Ichikawa J, Kouta M, Oogushi M, Komori M. Effects of room temperature and cold storage on the metabolic and haemostatic properties of whole blood for acute normovolaemic haemodilution.
PLoS One 2022;
17:e0267980. [PMID:
35560137 PMCID:
PMC9106157 DOI:
10.1371/journal.pone.0267980]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Acute normovolaemic haemodilution (ANH), as a blood-conservation technique, avoids the need for allogeneic blood transfusions. The historic practice of cold-storing type-O whole blood (WB) in military fields popularised the transfusion of refrigerated WB to treat acute bleeding. In this study, we compared the effects of room temperature (RT) and refrigeration up to 24 hours on the coagulation properties of WB for ANH.
Materials and methods
Each WB sample, collected from 12 male volunteers, was divided into two parts, one stored at RT and the other refrigerated for 24 hours. Complete blood counts (CBC), blood gas levels, and coagulation profiles were measured, and rotational thromboelastometry (ROTEM) measurements were performed at the initial collection time point (baseline) and at 6, 12, and 24 hours after initial collection.
Results
The preservation of platelet aggregation response induced by arachidonic acid and adenosine diphosphate was better in cold-stored WB compared to that in RT-stored WB. The platelet aggregation response induced by thrombin receptor-activating peptide 6 was significantly decreased in all samples after 24 hours of storage when compared with that at baseline. The lactate levels in WB stored at RT increased significantly after 6 hours of storage compared to that of cold-stored samples. There were no significant differences in CBC, coagulation parameters, and ROTEM variables between the cold-stored and RT-stored WB samples.
Conclusion
WB for ANH stored in the refrigerator showed better metabolic characteristics after 6 hours of storage and better aggregation response after 12 hours of storage than WB stored at RT.
Collapse