1
|
Zhang D, Wu Q, Liu F, Shen T, Dai S. Isoflurane preconditioning attenuates OGD/R-induced cardiomyocyte cytotoxicity by regulating the miR-210/BNIP3 axis. J Appl Toxicol 2024; 44:1761-1772. [PMID: 39032053 DOI: 10.1002/jat.4674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Isoflurane, a commonly used inhaled anesthetic, has been found to have a cardioprotective effect. However, the precise mechanisms have not been fully elucidated. Here, we found that isoflurane preconditioning enhanced OGD/R-induced upregulation of miR-210, a hypoxia-responsive miRNA, in AC16 human myocardial cells. To further test the roles of miR-210 in regulating the effects of isoflurane preconditioning on OGD/R-induced cardiomyocyte injury, AC16 cells were transfected with anti-miR-210 or control anti-miRNA. Results showed that isoflurane preconditioning attenuated OGD/R-induced cardiomyocyte cytotoxicity (as assessed by cell viability, LDH and CK-MB levels), which could be reversed by anti-miR-210. Isoflurane preconditioning also prevented OGD/R-induced increase in apoptotic rate, caspase-3 and caspase-9 activities, and Bax level and decrease in Bcl-2 expression level, while anti-miR-210 blocked these effects. We also found that anti-miR-210 prevented the inhibitory effects of isoflurane preconditioning on OGD/R-induced decrease in adenosine triphosphate content; mitochondrial volume; citrate synthase activity; complex I, II, and IV activities; and p-DRP1 and MFN2 expression. Besides, the expression of BNIP3, a reported direct target of miR-210, was significantly decreased under hypoxia condition and could be regulated by isoflurane preconditioning. In addition, BNIP3 knockdown attenuated the effects of miR-210 silencing on the cytoprotection of isoflurane preconditioning. These findings suggested that isoflurane preconditioning exerted protective effects against OGD/R-induced cardiac cytotoxicity by regulating the miR-210/BNIP3 axis.
Collapse
Affiliation(s)
- Dongbo Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qiaoling Wu
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Feifei Liu
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tu Shen
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Siqi Dai
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
2
|
Wang G, Wang C, Zhu P, Tian J, Yang H. The protective mechanism of sevoflurane in pulmonary arterial hypertension via downregulation of TRAF6. Toxicol Appl Pharmacol 2024; 491:117065. [PMID: 39127353 DOI: 10.1016/j.taap.2024.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy that, if not promptly treated, culminates in right heart failure. Therefore, pre-clinical studies are needed to support and optimize therapeutic approaches of PAH. Here, we explore a prospective function of sevoflurane in experimental PAH through regulating TRAF6. Monocrotaline (MCT)-induced PAH rats were subjected to sevoflurane inhalation and intratracheal instillation of lentivirus overexpressing TRAF6. Platelet-derived growth factor (PDGF)-treated pulmonary artery smooth muscle cells (PASMCs) were exposed to sevoflurane and genetically manipulated for TRAF6 overexpression. It was found that MCT and PDGF challenge upregulated the levels of TRAF6 in rat lung tissues and PASMCs, but sevoflurane treatment led to reduced TRAF6 expression. Sevoflurane inhalation in MCT-induced rats resulted in alleviative pulmonary vascular remodeling, mitigated right ventricular dysfunction and hypertrophy, improved mitochondrial function and dynamics, and inactivation of NF-κB pathway. In vitro studies confirmed that exposure to sevoflurane repressed PDGF-induced proliferation, migration, and phenotype switching of PASMCs, and suppressed mitochondrial dysfunction and NF-κB activation in PDGF-stimulated PASMCs. The beneficial impact of sevoflurane on pathological changes of lung and cell phenotype of PASMCs were reversed by overexpression of TRAF6. In summary, our study suggested the protective properties of sevoflurane in targeting PAH by downregulating TRAF6 expression, providing a novel avenue for the management of PAH.
Collapse
Affiliation(s)
- Guan Wang
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning, China
| | - Chun Wang
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning, China
| | - Pengcheng Zhu
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning, China
| | - Jiaxin Tian
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning, China.
| | - Haitao Yang
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning, China.
| |
Collapse
|
3
|
Qin H, Zhou J. Myocardial Protection by Desflurane: From Basic Mechanisms to Clinical Applications. J Cardiovasc Pharmacol 2023; 82:169-179. [PMID: 37405905 DOI: 10.1097/fjc.0000000000001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
ABSTRACT Coronary heart disease is an affliction that is common and has an adverse effect on patients' quality of life and survival while also raising the risk of intraoperative anesthesia. Mitochondria are the organelles most closely associated with the pathogenesis, development, and prognosis of coronary heart disease. Ion abnormalities, an acidic environment, the production of reactive oxygen species, and other changes during abnormal myocardial metabolism cause the opening of mitochondrial permeability transition pores, which disrupts electron transport, impairs mitochondrial function, and even causes cell death. Differences in reliability and cost-effectiveness between desflurane and other volatile anesthetics are minor, but desflurane has shown better myocardial protective benefits in the surgical management of patients with coronary artery disease. The results of myocardial protection by desflurane are briefly summarized in this review, and biological functions of the mitochondrial permeability transition pore, mitochondrial electron transport chain, reactive oxygen species, adenosine triphosphate-dependent potassium channels, G protein-coupled receptors, and protein kinase C are discussed in relation to the protective mechanism of desflurane. This article also discusses the effects of desflurane on patient hemodynamics, myocardial function, and postoperative parameters during coronary artery bypass grafting. Although there are limited and insufficient clinical investigations, they do highlight the possible advantages of desflurane and offer additional suggestions for patients.
Collapse
Affiliation(s)
- Han Qin
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | | |
Collapse
|
4
|
Nieuwenhuijs-Moeke GJ, Bosch DJ, Leuvenink HG. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. Int J Mol Sci 2021; 22:ijms22052727. [PMID: 33800423 PMCID: PMC7962839 DOI: 10.3390/ijms22052727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Dirk J. Bosch
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Henri G.D. Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
5
|
Heiberg J, Royse CF, Royse AG, Andrews DT. Propofol Attenuates the Myocardial Protection Properties of Desflurane by Modulating Mitochondrial Permeability Transition. Anesth Analg 2019; 127:387-397. [PMID: 29933271 DOI: 10.1213/ane.0000000000003450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Desflurane and propofol are cardioprotective, but relative efficacy is unclear. The aim was to compare myocardial protection of single, simultaneous, and serial administration of desflurane and propofol. METHODS Sixty New Zealand White rabbits and 65 isolated Sprague Dawley rat hearts randomly received desflurane, propofol, simultaneous desflurane and propofol, or sequential desflurane then propofol. Rabbits were subdivided to receive either ischemia-reperfusion with temporary occlusion of the left anterior descending artery or a time-matched, nonischemic perfusion protocol, whereas rat hearts were perfused in a Langendorff model with global ischemia-reperfusion. End points were hemodynamic, functional recovery, and mitochondrial uptake of H-2-deoxy-D-glucose as an indicator of mitochondrial permeability transition. RESULTS In rabbits, there were minimal increases in preload-recruitable stroke-work with propofol (P < .001), desflurane (P < .001), and desflurane-and-propofol (P < .001) groups, but no evidence of increases with pentobarbitone (P = .576) and desflurane-then-propofol (P = .374). In terms of end-diastolic pressure-volume relationship, there was no evidence of increase compared to nonischemic controls with desflurane-then-propofol (P = .364), a small but significant increase with desflurane (P < .001), and larger increases with pentobarbitone (P < .001), propofol (P < .001), and desflurane-and-propofol (P < .001).In rat hearts, there was no statistically significant difference in mitochondrial H-activity between propofol and desflurane-and-propofol (165 ± 51 × 10 vs 154 ± 51 × 10 g·mL·min/μmol; P = .998). Desflurane had lower uptake than propofol (65 ± 21 × 10 vs 165 ± 51 × 10 g·mL·min/μmol; P = .039), but there was no statistically significant difference between desflurane and desflurane-then-propofol (65 ± 21 × 10 vs 59 ± 11 × 10 g·mL·min/μmol; P = .999). CONCLUSIONS Propofol and desflurane are cardioprotective, but desflurane is more effective than propofol. The added benefit of desflurane is lost when used simultaneously with propofol.
Collapse
Affiliation(s)
- Johan Heiberg
- From the Department of Anesthesia and Pain Management, Royal Melbourne Hospital, Melbourne, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Colin F Royse
- From the Department of Anesthesia and Pain Management, Royal Melbourne Hospital, Melbourne, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Alistair G Royse
- Department of Surgery, University of Melbourne, Melbourne, Australia.,Department of Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - David T Andrews
- From the Department of Anesthesia and Pain Management, Royal Melbourne Hospital, Melbourne, Australia.,Department of Anaesthesia, Perioperative and Pain Management Unit, University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Kundumani-Sridharan V, Subramani J, Raghavan S, Maiti GP, Owens C, Walker T, Wasnick J, Idell S, Das KC. Short-duration hyperoxia causes genotoxicity in mouse lungs: protection by volatile anesthetic isoflurane. Am J Physiol Lung Cell Mol Physiol 2019; 316:L903-L917. [PMID: 30810065 DOI: 10.1152/ajplung.00142.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High concentrations of oxygen (hyperoxia) are routinely used during anesthesia, and supplemental oxygen is also administered in connection with several other clinical conditions. Although prolonged hyperoxia is known to cause acute lung injury (ALI), whether short-duration hyperoxia causes lung toxicity remains unknown. We exposed mice to room air (RA or 21% O2) or 60% oxygen alone or in combination with 2% isoflurane for 2 h and determined the expression of oxidative stress marker genes, DNA damage and DNA repair genes, and expression of cell cycle regulatory proteins using quantitative PCR and Western analyses. Furthermore, we determined cellular apoptosis using TUNEL assay and assessed the DNA damage product 8-hydroxy-2'-deoxyguanosine (8-Oxo-dG) in the urine of 60% hyperoxia-exposed mice. Our study demonstrates that short-duration hyperoxia causes mitochondrial and nuclear DNA damage and that isoflurane abrogates this DNA damage and decreases apoptosis when used in conjunction with hyperoxia. In contrast, isoflurane mixed with RA caused significant 8-Oxo-dG accumulations in the mitochondria and nucleus. We further show that whereas NADPH oxidase is a major source of superoxide anion generated by isoflurane in normoxia, isoflurane inhibits superoxide generation in hyperoxia. Additionally, isoflurane also protected the mouse lungs against ALI (95% O2 for 36-h exposure). Our study established that short-duration hyperoxia causes genotoxicity in the lungs, which is abrogated when hyperoxia is used in conjunction with isoflurane, but isoflurane alone causes genotoxicity in the lung when delivered with ambient air.
Collapse
Affiliation(s)
| | - Jaganathan Subramani
- Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Somasundaram Raghavan
- Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Guru P Maiti
- Oklahoma Medical Research Foundation , Oklahoma City, Oklahoma
| | - Cade Owens
- Department of Anesthesiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Trevor Walker
- Department of Anesthesiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - John Wasnick
- Department of Anesthesiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Kumuda C Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas
| |
Collapse
|
7
|
Abstract
Historically, volatile anesthetics have demonstrated interesting interactions with both the innate and adaptive immune systems. This review organizes these interactions into four phases: recognition, recruitment, response, and resolution. These phases represent a range of proinflammatory, inflammatory, and innate and adaptive immune regulatory responses. The interaction between volatile anesthetics and the immune system is discussed in the context of pathogenesis of infectious disease.
Collapse
Affiliation(s)
| | - Hilliard L Kutscher
- b Institute for Lasers, Photonics and Biophotonics , University of Buffalo, State University of New York , Buffalo , NY USA
| | | | | |
Collapse
|
8
|
Yin X, Wang L, Qin G, Luo H, Liu X, Zhang F, Ye Z, Zhang J, Wang E. Rats with Chronic, Stable Pulmonary Hypertension Tolerate Low Dose Sevoflurane Inhalation as Well as Normal Rats Do. PLoS One 2016; 11:e0154154. [PMID: 27144451 PMCID: PMC4856326 DOI: 10.1371/journal.pone.0154154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The effects of low concentration of sevoflurane on right ventricular (RV) function and intracellular calcium in the setting of pulmonary arterial hypertension (PAH) have not been investigated clearly. We aim to study these effects and associated signaling pathways in rats with PAH. METHODS Hemodynamics were assessed with or without sevoflurane inhalation in established PAH rats. We analysis the classic RV function parameters and RV-PA coupling efficiency using steady-state PV loop recordings. The protein levels of SERCA2, PLB and p-PLB expression was analyzed by western blot to assess their relevance in PAH. RESULTS Rats with PAH presented with RV hypertrophy and increased pulmonary arterial pressure. The values of Ea, R/L ratio, ESP, SW, PRSW, +dP/dtmax and the slope of the dP/dtmax-EDV relationship increased significantly in PAH rats (P<0.05). Sevoflurane induced a concentration-dependent decrease of systemic and pulmonary blood pressure, HR, RV contractility, and increased the R/L ratio in both groups. Sevoflurane reduced the expression of SERCA2 and increased the expression of PLB in both groups. Interestingly, sevoflurane only reduced the p-PLB/PLB ratio in PAH rats, not in normal rats. CONCLUSIONS Rats with chronic, stable pulmonary hypertension tolerate low concentrations of sevoflurane inhalation as well as normal rats do. It may be related to the modulation of the SERCA2-PLB signaling pathway.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Calcium-Binding Proteins/metabolism
- Familial Primary Pulmonary Hypertension/drug therapy
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/physiopathology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Lung/drug effects
- Lung/metabolism
- Lung/physiopathology
- Male
- Methyl Ethers/administration & dosage
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats
- Rats, Sprague-Dawley
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Sevoflurane
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right/drug effects
- Ventricular Function, Right/physiology
Collapse
Affiliation(s)
- Xiaoqing Yin
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Qin
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Liu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - E. Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Wu J, Zhang M, Li H, Sun X, Hao S, Ji M, Yang J, Li K. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice. Behav Brain Res 2016; 305:115-21. [DOI: 10.1016/j.bbr.2016.02.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
|
10
|
Chen C, Chappell D, Annecke T, Conzen P, Jacob M, Welsch U, Zwissler B, Becker BF. Sevoflurane mitigates shedding of hyaluronan from the coronary endothelium, also during ischemia/reperfusion: an ex vivo animal study. HYPOXIA 2016; 4:81-90. [PMID: 27800510 PMCID: PMC5085283 DOI: 10.2147/hp.s98660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycan hyaluronan (HA), a major constituent of the endothelial glycocalyx, helps to maintain vascular integrity. Preconditioning the heart with volatile anesthetic agents protects against ischemia/reperfusion injury. We investigated a possible protective effect of sevoflurane on the glycocalyx, especially on HA. The effect of pre-ischemic treatment with sevoflurane (15 minutes at 2% vol/vol gas) on shedding of HA was evaluated in 28 isolated, beating guinea pig hearts, subjected to warm ischemia (20 minutes at 37°C) followed by reperfusion (40 minutes), half with and half without preconditioning by sevoflurane. HA concentration was measured in the coronary effluent. Over the last 20 minutes of reperfusion hydroxyethyl starch (1 g%) was continuously infused and the epicardial transudate collected over the last 5 minutes for measuring the colloid extravasation. Additional hearts were fixed by perfusion after the end of reperfusion for immunohistology and electron microscopy. Sevoflurane did not significantly affect post-ischemic oxidative stress, but strongly inhibited shedding of HA during the whole period, surprisingly even prior to ischemia. Immunohistology demonstrated that heparan sulfates and SDC1 of the glycocalyx were also preserved by sevoflurane. Electron microscopy revealed shedding of glycocalyx caused by ischemia and a mostly intact glycocalyx in hearts exposed to sevoflurane. Coronary vascular permeability of the colloid hydroxyethyl starch was significantly decreased by sevoflurane vs the control. We conclude that application of sevoflurane preserves the coronary endothelial glycocalyx, especially HA, sustaining the vascular barrier against ischemic damage. This may explain beneficial effects associated with clinical use of volatile anesthetics against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Congcong Chen
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China; Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel Chappell
- Clinic of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Thorsten Annecke
- Clinic of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Conzen
- Clinic of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Jacob
- Clinic of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Ulrich Welsch
- Institute of Anatomy, Ludwig-Maximilians-University, Munich, Germany
| | - Bernhard Zwissler
- Clinic of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | - Bernhard F Becker
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
11
|
Perry NJS, Ma D. Inhalational Anesthetic Agents and Their Effects on Cancer Cell Biology. CURRENT ANESTHESIOLOGY REPORTS 2015. [DOI: 10.1007/s40140-015-0119-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Lotz C, Kehl F. Volatile Anesthetic-Induced Cardiac Protection: Molecular Mechanisms, Clinical Aspects, and Interactions With Nonvolatile Agents. J Cardiothorac Vasc Anesth 2015; 29:749-60. [DOI: 10.1053/j.jvca.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/07/2023]
|
13
|
Lotz C, Zhang J, Fang C, Liem D, Ping P. Isoflurane protects the myocardium against ischemic injury via the preservation of mitochondrial respiration and its supramolecular organization. Anesth Analg 2015; 120:265-74. [PMID: 25383718 DOI: 10.1213/ane.0000000000000494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Isoflurane has been demonstrated to limit myocardial ischemic injury. This effect is hypothesized to be mediated in part via effects on mitochondria. We investigated the hypothesis that isoflurane maintains mitochondrial respiratory chain functionality, in turn limiting mitochondrial damage and mitochondrial membrane disintegration during myocardial ischemic injury. METHODS Mice (9-12 weeks of age) received isoflurane (1.0 minimum alveolar concentration) 36 hours before a 30-minute coronary artery occlusion that was followed by 24 hours of reperfusion. Cardiac mitochondria were isolated at a time point corresponding to 4 hours of reperfusion. 2,3,5-Triphenyltetrazoliumchloride staining was used to determine myocardial infarct size. Mitochondrial respiratory chain functionality was investigated using blue native polyacrylamide gel electrophoresis, as well as specific biochemical assays. Mitochondrial lipid peroxidation was quantified via the formation of malondialdehyde; mitochondrial membrane integrity was assessed by Ca-induced swelling. Protein identification was achieved via liquid chromatography mass spectrometry/mass spectrometry. RESULTS Thirty-one mice were studied. Mice receiving isoflurane displayed a reduced myocardial infarct size (P = 0.0011 versus ischemia/reperfusion [I/R]), accompanied by a preserved activity of respiratory complex III (P = 0.0008 versus I/R). Isoflurane stabilized mitochondrial supercomplexes consisting of oligomers from complex III/IV (P = 0.0086 versus I/R). Alleviation of mitochondrial damage after isoflurane treatment was further demonstrated as decreased malondialdehyde formation (P = 0.0019 versus I/R) as well as a diminished susceptibility to Ca-induced swelling (P = 0.0010 versus I/R). CONCLUSIONS Our findings support the hypothesis that isoflurane protects the heart from ischemic injury by maintaining the in vivo functionality of the mitochondrial respiratory chain. These effects may result in part from the preservation of mitochondrial supramolecular organization and minimized oxidative damage, circumventing the loss of mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Christopher Lotz
- From the Department of Physiology, Division of Cardiology, University of California, Los Angeles, Los Angeles, California
| | | | | | | | | |
Collapse
|
14
|
Li H, Wang Y, Wei C, Bai S, Zhao Y, Li H, Wu B, Wang R, Wu L, Xu C. Mediation of exogenous hydrogen sulfide in recovery of ischemic post-conditioning-induced cardioprotection via down-regulating oxidative stress and up-regulating PI3K/Akt/GSK-3β pathway in isolated aging rat hearts. Cell Biosci 2015; 5:11. [PMID: 25789157 PMCID: PMC4364662 DOI: 10.1186/s13578-015-0003-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
The physiological and pathological roles of hydrogen sulfide (H2S) in the regulation of cardiovascular functions have been recognized. Cystathionine gamma-lyase (CSE) is a major H2S-producing enzyme in cardiovascular system. Ischemic post-conditioning (PC) provides cadioprotection in young hearts but lost in the aging hearts. The involvement of H2S in the recovery of PC-induced cardioprotection in the aging hearts is unclear. In the present study, we demonstrated that ischemia/reperfusion (I/R) decreased H2S production rate and CSE expression, aggravated cardiomyocytes damage, apoptosis and myocardial infarct size, reduced cardiac function, increased the levels of Bcl-2, caspase-3 and caspase-9 mRNA, enhanced oxidative stress in isolated young and aging rat hearts. I/R also increased the release of cytochrome c and down-regulated the phosphorylation of PI3K, Akt and GSK-3β in the aging rat hearts. We further found that PC increased H2S production rate and CSE expressions, and protected young hearts from I/R-induced cardiomyocytes damage, all of which were disappeared in the aging hearts. Supply of NaHS not only increased PC-induced cardioprotection in the young hearts, but also lightened I/R induced-myocardial damage and significantly recovered the cardioprotective role of PC against I/R induced myocardial damage in the aging hearts. LY294002 (a PI3K inhibitor) abolished but N-acetyl-cysteine (NAC, an inhibitor of reactive oxygen species, ROS) further enhanced the protective role of H2S against I/R induced myocardial damage in the aging hearts. In conclusion, these results demonstrate that exogenous H2S recovers PC-induced cardioprotection via inhibition of oxidative stress and up-regulation of PI3K-Akt-GSK-3β pathway in the aging rat hearts. These findings suggested that H2S might be a novel target for the treatment of aging cardiovascular diseases.
Collapse
Affiliation(s)
- Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Hongxia Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Bo Wu
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON P7B5E1 Canada
| | - Lingyun Wu
- Department of Health Science, Lakehead University, Thunder Bay, ON P7B5E1 Canada
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| |
Collapse
|
15
|
Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AKS. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol 2014; 5:341. [PMID: 25278902 PMCID: PMC4165278 DOI: 10.3389/fphys.2014.00341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critical modulators of cell function and are increasingly recognized as proximal sensors and effectors that ultimately determine the balance between cell survival and cell death. Volatile anesthetics (VA) are long known for their cardioprotective effects, as demonstrated by improved mitochondrial and cellular functions, and by reduced necrotic and apoptotic cell death during cardiac ischemia and reperfusion (IR) injury. The molecular mechanisms by which VA impart cardioprotection are still poorly understood. Because of the emerging role of mitochondria as therapeutic targets in diseases, including ischemic heart disease, it is important to know if VA-induced cytoprotective mechanisms are mediated at the mitochondrial level. In recent years, considerable evidence points to direct effects of VA on mitochondrial channel/transporter protein functions and electron transport chain (ETC) complexes as potential targets in mediating cardioprotection. This review furnishes an integrated overview of targets that VA impart on mitochondrial channels/transporters and ETC proteins that could provide a basis for cation regulation and homeostasis, mitochondrial bioenergetics, and reactive oxygen species (ROS) emission in redox signaling for cardiac cell protection during IR injury.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - David F. Stowe
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
- Zablocki VA Medical CenterMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
| | - Ranjan K. Dash
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| |
Collapse
|
16
|
Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced organoprotection. J Anesth 2014; 28:740-58. [PMID: 24610035 DOI: 10.1007/s00540-014-1805-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/04/2014] [Indexed: 01/12/2023]
Abstract
Inhalational anesthetics-induced organoprotection has received much research interest and has been consistently demonstrated in different models of organ damage, in particular, ischemia-reperfusion injury, which features prominently in the perioperative period and in cardiovascular events. The cellular mechanisms accountable for effective organoprotection over heart, brain, kidneys, and other vital organs have been elucidated in turn in the past two decades, including receptor stimulations, second-messenger signal relay and amplification, end-effector activation, and transcriptional modification. This review summarizes the signaling pathways and the molecular participants in inhalational anesthetics-mediated organ protection published in the current literature, comparing and contrasting the 'preconditioning' and 'postconditioning' phenomena, and the similarities and differences in mechanisms between organs. The salubrious effects of inhalational anesthetics on vital organs, if reproducible in human subjects in clinical settings, would be of exceptional clinical importance, but clinical studies with better design and execution are prerequisites for valid conclusions to be made. Xenon as the emerging inhalational anesthetic, and its organoprotective efficacy, mechanism, and relative advantages over other anesthetics, are also discussed.
Collapse
|
17
|
Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AKS. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:354-65. [PMID: 24355434 DOI: 10.1016/j.bbabio.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/28/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction contributes to cardiac ischemia-reperfusion (IR) injury but volatile anesthetics (VA) may alter mitochondrial function to trigger cardioprotection. We hypothesized that the VA isoflurane (ISO) mediates cardioprotection in part by altering the function of several respiratory and transport proteins involved in oxidative phosphorylation (OxPhos). To test this we used fluorescence spectrophotometry to measure the effects of ISO (0, 0.5, 1, 2mM) on the time-course of interlinked mitochondrial bioenergetic variables during states 2, 3 and 4 respiration in the presence of either complex I substrate K(+)-pyruvate/malate (PM) or complex II substrate K(+)-succinate (SUC) at physiological levels of extra-matrix free Ca(2+) (~200nM) and Na(+) (10mM). To mimic ISO effects on mitochondrial functions and to clearly delineate the possible ISO targets, the observed actions of ISO were interpreted by comparing effects of ISO to those elicited by low concentrations of inhibitors that act at each respiratory complex, e.g. rotenone (ROT) at complex I or antimycin A (AA) at complex III. Our conclusions are based primarily on the similar responses of ISO and titrated concentrations of ETC. inhibitors during state 3. We found that with the substrate PM, ISO and ROT similarly decreased the magnitude of state 3 NADH oxidation and increased the duration of state 3 NADH oxidation, ΔΨm depolarization, and respiration in a concentration-dependent manner, whereas with substrate SUC, ISO and ROT decreased the duration of state 3 NADH oxidation, ΔΨm depolarization and respiration. Unlike AA, ISO reduced the magnitude of state 3 NADH oxidation with PM or SUC as substrate. With substrate SUC, after complete block of complex I with ROT, ISO and AA similarly increased the duration of state 3 ΔΨm depolarization and respiration. This study provides a mechanistic understanding in how ISO alters mitochondrial function in a way that may lead to cardioprotection.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Zeljko J Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Boelens AD, Pradhan RK, Blomeyer CA, Camara AKS, Dash RK, Stowe DF. Extra-matrix Mg2+ limits Ca2+ uptake and modulates Ca2+ uptake-independent respiration and redox state in cardiac isolated mitochondria. J Bioenerg Biomembr 2013; 45:203-18. [PMID: 23456198 DOI: 10.1007/s10863-013-9500-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/24/2013] [Indexed: 12/20/2022]
Abstract
Cardiac mitochondrial matrix (m) free Ca(2+) ([Ca(2+)]m) increases primarily by Ca(2+) uptake through the Ca(2+) uniporter (CU). Ca(2+) uptake via the CU is attenuated by extra-matrix (e) Mg(2+) ([Mg(2+)]e). How [Ca(2+)]m is dynamically modulated by interacting physiological levels of [Ca(2+)]e and [Mg(2+)]e and how this interaction alters bioenergetics are not well understood. We postulated that as [Mg(2+)]e modulates Ca(2+) uptake via the CU, it also alters bioenergetics in a matrix Ca(2+)-induced and matrix Ca(2+)-independent manner. To test this, we measured changes in [Ca(2+)]e, [Ca(2+)]m, [Mg(2+)]e and [Mg(2+)]m spectrofluorometrically in guinea pig cardiac mitochondria in response to added CaCl2 (0-0.6 mM; 1 mM EGTA buffer) with/without added MgCl2 (0-2 mM). In parallel, we assessed effects of added CaCl2 and MgCl2 on NADH, membrane potential (ΔΨm), and respiration. We found that ≥0.125 mM MgCl2 significantly attenuated CU-mediated Ca(2+) uptake and [Ca(2+)]m. Incremental [Mg(2+)]e did not reduce initial Ca(2+)uptake but attenuated the subsequent slower Ca(2+) uptake, so that [Ca(2+)]m remained unaltered over time. Adding CaCl2 without MgCl2 to attain a [Ca(2+)]m from 46 to 221 nM enhanced state 3 NADH oxidation and increased respiration by 15 %; up to 868 nM [Ca(2+)]m did not additionally enhance NADH oxidation or respiration. Adding MgCl2 did not increase [Mg(2+)]m but it altered bioenergetics by its direct effect to decrease Ca(2+) uptake. However, at a given [Ca(2+)]m, state 3 respiration was incrementally attenuated, and state 4 respiration enhanced, by higher [Mg(2+)]e. Thus, [Mg(2+)]e without a change in [Mg(2+)]m can modulate bioenergetics independently of CU-mediated Ca(2+) transport.
Collapse
Affiliation(s)
- Age D Boelens
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
19
|
Van Allen NR, Krafft PR, Leitzke AS, Applegate RL, Tang J, Zhang JH. The role of Volatile Anesthetics in Cardioprotection: a systematic review. Med Gas Res 2012; 2:22. [PMID: 22929111 PMCID: PMC3598931 DOI: 10.1186/2045-9912-2-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/10/2012] [Indexed: 02/06/2023] Open
Abstract
This review evaluates the mechanism of volatile anesthetics as cardioprotective agents in both clinical and laboratory research and furthermore assesses possible cardiac side effects upon usage. Cardiac as well as non-cardiac surgery may evoke perioperative adverse events including: ischemia, diverse arrhythmias and reperfusion injury. As volatile anesthetics have cardiovascular effects that can lead to hypotension, clinicians may choose to administer alternative anesthetics to patients with coronary artery disease, particularly if the patient has severe preoperative ischemia or cardiovascular instability. Increasing preclinical evidence demonstrated that administration of inhaled anesthetics - before and during surgery - reduces the degree of ischemia and reperfusion injury to the heart. Recently, this preclinical data has been implemented clinically, and beneficial effects have been found in some studies of patients undergoing coronary artery bypass graft surgery. Administration of volatile anesthetic gases was protective for patients undergoing cardiac surgery through manipulation of the potassium ATP (KATP) channel, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production, as well as through cytoprotective Akt and extracellular-signal kinases (ERK) pathways. However, as not all studies have demonstrated improved outcomes, the risks for undesirable hemodynamic effects must be weighed against the possible benefits of using volatile anesthetics as a means to provide cardiac protection in patients with coronary artery disease who are undergoing surgery.
Collapse
Affiliation(s)
- Nicole R Van Allen
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria. Eur J Pharmacol 2012; 690:149-57. [PMID: 22796646 DOI: 10.1016/j.ejphar.2012.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
Short application of the volatile anesthetic isoflurane at reperfusion after ischemia exerts strong protection of the heart against injury. Mild depolarization and acidification of the mitochondrial matrix are involved in the protective mechanisms of isoflurane, but the molecular basis for these changes is not clear. In this study, mitochondrial respiration, membrane potential, matrix pH, matrix swelling, ATP synthesis and -hydrolysis, and H(2)O(2) release were assessed in isolated mitochondria. We hypothesized that isoflurane induces mitochondrial depolarization and matrix acidification through direct action on both complex I and ATP synthase. With complex I-linked substrates, isoflurane (0.5mM) inhibited mitochondrial respiration by 28 ± 10%, and slightly, but significantly depolarized membrane potential and decreased matrix pH. With complex II- and complex IV-linked substrates, respiration was not changed, but isoflurane still decreased matrix pH and depolarized mitochondrial membrane potential. Depolarization and matrix acidification were attenuated by inhibition of ATP synthase with oligomycin, but not by inhibition of mitochondrial ATP- and Ca(2+)-sensitive K(+) channels or uncoupling proteins. Isoflurane did not induce matrix swelling and did not affect ATP synthesis and hydrolysis, but decreased H(2)O(2) release in the presence of succinate in an oligomycin- and matrix pH-sensitive manner. Isoflurane modulated H(+) flux through ATP synthase in an oligomycin-sensitive manner. Our results indicate that isoflurane-induced mitochondrial depolarization and acidification occur due to inhibition of the electron transport chain at the site of complex I and increased proton flux through ATP synthase. K(+) channels and uncoupling proteins appear not to be involved in the direct effects of isoflurane on mitochondria.
Collapse
|
21
|
Andrews DT, Royse C, Royse AG. The mitochondrial permeability transition pore and its role in anaesthesia-triggered cellular protection during ischaemia-reperfusion injury. Anaesth Intensive Care 2012; 40:46-70. [PMID: 22313063 DOI: 10.1177/0310057x1204000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarises the most recent data in support of the role of the mitochondrial permeability transition pore (mPTP) in ischaemia-reperfusion injury, how anaesthetic agents interact with this molecular channel, and the relevance this holds for current anaesthetic practice. Ischaemia results in damage to the electron transport chain of enzymes and sets into play the assembly of a non-specific mega-channel (the mPTP) that transgresses the inner mitochondrial membrane. During reperfusion, uncontrolled opening of the mPTP causes widespread depolarisation of the inner mitochondrial membrane, hydrolysis of ATP, mitochondrial rupture and eventual necrotic cell death. Similarly, transient opening of the mPTP during less substantial ischaemia leads to differential swelling of the intermembrane space compared to the mitochondrial matrix, rupture of the outer mitochondrial membrane and release of pro-apoptotic factors into the cytosol. Recent data suggests that cellular protection from volatile anaesthetic agents follows specific downstream interactions with this molecular channel that are initiated early during anaesthesia. Intravenous anaesthetic agents also prevent the opening of the mPTP during reperfusion. Although by dissimilar mechanisms, both volatiles and propofol promote cell survival by preventing uncontrolled opening of the mPTP after ischaemia. It is now considered that anaesthetic-induced closure of the mPTP is the underlying effector mechanism that is responsible for the cytoprotection previously demonstrated in clinical studies investigating anaesthetic-mediated cardiac and neuroprotection. Manipulation of mPTP function offers a novel means of preventing ischaemic cell injury. Anaesthetic agents occupy a unique niche in the pharmacological armamentarium available for use in preventing cell death following ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- David T Andrews
- Department of Anaesthesia, Mater Misericordiae Health Services, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
22
|
Agarwal B, Camara AKS, Stowe DF, Bosnjak ZJ, Dash RK. Enhanced charge-independent mitochondrial free Ca(2+) and attenuated ADP-induced NADH oxidation by isoflurane: Implications for cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:453-65. [PMID: 22155157 DOI: 10.1016/j.bbabio.2011.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/16/2011] [Accepted: 11/19/2011] [Indexed: 12/21/2022]
Abstract
Modulation of mitochondrial free Ca(2+) ([Ca(2+)](m)) is implicated as one of the possible upstream factors that initiates anesthetic-mediated cardioprotection against ischemia-reperfusion (IR) injury. To unravel possible mechanisms by which volatile anesthetics modulate [Ca(2+)](m) and mitochondrial bioenergetics, with implications for cardioprotection, experiments were conducted to spectrofluorometrically measure concentration-dependent effects of isoflurane (0.5, 1, 1.5, 2mM) on the magnitudes and time-courses of [Ca(2+)](m) and mitochondrial redox state (NADH), membrane potential (ΔΨ(m)), respiration, and matrix volume. Isolated mitochondria from rat hearts were energized with 10mM Na(+)- or K(+)-pyruvate/malate (NaPM or KPM) or Na(+)-succinate (NaSuc) followed by additions of isoflurane, 0.5mM CaCl(2) (≈200nM free Ca(2+) with 1mM EGTA buffer), and 250μM ADP. Isoflurane stepwise: (a) increased [Ca(2+)](m) in state 2 with NaPM, but not with KPM substrate, despite an isoflurane-induced slight fall in ΔΨ(m) and a mild matrix expansion, and (b) decreased NADH oxidation, respiration, ΔΨ(m), and matrix volume in state 3, while prolonging the duration of state 3 NADH oxidation, respiration, ΔΨ(m), and matrix contraction with PM substrates. These findings suggest that isoflurane's effects are mediated in part at the mitochondrial level: (1) to enhance the net rate of state 2 Ca(2+) uptake by inhibiting the Na(+)/Ca(2+) exchanger (NCE), independent of changes in ΔΨ(m) and matrix volume, and (2) to decrease the rates of state 3 electron transfer and ADP phosphorylation by inhibiting complex I. These direct effects of isoflurane to increase [Ca(2+)](m), while depressing NCE activity and oxidative phosphorylation, could underlie the mechanisms by which isoflurane provides cardioprotection against IR injury at the mitochondrial level.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
23
|
Kusza K, Siemionow M. Is the knowledge on tissue microcirculation important for microsurgeon? Microsurgery 2011; 31:572-9. [DOI: 10.1002/micr.20927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/29/2011] [Indexed: 11/06/2022]
|
24
|
Hirata N, Shim YH, Pravdic D, Lohr NL, Pratt PF, Weihrauch D, Kersten JR, Warltier DC, Bosnjak ZJ, Bienengraeber M. Isoflurane differentially modulates mitochondrial reactive oxygen species production via forward versus reverse electron transport flow: implications for preconditioning. Anesthesiology 2011; 115:531-40. [PMID: 21862887 PMCID: PMC3337729 DOI: 10.1097/aln.0b013e31822a2316] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) mediate the effects of anesthetic precondition to protect against ischemia and reperfusion injury, but the mechanisms of ROS generation remain unclear. In this study, the authors investigated if mitochondria-targeted antioxidant (mitotempol) abolishes the cardioprotective effects of anesthetic preconditioning. Further, the authors investigated the mechanism by which isoflurane alters ROS generation in isolated mitochondria and submitochondrial particles. METHODS Rats were pretreated with 0.9% saline, 3.0 mg/kg mitotempol in the absence or presence of 30 min exposure to isoflurane. Myocardial infarction was induced by left anterior descending artery occlusion for 30 min followed by reperfusion for 2 h and infarct size measurements. Mitochondrial ROS production was determined spectrofluorometrically. The effect of isoflurane on enzymatic activity of mitochondrial respiratory complexes was also determined. RESULTS Isoflurane reduced myocardial infarct size (40 ± 9% = mean ± SD) compared with control experiments (60 ± 4%). Mitotempol abolished the cardioprotective effects of anesthetic preconditioning (60 ± 9%). Isoflurane enhanced ROS generation in submitochondrial particles with nicotinamide adenine dinucleotide (reduced form), but not with succinate, as substrate. In intact mitochondria, isoflurane enhanced ROS production in the presence of rotenone, antimycin A, or ubiquinone when pyruvate and malate were substrates, but isoflurane attenuated ROS production when succinate was substrate. Mitochondrial respiratory experiments and electron transport chain complex assays revealed that isoflurane inhibited only complex I activity. CONCLUSIONS The results demonstrated that isoflurane produces ROS at complex I and III of the respiratory chain via the attenuation of complex I activity. The action on complex I decreases unfavorable reverse electron flow and ROS release in myocardium during reperfusion.
Collapse
Affiliation(s)
- Naoyuki Hirata
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang Q, Dong H, Deng J, Wang Q, Ye R, Li X, Hu S, Dong H, Xiong L. Sevoflurane Preconditioning Induces Neuroprotection Through Reactive Oxygen Species-Mediated Up-Regulation of Antioxidant Enzymes in Rats. Anesth Analg 2011; 112:931-7. [DOI: 10.1213/ane.0b013e31820bcfa4] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Haumann J, Dash RK, Stowe DF, Boelens AD, Beard DA, Camara AKS. Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms. Biophys J 2010; 99:997-1006. [PMID: 20712982 DOI: 10.1016/j.bpj.2010.04.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/21/2010] [Accepted: 04/28/2010] [Indexed: 11/26/2022] Open
Abstract
ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2+] ([Ca2+](m)) and consequently mitochondrial bioenergetics by several postulated mechanisms. We tested how [Ca2+](m) is affected by H2PO4(-) (P(i)), Mg2+, calcium uniporter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2+](m), membrane potential, redox state, matrix volume, pH(m), and O2 consumption in guinea pig heart mitochondria with or without ruthenium red, carboxyatractyloside, or oligomycin, and at several levels of Mg2+ and P(i). Energized mitochondria showed a dose-dependent increase in [Ca2+](m) after adding CaCl2 equivalent to 20, 114, and 485 nM extramatrix free [Ca2+] ([Ca2+](e)); this uptake was attenuated at higher buffer Mg2+. Adding ADP transiently increased [Ca2+](m) up to twofold. The ADP effect on increasing [Ca2+](m) could be partially attributed to matrix contraction, but was little affected by ruthenium red or changes in Mg2+ or P(i). Oligomycin largely reduced the increase in [Ca2+](m) by ADP compared to control, and [Ca2+](m) did not return to baseline. Carboxyatractyloside prevented the ADP-induced [Ca2+](m) increase. Adding CaCl2 had no effect on bioenergetics, except for a small increase in state 2 and state 4 respiration at 485 nM [Ca2+](e). These data suggest that matrix ADP influx and subsequent phosphorylation increase [Ca2+](m) largely due to the interaction of matrix Ca2+ with ATP, ADP, P(i), and cation buffering proteins in the matrix.
Collapse
Affiliation(s)
- Johan Haumann
- Anesthesiology Research Laboratories, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bezerra FJL, do Vale NB, Macedo BDO, Rezende AA, Almeida MDG. Evaluation of antioxidant parameters in rats treated with sevoflurane. Rev Bras Anestesiol 2010; 60:162-9, 93-7. [PMID: 20485961 DOI: 10.1016/s0034-7094(10)70021-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/24/2009] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Sevoflurane is a halogenated fluorinated ether that undergoes hepatic biotransformation through cytochrome P4502E1. Halogenated ethers undergoing biotransformation by P4502E1 can produce reactive oxygen species (ROS), weakening the antioxidant defense mechanism. The objective of this study was to investigate the relationship between the activity of erythrocyte antioxidant enzymes and sevoflurane. METHODS Animals were divided in four groups: Group 1 - control: 100% oxygen (1 L.min(-1) for 60 min during five consecutive days); Group 2 - 4.0% sevoflurane in 100% oxygen (1 L.min(-1) for 60 minutes during five consecutive days); Group 3 - isoniazid (i.p.), 50 mg.kg(-1)/ day for four consecutive days, followed by 100% oxygen (1 L.min(-1) for 60 minutes during four consecutive days); Group 4 - intraperitoneal isoniazid, 50 mg.kg(-1) daily for four days, followed by 4.0% sevoflurane in 100% oxygen (1 L.min(-1) for 60 minutes during five days). Twelve hours after the last exposure to sevoflurane, animals were sacrificed and their blood was collected through the portal vein for analysis of antioxidant enzymes. RESULTS An increase in the activity of glucose-6-phosphate dehydrogenase and a decrease in the activity of catalase were observed, especially in the group of animals pre-treated with isoniazid. Changes in the activity of glutathione peroxidase were not observed. CONCLUSIONS The interaction between sevoflurane and cytochrome P450 2E1 with enzymatic inducers can lead to oxidative stress with prolonged and repetitive exposure.
Collapse
|
28
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
29
|
Sedlic F, Pravdic D, Hirata N, Mio Y, Sepac A, Camara AK, Wakatsuki T, Bosnjak ZJ, Bienengraeber M. Monitoring mitochondrial electron fluxes using NAD(P)H-flavoprotein fluorometry reveals complex action of isoflurane on cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1749-58. [PMID: 20646994 DOI: 10.1016/j.bbabio.2010.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022]
Abstract
Mitochondrial bioenergetic studies mostly rely on isolated mitochondria thus excluding the regulatory role of other cellular compartments important for the overall mitochondrial function. In intact cardiomyocytes, we followed the dynamics of electron fluxes along specific sites of the electron transport chain (ETC) by simultaneous detection of NAD(P)H and flavoprotein (FP) fluorescence intensities using a laser-scanning confocal microscope. This method was used to delineate the effects of isoflurane, a volatile anesthetic and cardioprotective agent, on the ETC. Comparison to the effects of well-characterized ETC inhibitors and uncoupling agent revealed two distinct effects of isoflurane: uncoupling-induced mitochondrial depolarization and inhibition of ETC at the level of complex I. In correlation, oxygen consumption measurements in cardiomyocytes confirmed a dose-dependent, dual effect of isoflurane, and in isolated mitochondria an obstruction of the ETC primarily at the level of complex I. These effects are likely responsible for the reported mild stimulation of mitochondrial reactive oxygen species (ROS) production required for the cardioprotective effects of isoflurane. In conclusion, isoflurane exhibits complex effects on the ETC in intact cardiomyocytes, altering its electron fluxes, and thereby enhancing ROS production. The NAD(P)H-FP fluorometry is a useful method for exploring the effect of drugs on mitochondria and identifying their specific sites of action within the ETC of intact cardiomyocytes.
Collapse
Affiliation(s)
- Filip Sedlic
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Treatment of mitochondrial disorders (MIDs) is a challenge since there is only symptomatic therapy available and since only few randomized and controlled studies have been carried out, which demonstrate an effect of some of the symptomatic or supportive measures available. Symptomatic treatment of MIDs is based on mainstay drugs, blood transfusions, hemodialysis, invasive measures, surgery, dietary measures, and physiotherapy. Drug treatment may be classified as specific (treatment of epilepsy, headache, dementia, dystonia, extrapyramidal symptoms, Parkinson syndrome, stroke-like episodes, or non-neurological manifestations), non-specific (antioxidants, electron donors/acceptors, alternative energy sources, cofactors), or restrictive (avoidance of drugs known to be toxic for mitochondrial functions). Drugs which more frequently than in the general population cause side effects in MID patients include steroids, propofol, statins, fibrates, neuroleptics, and anti-retroviral agents. Invasive measures include implantation of a pacemaker, biventricular pacemaker, or implantable cardioverter defibrillator, or stent therapy. Dietary measures can be offered for diabetes, hyperlipidemia, or epilepsy (ketogenic diet, anaplerotic diet). Treatment should be individualized because of the peculiarities of mitochondrial genetics. Despite limited possibilities, symptomatic treatment should be offered to MID patients, since it can have a significant impact on the course and outcome.
Collapse
|
31
|
Anesthesia and Pathophysiology of Microcirculation. Plast Reconstr Surg 2010. [DOI: 10.1007/978-1-84882-513-0_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Yao YT, Li LH, Chen L, Wang WP, Li LB, Gao CQ. Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury: the role of radical oxygen species, extracellular signal-related kinases 1/2 and mitochondrial permeability transition pore. Mol Biol Rep 2009; 37:2439-46. [PMID: 19693689 DOI: 10.1007/s11033-009-9755-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/06/2009] [Indexed: 01/08/2023]
Abstract
The roles of reactive oxygen species (ROS), extracellular signal-regulated kinase 1/2 (ERK 1/2) and mitochondrial permeability transition pore (mPTP) in sevoflurane postconditioning induced cardioprotection against ischemia-reperfusion injury in Langendorff rat hearts were investigated. When compared with the unprotected hearts subjected to 30 min of ischemia followed by 1 h of reperfusion, exposure of 3% sevoflurane during the first 15 min of reperfusion significantly improved functional recovery, decreased infarct size, reduced lactate dehydrogenase and creatine kinase-MB release, and reduced myocardial malondialdehyde production. However, these protective effects were abolished in the presence of either ROS scavenger N-acetylcysteine or ERK 1/2 inhibitor PD98059, and accompanied by prevention of ERK 1/2 phosphorylation and elimination of inhibitory effect on mPTP opening. These findings suggested that sevoflurane postconditioning protected isolated rat hearts against ischemia-reperfusion injury via the recruitment of the ROS-ERK 1/2-mPTP signaling cascade.
Collapse
Affiliation(s)
- Yun-Tai Yao
- Department of Anesthesiology, Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
33
|
Differences in production of reactive oxygen species and mitochondrial uncoupling as events in the preconditioning signaling cascade between desflurane and sevoflurane. Anesth Analg 2009; 109:405-11. [PMID: 19608810 DOI: 10.1213/ane.0b013e3181a93ad9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Signal transduction cascade of anesthetic-induced preconditioning has been extensively studied, yet many aspects of it remain unsolved. Here, we investigated the roles of reactive oxygen species (ROS) and mitochondrial uncoupling in cardiomyocyte preconditioning by two modern volatile anesthetics: desflurane and sevoflurane. METHODS Adult rat ventricular cardiomyocytes were isolated enzymatically. The preconditioning potency of desflurane and sevoflurane was assessed in cell survival experiments by evaluating myocyte protection from the oxidative stress-induced cell death. ROS production and flavoprotein fluorescence, an indicator of flavoprotein oxidation and mitochondrial uncoupling, were monitored in real time by confocal microscopy. The functional aspect of enhanced ROS generation by the anesthetics was assessed in cell survival and confocal experiments using the ROS scavenger Trolox. RESULTS Preconditioning of cardiomyocytes with desflurane or sevoflurane significantly decreased oxidative stress-induced cell death. That effect coincided with increased ROS production and increased flavoprotein oxidation detected during acute myocyte exposure to the anesthetics. Desflurane induced significantly greater ROS production and flavoprotein oxidation than sevoflurane. ROS scavenging with Trolox abrogated preconditioning potency of anesthetics and attenuated flavoprotein oxidation. CONCLUSION Preconditioning with desflurane or sevoflurane protects isolated rat cardiomyocytes from oxidative stress-induced cell death. Scavenging of ROS abolishes the preconditioning effect of both anesthetics and attenuates anesthetic-induced mitochondrial uncoupling, suggesting a crucial role for ROS in anesthetic-induced preconditioning and implying that ROS act upstream of mitochondrial uncoupling. Desflurane exhibits greater effect on stimulation of ROS production and mitochondrial uncoupling than sevoflurane.
Collapse
|
34
|
Stowe DF, Camara AKS. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 2009; 11:1373-414. [PMID: 19187004 PMCID: PMC2842133 DOI: 10.1089/ars.2008.2331] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O(2)(*-)) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H(2)O(2) inside and outside the mitochondrial matrix by superoxide dismutases. H(2)O(2) is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O(2)(*-). Cell ischemia, hypoxia, or toxins can result in excess O(2)(*-) production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H(2)O(2) can combine with Fe(2+) complexes to form reactive ferryl species (e.g., Fe(IV) = O(*)). In the presence of nitric oxide (NO(*)), O(2)(*-) forms the reactant peroxynitrite (ONOO(-)), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca(2+) entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O(2)(*-) emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O(2)(*-) by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O(2)(*-) generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in modulation of cell function and cell death has grown exponentially over the past few years, but we are still limited in how to apply this knowledge to develop its full therapeutic potential.
Collapse
Affiliation(s)
- David F Stowe
- Anesthesiology Research Laboratories, Department of Anesthesiology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
35
|
Lu X, Liu H, Wang L, Schaefer S. Activation of NF-kappaB is a critical element in the antiapoptotic effect of anesthetic preconditioning. Am J Physiol Heart Circ Physiol 2009; 296:H1296-304. [PMID: 19304943 DOI: 10.1152/ajpheart.01282.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anesthetic preconditioning (APC), defined as brief exposure to inhalational anesthetics before cardiac ischemia-reperfusion (I/R), limits injury in both animal models and in humans. APC can result in the production of reactive oxygen species (ROS), and prior work has shown that APC can modify activation of NF-kappaB during I/R, with consequent reduction in the expression of inflammatory mediators. However, the role of NF-kappaB activation before I/R is unknown. Therefore, these experiments tested the hypothesis that APC-induced ROS results in activation of NF-kappaB before I/R, with consequent increased expression of antiapoptotic proteins such as Bcl-2 and decreased apoptosis. Experiments utilized an established perfused heart rat model of sevoflurane APC and I/R. The role of NF-kappaB was defined by a novel method of transient inhibition of the regulatory kinase IKK using the reversible inhibitor SC-514. In addition to functional measures of left ventricular developed and end-diastolic pressure, phosphorylation of IkappaBalpha and activation of NF-kappaB were measured along with cytosolic protein content of Bcl-2, release of cytochrome c, and degradation of caspase-3. APC resulted in ROS-dependent phosphorylation of IkappaBalpha and activation of NF-kappaB before I/R. APC also increased the expression of Bcl-2 before I/R. In addition to functional protection following I/R, APC resulted in lower release of cytochrome c and caspase-3 degradation. These protective effects of APC were abolished by transient inhibition of IkappaBalpha phosphorylation and NF-kappaB activation by SC-514 followed by washout. ROS-dependent activation of NF-kappaB by APC before I/R is a critical element in the protective effect of APC. APC reduces apoptosis and functional impairment by increasing Bcl-2 expression before I/R. Interventions that increase NF-kappaB activation before I/R should protect hearts from I/R injury.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Internal Medicine, Division of Cardiovascular Medicine, Univ. of California, One Shields Ave., TB 172, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
36
|
Jin C, Sonoda S, Fan L, Watanabe M, Kugimiya T, Okada T. Sevoflurane and nitrous oxide exert cardioprotective effects against hypoxia-reoxygenation injury in the isolated rat heart. J Physiol Sci 2009; 59:123-9. [PMID: 19340552 PMCID: PMC10717582 DOI: 10.1007/s12576-008-0018-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/08/2008] [Indexed: 10/20/2022]
Abstract
It is unclear whether nitrous oxide (N(2)O) has a protective effect on cardiac function in vitro. In addition, little is known about the cardioprotective effect of anesthesia administered during hypoxia or ischemia. We therefore studied the cardioprotective effects of N(2)O and sevoflurane administered before or during hypoxia in isolated rat hearts. Rat hearts were excised and perfused using the Langendorff technique. For hypoxia-reoxygenation, hearts were made hypoxic (95% N(2), 5% CO(2)) for 45 min and then reoxygenated (95% O(2), 5% CO(2)) for 40 min (control: CT group). Preconditioning was achieved through three cycles of application of 4% sevoflurane (sevo-pre group) or 50% N(2)O (N(2)O-pre group) for 5 min with 5-min washouts in between. Hypoxic conditions were achieved by administering the 4% sevoflurane (sevo-hypo group) or 50% N(2)O (N(2)O-hypo group) during the 45-min hypoxic period. L-type calcium channel currents (I(Ca,L)) were recorded on rabbit myocytes. (1) Both 4% sevoflurane and 50% N(2)O significantly reduced left ventricular developed pressure (LVDP). Sevoflurane also increased left ventricular end-diastolic pressure, though N(2)O did not. (2) The recoveries of LVDP and pressure-rate product (PRP) after hypoxia-reoxygenation were better in the sevo-pre group than in the CT or N(2)O-pre group. (3) Application of either sevoflurane or N(2)O during hypoxia improved recovery of LVDP and PRP, and GOT release was significantly lower than in the CT group. (4) Sevoflurane and N(2)O reduced I(Ca,L) to similar extents. Although sevoflurane administered before or during hypoxia exerts a cardioprotective effect, while N(2)O shows a cardioprotective effect only when administered during hypoxia.
Collapse
Affiliation(s)
- Chunhong Jin
- Department of Physiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Early Anesthetic Preconditioning in Mixed Cortical Neuronal-Glial Cell Cultures Subjected to Oxygen-Glucose Deprivation: The Role of Adenosine Triphosphate Dependent Potassium Channels and Reactive Oxygen Species in Sevoflurane-Induced Neuroprotection. Anesth Analg 2009; 108:955-63. [DOI: 10.1213/ane.0b013e318193fee7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Tampo A, Hogan CS, Sedlic F, Bosnjak ZJ, Kwok WM. Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning. Br J Pharmacol 2009; 156:432-43. [PMID: 19154423 DOI: 10.1111/j.1476-5381.2008.00026.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotection against ischaemia by anaesthetic-induced preconditioning (APC) is well established. However, the mechanism underlying Ca(2+) overload attenuation by APC is unknown. The effects of APC by isoflurane on the cardiac L-type Ca channel were investigated. EXPERIMENTAL APPROACH In a model of in vivo APC, Wistar rats were exposed to isoflurane (1.4%), delivered via a vaporizer in an enclosure, prior to thoracotomy. The Dahl S rats were similarly preconditioned to determine strain-dependent effects. Whole-cell patch clamp using cardiac ventricular myocytes was used to determine the L-type Ca(2+) current (I(Ca,L)) characteristics and calmodulin (CaM) levels were determined by Western blot analysis. Cytosolic Ca(2+) levels were monitored using fluo-4-AM. Action potential (AP) simulations examined the effects of APC. KEY RESULTS In Wistar rats, APC significantly accelerated I(Ca,L) inactivation kinetics. This was abolished when external Ca(2+) was replaced with Ba(2+), suggesting that Ca(2+)-dependent inactivation of I(Ca,L) was modulated by APC. Expression levels of CaM, a determinant of I(Ca,L) inactivation, were not affected. Attenuation of cytosolic Ca(2+) accumulation following oxidative stress was observed in the APC group. Simulations showed that the accelerated inactivation of I(Ca,L) resulted in a shortening of the AP duration. The Dahl S rat strain was resistant to APC and changes in I(Ca,L) inactivation were not observed in cardiomyocytes prepared from these rats. CONCLUSIONS AND IMPLICATIONS APC triggered persistent changes in the inactivation of cardiac L-type Ca channels. This can potentially lead to a reduction in Ca(2+) influx and attenuation of Ca(2+) overload during ischaemia/reperfusion.
Collapse
Affiliation(s)
- A Tampo
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | | | | | |
Collapse
|
39
|
Stowe DF, Camara AKS, Heisner JS, Aldakkak M, Harder DR. Low-flow perfusion of guinea pig isolated hearts with 26 degrees C air-saturated Lifor solution for 20 hours preserves function and metabolism. J Heart Lung Transplant 2008; 27:1008-15. [PMID: 18765194 DOI: 10.1016/j.healun.2008.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/28/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Donor human hearts cannot be preserved for >5 hours between explantation and recipient implantation. A better approach is needed to preserve transplantable hearts for longer periods, ideally at ambient conditions for transport. We tested whether Lifor solution could satisfactorily preserve guinea pig isolated hearts perfused at low flow with no added oxygen at room temperature for 20 hours. METHODS Hearts were isolated from 18 guinea pigs and perfused initially with oxygenated Krebs-Ringer (KR) solution at 37 degrees C. Hearts were then perfused with recirculated Lifor or cardioplegia (CP) solution (K(+) 15 mmol/liter) equilibrated with room air at 20% of control flow at 26 degrees C for 20 hours. Hearts were then perfused at 100% flow with KR for 2 hours at 37 degrees C. RESULTS Lifor and CP arrested all hearts. During the 20-hour low-flow perfusion with Lifor coronary pressure increased by 6 +/- 2 mm Hg and percent oxygen extraction by 29 +/- 2%, whereas oxygen consumption (MVo(2)) decreased by 74 +/- 4%. Similar changes were noted for CP, except that MVo(2) was decreased by 86 +/- 7%. After 20-hour low-flow perfusion with Lifor and 2 hours of warm reperfusion with KR solution, diastolic left ventricular pressure (LVP), maximal dLVP/dt and percent oxygen extraction returned completely to baseline values, whereas heart rate returned to 80 +/- 3%, developed LVP to 76 +/- 3%, minimal dLVP/dt (relaxation) to 65 +/- 4%, coronary flow to 80 +/- 4%, oxygen consumption to 82 +/- 4% and cardiac efficiency to 85 +/- 4% of baseline values. Flow responses to adenosine and nitroprusside after Lifor treatment were 65 +/- 3% and 64 +/- 3% of their baseline values. After cardioplegia, treatment there was no cardiac activity, with a diastolic pressure of 35 +/- 14 mm Hg and a return of coronary flow to only 45 +/- 3% of baseline value. CONCLUSIONS Compared with a cardioplegia solution at ambient air and temperature conditions, Lifor solution is a much better medium for long-term cardiac preservation in this model.
Collapse
Affiliation(s)
- David F Stowe
- Anesthesiology Research Laboratory, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | |
Collapse
|
40
|
Chen CH, Liu K, Chan JYH. Anesthetic preconditioning confers acute cardioprotection via up-regulation of manganese superoxide dismutase and preservation of mitochondrial respiratory enzyme activity. Shock 2008; 29:300-8. [PMID: 17693941 DOI: 10.1097/shk.0b013e3181454295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cellular and molecular mechanisms that underlie cardioprotection against I/R by anesthetic-induced preconditioning (APC) require further elucidation. Using isoflurane as a representative anesthetic, we evaluated the hypothesis that APC induces myocardial protection against I/R by attenuation of excessive reactive oxygen species and restoration of mitochondrial bioenergetics through postischemic up-regulation of manganese superoxide dismutase (MnSOD) expression and preservation of respiratory enzyme activity. Pentobarbital anesthetized open-chest Sprague-Dawley rats were subject to 30-min left coronary artery occlusion, followed by 120-min reperfusion. Before ischemia, rats were randomly assigned to receive 0.9% saline, two cycles of brief coronary artery occlusion and reperfusion, or a 30-min exposure to 1.0 minimum alveolar concentration isoflurane in the absence or presence of a specific mitochondrial adenosine triphosphate-sensitive potassium (KATP) channel blocker, 5-hydroxydecanoate; a membrane-permeable superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl; or a NOS inhibitor, N(G)-nitro-L-arginine methyl ester. Isoflurane exposure induced an initial increase in myocardial superoxide (O2-), but not NO level. It also significantly decreased infarct size and restored mitochondrial respiratory enzyme activity or ATP production in I/R rat hearts, along with suppression of the O2- surge at reperfusion and increase in MnSOD expression or enzyme activity. These protective effects were abrogated by 5-hydroxydecanoate or 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl, but not by N(G)-nitro-L-arginine methyl ester pretreatment. These results suggest that opening of mitochondrial KATP channel, followed by O2- signaling, induces postischemic augmentation of MnSOD and preservation of mitochondrial respiratory enzyme activities, leading to attenuated cardiac O2- surge and restored ATP production during reperfusion, and underlie APC-induced cardioprotection.
Collapse
Affiliation(s)
- Chen Hsiu Chen
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | |
Collapse
|
41
|
Hanouz JL, Zhu L, Lemoine S, Durand C, Lepage O, Massetti M, Khayat A, Plaud B, Gérard JL. Reactive Oxygen Species Mediate Sevoflurane- and Desflurane-Induced Preconditioning in Isolated Human Right Atria In Vitro. Anesth Analg 2007; 105:1534-9, table of contents. [DOI: 10.1213/01.ane.0000286170.22307.1a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Jiang MT, Nakae Y, Ljubkovic M, Kwok WM, Stowe DF, Bosnjak ZJ. Isoflurane Activates Human Cardiac Mitochondrial Adenosine Triphosphate-Sensitive K+ Channels Reconstituted in Lipid Bilayers. Anesth Analg 2007; 105:926-32, table of contents. [PMID: 17898367 DOI: 10.1213/01.ane.0000278640.81206.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Activation of the mitochondrial adenosine triphosphate (ATP)-sensitive K+ channel (mitoK(ATP)) has been proposed as a critical step in myocardial protection by isoflurane-induced preconditioning in humans and animals. Recent evidence suggests that reactive oxygen species (ROS) may mediate isoflurane-mediated myocardial protection. In this study, we examined the direct effect of isoflurane and ROS on human cardiac mitoK(ATP) channels reconstituted into the lipid bilayers. METHODS Inner mitochondrial membranes were isolated from explanted human left ventricles not suitable for heart transplantation and fused into lipid bilayers in symmetrical potassium glutamate solution (150 mM). ATP-sensitive K+ currents were recorded before and after exposure to isoflurane and H2O2 under voltage clamp. RESULTS The human mitoK(ATP) was identified by its sensitivity to inhibition by ATP and 5-hydroxydecanoate. Addition of isoflurane (0.8 mM) increased the open probability of the mitoK(ATP) channels, either in the presence or absence of ATP inhibition (0.5 mM). The isoflurane-mediated increase in K+ currents was completely inhibited by 5-hydroxydecanoate. Similarly, H2O2 (200 microM) was able to activate the mitoK(ATP) previously inhibited by ATP. CONCLUSIONS These data confirm that isoflurane, as well as ROS, directly activates reconstituted human cardiac mitoK(ATP) channel in vitro, without apparent involvement of cytosolic protein kinases, as commonly proposed. Activation of the mitoK(ATP) channel may contribute to the myocardial protective effect of isoflurane in the human heart.
Collapse
Affiliation(s)
- Ming T Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Li YW, Yang TD, Liu QY, Tao J, Huang H. Isoflurane reduces the synthesis of surfactant-related protein a of alveolar type II cells injured by H2O2. DRUG METABOLISM AND DRUG INTERACTIONS 2007; 22:187-94. [PMID: 17708068 DOI: 10.1515/dmdi.2007.22.2-3.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The influence of isoflurane (Iso) on the synthesis of surfactant-related protein A (SP-A) of alveolar type II (AT II) cells in primary culture and after injury by H2O2 was investigated. AT II cells were isolated and purified from adult Sprague-Dawley rats and used for experiments after 32 h in primary culture. The cell cultures were randomized to six groups (n = 8 in each group): control group (no treatment), 0.28 mM Iso group, 2.8 mM Iso group, 75 microM H2O2 group, 75 microM H2O2 + 0.28 mM Iso group, and 75 microM H2O2 + 2.8 mM Iso group. Each group was continuously incubated for 3 h after administration of Iso and/or H2O2. The intracellular SP-A and the SP-A of the culture medium were measured with an enzyme-linked immunosorbent assay (ELISA). Iso significantly decreased the intracellular SP-A content and that of the culture medium, and aggravated the decrease of SP-A content induced by H2O2. These findings suggest that Iso itself may decrease SP-A synthesis of AT II cells in vitro, and aggravate the damage to AT II cells under peroxidation conditions.
Collapse
Affiliation(s)
- Yong-Wang Li
- Department of Anesthesiology, Xinqiao Hospital of Third Military Medical University, Chongqing 400037, China
| | | | | | | | | |
Collapse
|
44
|
Finsterer J. Hematological manifestations of primary mitochondrial disorders. Acta Haematol 2007; 118:88-98. [PMID: 17637511 DOI: 10.1159/000105676] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 05/08/2007] [Indexed: 01/21/2023]
Abstract
At onset mitochondrial disorders (MID) frequently manifest as a mono-organic problem but turn into multisystem disease during the disease course in most of the cases. Organs/tissues most frequently affected in MID are the cerebrum, peripheral nerves, and the skeletal muscle. Additionally, most of the inner organs may be affected alone or in combination. Hematological manifestations of MID include aplastic, megaloblastic, or sideroblastic anemia, leukopenia, neutropenia, thrombocytopenia, or pancytopenia. In single cases either permanent or recurrent eosinophilia has been observed. Hematological abnormalities may occur together with syndromic or nonsyndromic MIDs. Syndromic MIDs, in which hematological manifestations predominate, are the Pearson syndrome (pancytopenia), Kearns-Sayre syndrome (anemia), Barth syndrome (neutropenia), and the autosomal recessive mitochondrial myopathy, lactic acidosis and sideroblastic anemia syndrome. In single cases with Leigh's syndrome, MERRF (myoclonic epilepsy and ragged-red fiber) syndrome, Leber's hereditary optic neuropathy, and Friedreich's ataxia anemia has been described. Anemia, leukopenia, thrombocytopenia, eosinophilia, or pancytopenia can frequently also be found in nonsyndromic MIDs with or without involvement of other tissues. Therapy of blood cell involvement in MID comprises application of antioxidants, vitamins, iron, bone marrow-stimulating factors, or substitution of cells.
Collapse
|
45
|
Heinen A, Aldakkak M, Stowe DF, Rhodes SS, Riess ML, Varadarajan SG, Camara AKS. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels. Am J Physiol Heart Circ Physiol 2007; 293:H1400-7. [PMID: 17513497 DOI: 10.1152/ajpheart.00198.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria generate reactive oxygen species (ROS) dependent on substrate conditions, O(2) concentration, redox state, and activity of the mitochondrial complexes. It is well known that the FADH(2)-linked substrate succinate induces reverse electron flow to complex I of the electron transport chain and that this process generates superoxide (O(2)(*-)); these effects are blocked by the complex I blocker rotenone. We demonstrated recently that succinate + rotenone-dependent H(2)O(2) production in isolated mitochondria increased mildly on activation of the putative big mitochondrial Ca(2+)-sensitive K(+) channel (mtBK(Ca)) by low concentrations of 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619). In the present study we examined effects of NS-1619 on mitochondrial O(2) consumption, membrane potential (DeltaPsi(m)), H(2)O(2) release rates, and redox state in isolated guinea pig heart mitochondria respiring on succinate but without rotenone. NS-1619 (30 microM) increased state 2 and state 4 respiration by 26 +/- 4% and 14 +/- 4%, respectively; this increase was abolished by the BK(Ca) channel blocker paxilline (5 microM). Paxilline alone had no effect on respiration. NS-1619 did not alter DeltaPsi(m) or redox state but decreased H(2)O(2) production by 73% vs. control; this effect was incompletely inhibited by paxilline. We conclude that under substrate conditions that allow reverse electron flow, matrix K(+) influx through mtBK(Ca) channels reduces mitochondrial H(2)O(2) production by accelerating forward electron flow. Our prior study showed that NS-1619 induced an increase in H(2)O(2) production with blocked reverse electron flow. The present results suggest that NS-1619-induced matrix K(+) influx increases forward electron flow despite the high reverse electron flow, and emphasize the importance of substrate conditions on interpretation of effects on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- André Heinen
- Anesthesiology Research Laboratories, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Larsen JR, Aagaard SR, Hasenkam JM, Sloth E. Pre-occlusion ischaemia, not sevoflurane, successfully preconditions the myocardium against further damage in porcine in vivo hearts. Acta Anaesthesiol Scand 2007; 51:402-9. [PMID: 17378777 DOI: 10.1111/j.1399-6576.2007.01249.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Sevoflurane is proposed to possess important tissue protective effects based on experimental ischaemia-reperfusion studies from models with collateral coronary flow, unlike that of the normal human or the porcine heart. The objective was to evaluate the infarct-reducing capability of pre-ischaemic sevoflurane inhalation on myocardial infarct size in a porcine model. METHODS AND MATERIALS The study comprised 33 pigs under pentobarbital anaesthesia. Animals were divided into three groups: control (CON), sevoflurane intervention (SEVO) and ischaemic preconditioning (IP). The distal left anterior descending coronary artery was occluded for 40 min with a percutaneous coronary intervention catheter. Before occlusion, group IP underwent two 5-min ischaemia cycles, whereas SEVO received two 5-min sevoflurane 4%v/v inhalation cycles. Animals were reperfused for 150 min. We then measured risk area (AAR) and infarct size (IS) after tetrazolium staining. The [IS/AAR-ratio] was calculated. Haemodynamics and transthoracic tissue-Doppler echocardiography were monitored. RESULTS Control animals developed a myocardial infarction in 46.4 (+/- 6.2)% (mean +/- SEM) of the AAR. Both SEVO and IP groups had infarction mitigated, to 34.4 (5.7)% and 23.1 (5.3)%, respectively; however, only in the IP group was this significant. No significant differences between groups with respect to AAR, haemodynamics or echocardiographic variables were found. CONCLUSION Pre-ischaemic sevoflurane was found to reduce the extent of myocardial necrosis, but the change was not significant, whereas IP reduced IS by 50% (P= 0.038). Cardioprotection is species related and no previous results from porcine models have found sevoflurane to reduce IS. Anaesthetic washout, insufficient exposure or collateral coronary blood supply, dissimilar to human, may account for positive results in rodent models.
Collapse
Affiliation(s)
- J R Larsen
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | |
Collapse
|
47
|
Pratt PF, Wang C, Weihrauch D, Bienengraeber MW, Kersten JR, Pagel PS, Warltier DC. Cardioprotection by volatile anesthetics: new applications for old drugs? Curr Opin Anaesthesiol 2006; 19:397-403. [PMID: 16829721 DOI: 10.1097/01.aco.0000236139.31099.b5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Pharmacological interventions may play a prominent role in reducing organ damage in response to physiologic stress. A growing body of evidence indicates that volatile anesthetics exert protective effects against ischemia-reperfusion injury in vivo. Administration of volatile anesthetics before prolonged coronary artery occlusion and reperfusion has been shown to produce cardioprotection, a phenomenon termed anesthetic-induced preconditioning. Endogenous signal transduction proteins, reactive oxygen species, mitochondria, and ion channels have been implicated in anesthetic-induced preconditioning, and new data regarding the triggering and effector roles for these various components have been discovered that advance our understanding of the mechanisms responsible for anesthetic-induced preconditioning. This review will update and integrate these recent data into the current mechanistic model of anesthetic-induced preconditioning. RECENT FINDINGS Despite a wealth of data from animal studies, the mechanism by which preconditioning with volatile anesthetics alleviates ischemic injury remains incompletely understood. Recent data have identified important interactions between reactive oxygen species and key intracellular signal transduction enzymes and proteins implicated in anesthetic-induced preconditioning. SUMMARY This review highlights the major recent findings examining mechanisms of volatile anesthetic cardioprotection.
Collapse
Affiliation(s)
- Phillip F Pratt
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Xia Z, Huang Z, Ansley DM. Large-dose propofol during cardiopulmonary bypass decreases biochemical markers of myocardial injury in coronary surgery patients: a comparison with isoflurane. Anesth Analg 2006; 103:527-32. [PMID: 16931656 DOI: 10.1213/01.ane.0000230612.29452.a6] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigated if increasing propofol's dosage to augment its antioxidant capacity during cardiopulmonary bypass (CPB) could confer cardiac protection. Fifty-four coronary artery bypass graft surgery patients were randomly assigned to small-dose propofol (Group P; n = 18), large-dose propofol (Group HiP; n = 18), or isoflurane Group (Group I; n = 18). After the induction, anesthesia was maintained with an inspired concentration of isoflurane 1%-3.5% (Group I) or a continuous infusion of propofol 60 microg x kg(-1) x min(-1) (Group P) throughout the surgery. In Group HiP, this dose of propofol was increased to 120 microg x kg(-1) x min(-1) for 10 min before the onset of CPB until 15 min after aortic unclamping and then decreased to 60 microg x kg(-1) x min(-1) until the end of surgery. The duration of aortic cross-clamping was 83 +/- 24, 88 +/- 22, and 81 +/- 20 min in Group P, Group HiP, and Group I, respectively (P > 0.1). Plasma malondialdehyde, a marker of oxidative stress, was significantly lower at 8 h after CPB, and Troponin I was lower at 24 h after CPB in Group HiP compared with Group P and Group I (P < 0.05). There was a significant reduction in inotropic requirements for separation from CPB in Group HiP compared with Group I. Postoperative systemic vascular resistance was significantly reduced in Group HiP as compared with Group I. Mean cardiac index was significantly higher at 24 h after CPB in Group HiP compared with Group P and Group I (P < 0.05) (Group I, 2.2 +/- 0.1; Group P, 2.3 +/- 0.2; and Group HiP, 2.8 +/- 0.3 L x min(-1) x m(-2), respectively). The duration of intensive care unit stay was significantly shorter in Group Hi-P compared with Group I. We conclude that administration of a large dose of propofol during CPB attenuates postoperative myocardial cellular damage as compared with isoflurane or small-dose propofol anesthesia.
Collapse
Affiliation(s)
- Zhengyuan Xia
- Anesthesiology Research Laboratory, Department of Anesthesiology, Renmin Hospital, Wuhan University, 238 Jiefang Rd., Wuhan, 430060, PR China.
| | | | | |
Collapse
|
49
|
Bouwman RA, van't Hof FNG, de Ruijter W, van Beek-Harmsen BJ, Musters RJP, de Lange JJ, Boer C. The mechanism of sevoflurane-induced cardioprotection is independent of the applied ischaemic stimulus in rat trabeculae. Br J Anaesth 2006; 97:307-14. [PMID: 16849387 DOI: 10.1093/bja/ael174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Sevoflurane protects the myocardium against ischaemic injury through protein kinase C (PKC) activation, mitochondrial K+ATP-channel (mitoK+ATP) opening and production of reactive oxygen species (ROS). However, it is unclear whether the type of ischaemia determines the involvement of these signalling molecules. We therefore investigated whether hypoxia (HYP) or metabolic inhibition (MI), which differentially inhibit the mitochondrial electron transport chain (ETC), are comparable concerning the relative contribution of PKC, mitoK+ATP and ROS in sevoflurane-induced cardioprotection. METHODS Rat right ventricular trabeculae were isolated and isometric contractile force (Fdev) was measured. Trabeculae were subjected to HYP (hypoxic glucose-free buffer; 40 min) or MI (glucose-free buffer, 2 mM cyanide; 30 min), followed by 60 min recovery (60 min). Contractile recovery (Fdev,rec) was determined at the end of the recovery period and expressed as a percentage of Fdev before hypoxia or MI, respectively. Chelerythrine (CHEL; 6 microM), 5-hydroxydecanoic acid sodium (100 microM) and n-(2-mercaptopropionyl)-glycine (MGP; 300 microM) were used to inhibit PKC, mitoK+ATP and ROS, respectively. RESULTS Fdev,rec after HYP was reduced to 47 (3)% (P<0.001 vs control; n=5) whereas MI reduced Fdev,rec to 28 (5)% (P<0.001 vs control; n=5). A 15 min period of preconditioning with sevoflurane (3.8%) equally increased contractile recovery after HYP [76 (9)%; P<0.05 vs HYP] and MI [67 (8)%; P<0.01 vs MI]. Chelerythrine, 5-hydroxydecanoate and n-(2-mercaptopropionyl)-glycine abolished the protective effect of sevoflurane in both ischaemic models. Trabeculae subjected to HYP or MI did not demonstrate any increased apoptotic or necrotic markers. CONCLUSIONS PKC, mitoK+ATP and ROS are involved in sevoflurane-induced cardioprotection after HYP or MI, suggesting that the means of mitochondrial ETC inhibition does not determine the signal transduction pathway for cardioprotection by anaesthetics.
Collapse
Affiliation(s)
- R A Bouwman
- Department of Anesthesiology, VU University Medical Center -Institute for Cardiovascular Research Vrije Universiteit De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kalenka A, Maurer MH, Feldmann RE, Kuschinsky W, Waschke KF. Volatile anesthetics evoke prolonged changes in the proteome of the left ventricule myocardium: defining a molecular basis of cardioprotection? Acta Anaesthesiol Scand 2006; 50:414-27. [PMID: 16548853 DOI: 10.1111/j.1399-6576.2006.00984.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Volatile anesthetics can alter cardiac gene and protein expression. Of those underlying molecular changes in gene and protein expression in the myocardium after exposure to volatile anesthetics that have been identified, some of them have been related to cardioprotection. METHODS We used two-dimensional gel electrophoresis and mass spectrometry to identify changes in the protein expression of the left ventricle myocardium of anesthesized rats. We maintained anesthesia for 3 h using isoflurane, sevoflurane or desflurane, respectively, at 1.0 minimum alveolar concentration (MAC) and dissected the left ventricular myocardium either immediately or 72 h after the end of anesthesia. RESULTS We found changes of at least twofold in 106 proteins of the more than 1.600 protein spots discriminated in each gel. These differentially expressed proteins are associated with functions in glycolysis, mitochondrial respiration and stress response. No obvious difference could be observed between the patterns of differential expression of the three volatile anesthetics. CONCLUSION We provide the first study of post-anesthetic protein expression profiles associated with three common volatile anesthetics. These volatile anesthetics promote a distinct change in the myocardial protein expression profile, whereby changes in the expression pattern still exist 72 h after anesthesia. These proteome changes are closely related to cardioprotection and ischemic preconditioning, indicating a common functional signaling of volatile anesthestics.
Collapse
Affiliation(s)
- A Kalenka
- Department of Anesthesiology and Critical Care Medicine, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|