions: a pilot study. Can J Anaesth 2007; 54:269-75. [PMID: 17400978 DOI: 10.1007/bf03022771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Pentobarbital anesthesia is, typically, used in an experimental model of cyclic flow reductions (CFR) in rabbits. Our initial observations, using a more complete and effective isoflurane-based anesthetic technique, failed to reproduce findings reported previously. Consequently, we compared the effects of these two anesthetic techniques in the model. METHODS A modified Folts' model of carotid artery lesion and stenosis was used. Twelve rabbits completed the experimental protocol: five in the pentobarbital group (P) and seven in the isoflurane group (I). The carotid artery was exposed and flow was reduced by application of a clamp. A standardized injury was performed by cross clamping the artery with a needle forceps and this produced CFR. The number of CFR and the duration of their occurrence were noted. The incidence of thrombosis was compared in each group as well as hemodynamic, hematologic and bleeding time values. RESULTS The hematocrit value, platelet count and bleeding time were similar in both groups. The median number and range of CFR [group P: 9 (4-16) ; group I: 9 (5-14)] and the time span of effective CFR formation (group P: 39 +/- 17; group I: 38 +/- 25 min) were comparable in both groups. The incidence of complete thrombosis of the carotid artery was similar in both groups. CONCLUSIONS The stability of the model is of short duration, but the occurrence of CFR is not affected by the type of anesthesia. Our findings suggest that the ideal duration of the experimental protocol should be between 30 and 45 min in order to maximize the number of animals still developing CFR.
Collapse
Affiliation(s)
- Sonia Charbonneau
- Department of Anesthesiology, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke East, Montréal, Québec H2L 4M1, Canada
| | | | | | | | | |
Collapse
|
16
|
Arnaud F, Handrigan M, Hammett M, Philbin N, Rice J, Dong F, Pearce LB, McCarron R, Freilich D. Coagulation patterns following haemoglobin-based oxygen carrier resuscitation in severe uncontrolled haemorrhagic shock in swine. Transfus Med 2006; 16:290-302. [PMID: 16879158 DOI: 10.1111/j.1365-3148.2006.00678.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Massive blood loss due to penetrating trauma and internal organ damage can cause severe haemorrhagic shock (HS), leading to a severely compromised haemostatic balance. This study evaluated the effect of bovine polymerized haemoglobin (Hb) (Hb-based oxygen carrier, HBOC) resuscitation on haemostasis in a swine model of uncontrolled HS. Following liver injury/HS, swine received HBOC (n= 8), Hextend (HEX) (n= 8) or no resuscitation (NON) (n= 8). Fluids were infused to increase mean arterial pressure above 60 mmHg and to reduce heart rate to baseline. At 4 h, the animals were eligible for blood transfusions. Prothrombin time (PT), activated partial thromboplastin time, fibrinogen, thromboelastography (TEG) and platelet function analyser closure time (PFA-CT) were compared by using mixed statistical model. At 4 h, blood loss (% estimated blood volume) was comparable for HBOC (65.5 +/- 18.5%) and HEX (80.8 +/- 14.4%) and less for NON (58.7 +/- 10.1%; P < 0.05). Resuscitation-induced dilutional coagulopathy was observed with HBOC and HEX, as indicated by reduced haematocrit, platelets and fibrinogen (P < 0.05). At 4 h, PT was higher in HEX than in HBOC groups (P < 0.01). In the early hospital phase, a trend to increased TEG reaction time and PFA-CT indicates that dilutional effects persist in HBOC and HEX groups. PFA-CT returned to baseline later with HBOC than with HEX (48 vs. 24 h) following blood transfusion. At 4 h, all surviving HEX animals (n= 3) required transfusion, in contrast to no HBOC (n= 7) or NON (n= 1) animals. In this severe uncontrolled HS model, successful resuscitation with HBOC produced haemodilutional coagulopathy less than or similar to that produced by resuscitation with HEX.
Collapse
Affiliation(s)
- F Arnaud
- Trauma and Resuscitative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Patel MB, Feinstein AJ, Saenz AD, Majetschak M, Proctor KG. Prehospital HBOC-201 after traumatic brain injury and hemorrhagic shock in swine. ACTA ACUST UNITED AC 2006; 61:46-56. [PMID: 16832248 DOI: 10.1097/01.ta.0000219730.71206.3a] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Data are limited on the actions of hemoglobin based oxygen carriers (HBOCs) after traumatic brain injury (TBI). This study evaluates neurotoxicity, vasoactivity, cardiac toxicity, and inflammatory activity of HBOC-201 (Biopure, Cambridge, Mass.) resuscitation in a TBI model. METHODS Swine received TBI and hemorrhage. After 30 minutes, resuscitation was initiated with 10 mL/kg normal saline (NS), followed by either HBOC-201 (6 mL/kg, n = 10) or NS control (n = 10). Supplemental NS was administered to both groups to maintain mean arterial pressure (MAP) >60 mm Hg until 60 minutes, and to maintain cerebral perfusion pressure (CPP) >70 mm Hg from 60 to 300 minutes. The control group received mannitol (1 g/kg) and blood (10 mL/kg) at 90 minutes and half (n = 5) received CPP directed phenylephrine (PE) therapy after 120 minutes. Serum cytokines were measured with ELISA and coagulation was evaluated with thromboelastography. Brains were harvested for neuropathology. RESULTS With HBOC administration, MAP, CPP, and brain tissue PO2 were restored within 30 minutes and maintained until 300 minutes. Clot strength and fibrin formation were maintained and 9/10 successfully extubated. In contrast, with control, MAP and brain tissue PO2 did not correct until 120 minutes, after mannitol, transfusion and 40% more crystalloid. Furthermore, without PE, CPP did not reach target and 0/5 could be extubated. Lactate, heart rate, cardiac output, mixed venous oxygenation, muscle oxygenation, serum cytokines, and histology did not differ between groups. CONCLUSIONS After TBI, a single HBOC-201 bolus with minimal supplements provided rapid resuscitation, while maintaining CPP and improving brain oxygenation, without causing cardiac dysfunction, coagulopathy, cytokine release, or brain structural changes.
Collapse
Affiliation(s)
- Mayur B Patel
- Division of Trauma, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
18
|
Li H, Cone J, Fong M, Kambayashi J, Yoshitake M, Liu Y. Antiplatelet and Antithrombotic Activity of Cilostazol is Potentiated by Dipyridamole in Rabbits and Dissociated from Bleeding Time Prolongation. Cardiovasc Drugs Ther 2005; 19:41-8. [PMID: 15883755 DOI: 10.1007/s10557-005-6896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine the antiplatelet effect of cilostazol (Pletal) and its interaction with dipyridamole in in vitro and in vivo rabbit models, and to see if it can be dissociated from bleeding time prolongation. METHODS In vitro collagen-induced platelet aggregation was measured by an impedance-based aggregometer. The in vivo antithrombotic effect was evaluated in a rabbit carotid artery cyclic flow reduction (CFR) model, in which repetitive thrombosis was induced by mechanical injuries of the artery and stenosis. Template bleeding time was determined in rabbit ear arterioles and hindlimb nail cuticles. RESULTS In vitro platelet aggregation was slightly inhibited by 4 microM cilostazol (22 +/- 6%), and modestly by 13 microM (57 +/- 3% of aggregation). While dipyridamole itself up to 13 microM had no significant inhibition, it potentiated the effect from cilostazol: in the presence of 4 microM dipyridamole, 4 microM cilostazol inhibited aggregation by 47 +/- 6%. Dipyridamole also potentiated the CFR reducing effect of cilostazol: combination of dipyridamole (no effect by itself) and cilostazol at 1 microM decreased CFRs to levels achieved by 3-4 microM cilostazol alone. Bleeding times were similar in controls and animals treated with cilostazol, or with cilostazol and dipyridamole. In contrast, aspirin (4 mg/kg), while reducing CFRs, significantly increased bleeding time. CONCLUSION These results suggest that dipyridamole potentiates the antiplatelet effect of cilostazol without prolongation of the bleeding time, implying a potential novel combination antithrombotic therapy.
Collapse
Affiliation(s)
- Haiquan Li
- Department of Cardiology, Otsuka Maryland Medicinal Laboratories, LLC, 9900 Medical Center Drive, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|
19
|
Fattorutto M, Tourreau-Pham S, Mazoyer E, Bonnin P, Raphaël M, Morin F, Cupa M, Samama CM. Recombinant activated factor VII decreases bleeding without increasing arterial thrombosis in rabbits. Can J Anaesth 2004; 51:672-9. [PMID: 15310634 DOI: 10.1007/bf03018424] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To compare the effects of recombinant activated factor VII (rFVIIa) and platelet-rich plasma (PRP) in an experimental model of bleeding and arterial thrombosis. METHODS The Folts model was used in 60 rabbits. After anesthesia, the carotid artery was exposed and a 75% stenosis was induced. A compression injury of the artery triggered a series of cyclic flow reductions (CFRs). After counting baseline CFRs, animals were assigned randomly to one of four groups (n = 15 in each): control, PRP, rFVIIa and placebo. Control animals received 10 mL.kg(-1) of saline while 10 mL.kg(-1) of a hydroxyethyl starch solution (200,000/6%/0.5) were infused in the three other groups. CFRs were measured again, followed by treatment with PRP, rFVIIa or placebo and by a final measurement of CFRs. At the end of each observation period, an ear immersion bleeding time (BT) was measured and a blood sample was drawn for the evaluation of hematological variables. Microvascular bleeding was evaluated at the end of the experiment in grams of blood shed from liver and spleen sections. Results are presented as median (range). RESULTS rFVIIa shortened the BT and decreased microvascular bleeding as compared with placebo [60 (35-100) sec vs 110 (50-140) sec, P = 0.0019 and 9 (4-24) g vs 17 (5-28) g, P = 0.002, respectively]. rFVIIa did not increase CFRs [3(0-9) vs |(0-5), P = 0.11]. CONCLUSION rFVIIa led to a decrease in BT and microvascular bleeding but did not significantly affect arterial thrombosis in rabbits.
Collapse
Affiliation(s)
- Maurizio Fattorutto
- Département d'Anesthésie-Réanimation, Hôpital Avicenne, 125 route de Stalingrad, 93009 Bobigny cedex, France
| | | | | | | | | | | | | | | |
Collapse
|