1
|
Montigné E, Balayssac D. Exploring Cholinergic Compounds for Peripheral Neuropathic Pain Management: A Comprehensive Scoping Review of Rodent Model Studies. Pharmaceuticals (Basel) 2023; 16:1363. [PMID: 37895835 PMCID: PMC10609809 DOI: 10.3390/ph16101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain affects about 7-8% of the population, and its management still poses challenges with unmet needs. Over the past decades, researchers have explored the cholinergic system (muscarinic and nicotinic acetylcholine receptors: mAChR and nAChR) and compounds targeting these receptors as potential analgesics for neuropathic pain management. This scoping review aims to provide an overview of studies on peripheral neuropathic pain (PNP) in rodent models, exploring compounds targeting cholinergic neurotransmission. The inclusion criteria were original articles on PNP in rodent models that explored the use of compounds directly targeting cholinergic neurotransmission and reported results of nociceptive behavioral assays. The literature search was performed in the PubMed and Web of Science databases (1 January 2000-22 April 2023). The selection process yielded 82 publications, encompassing 62 compounds. The most studied compounds were agonists of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR, along with those increasing acetylcholine and targeting mAChRs. Studies mainly reported antinociceptive effects in traumatic PNP models, and to a lesser extent, chemotherapy-induced neuropathy or diabetic models. These preclinical studies underscore the considerable potential of cholinergic compounds in the management of PNP, warranting the initiation of clinical trials.
Collapse
Affiliation(s)
- Edouard Montigné
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - David Balayssac
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Zhang WD, Chen XY, Wu C, Lian YN, Wang YJ, Wang JH, Yang F, Liu CH, Li XY. Evodiamine reduced peripheral hypersensitivity on the mouse with nerve injury or inflammation. Mol Pain 2020; 16:1744806920902563. [PMID: 31992128 PMCID: PMC6990609 DOI: 10.1177/1744806920902563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Management of chronic pain is still hard, and new analgesic drugs are needed. Evodiamine (Evo) and rutaecarpine (Rut) are two major active components of Evodia rutaecarpa, a Chinese traditional medicine that has been used as an analgesic for a long time. However, their effects on peripheral hypersensitivity remain unknown. Similar to capsaicin, the Evo and Rut were docked to the transient receptor potential cation channel subfamily V member 1 (TRPV1) in molecular simulation experiments. Moreover, Evo (10 µM) and Rut (50 µM) activated TRPV1 on human embryonic kidney 293 (HEK293) cells in electrophysiological recording experiments. Behaviorally, the application of Evo and Rut reduced peripheral hypersensitivity in a dose-dependent manner, which was blocked by capsazepine (a selective inhibitor of TRPV1). Furthermore, both Evo and Rut increased time in the open arms of the elevated plus maze on mice with nerve injury. These observations suggested that Evo and Rut reduced peripheral hypersensitivity and anxiety in mice with nerve injury or inflammation via TRPV1.
Collapse
Affiliation(s)
- Wen-Dong Zhang
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao-Ying Chen
- China National Institute of Standardization, Beijing, China
| | - Cheng Wu
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Na Lian
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yong-Jie Wang
- Department of Biophysics, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Hua Wang
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Biophysics, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun-Hui Liu
- China National Institute of Standardization, Beijing, China
| | - Xiang-Yao Li
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Wang YJ, Liu MG, Wang JH, Cao W, Wu C, Wang ZY, Liu L, Yang F, Feng ZH, Sun L, Zhang F, Shen Y, Zhou YD, Zhuo M, Luo JH, Xu TL, Li XY. Restoration of Cingulate Long-Term Depression by Enhancing Non-apoptotic Caspase 3 Alleviates Peripheral Pain Hypersensitivity. Cell Rep 2020; 33:108369. [PMID: 33176141 DOI: 10.1016/j.celrep.2020.108369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/09/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022] Open
Abstract
Nerve injury in somatosensory pathways may lead to neuropathic pain, which affects the life quality of ∼8% of people. Long-term enhancement of excitatory synaptic transmission along somatosensory pathways contributes to neuropathic pain. Caspase 3 (Casp3) plays a non-apoptotic role in the hippocampus and regulates internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. Whether Casp3-AMPAR interaction is involved in the maintenance of peripheral hypersensitivity after nerve injury remained unknown. Here, we show that nerve injury suppresses long-term depression (LTD) and downregulates Casp3 in the anterior cingulate cortex (ACC). Interfering with interactions between Casp3 and AMPAR subunits or reducing Casp3 activity in the ACC suppresses LTD induction and causes peripheral hypersensitivity. Overexpression of Casp3 restores LTD and reduces peripheral hypersensitivity after nerve injury. We reveal how Casp3 is involved in the maintenance of peripheral hypersensitivity. Our findings suggest that restoration of LTD via Casp3 provides a therapeutic strategy for neuropathic pain management.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, and The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ming-Gang Liu
- Collaborative Innovation Centre for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing-Hua Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Wei Cao
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Cheng Wu
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Zi-Yue Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Zhi-Hui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, and The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Sun
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Fuxing Zhang
- Department of Anatomy and K. K. Leung Brain Research Center, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yi Shen
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science, Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jian-Hong Luo
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Tian-Le Xu
- Collaborative Innovation Centre for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiang-Yao Li
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
6
|
Zaki NG, Mahmoud WH, El Kerdawy AM, Abdallah AM, Mohamed GG. Heteroleptic complexes of cocaine/TMEDA with some f block metals: Synthesis, DFT studies, spectral, thermal, cytotoxicity and antimetastatic properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117938. [PMID: 31841673 DOI: 10.1016/j.saa.2019.117938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
A series of new three heteroleptic complexes of the general formula [Ln(Cn)(TMEDA)Cl(OH2)]·2Cl·xH2O, (where Ln = La(III), Er(III) and Yb(III), Cn = cocaine and TMEDA = N,N,N',N'-tetramethylethylenediamine) were synthesized, structurally characterized by elemental analysis, spectroscopic methods, molar conductivity and mass spectrometry. Thermal properties of the synthesized complexes and their kinetic thermodynamic parameters were studied. Theoretical calculations including geometry optimization, electronic structure and electronic and thermal energies were carried out using DFT and TD-DFT calculations at B3LYP/LANL2DZ level of theory and the different quantum chemical parameters were calculated. The in vitro antiproliferative activity of the newly synthesized complexes was assessed by MTT assay on MCF-7 and HepG-2 cancer cell lines. Yb(III) complex showed promising cytotoxic activity comparable to that of cisplatin on both cell lines with minimum effect on human normal cells. Further molecular mechanistic investigations showed that Yb(III) complex is an apoptotic inducer as it raises the caspase-3 and caspase-9 cellular level in the MCF-7 cell line. Furthermore, it showed an elevating effect on the level of the tumor suppressor nuclear proteins P21 and P27 concentrations in MCF-7 cells. Moreover, Yb(III) complex hindered the cellular scavenger system of the reactive oxygen species through reducing the glutathione peroxidase (GPx) cellular level imperiling MCF-7 cells by unmanageable oxidative stress. In addition to its cytotoxic effect, Yb(III) complex showed antimetastatic properties as it decreased the cellular levels of matrix metalloproteinases MMP-3 and MMP-9. These results showed that the Yb(III) complex is a promising cytotoxic metal-based agent that exerts its action through various molecular mechanisms with minimum effects on normal cells and with additional antimetastatic properties.
Collapse
Affiliation(s)
- Nadia G Zaki
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza 11561, Egypt
| | - Walaa H Mahmoud
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Molecular Modeling Unit, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza 11561, Egypt.
| | - Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Egypt Nanotechnology Center, Cairo University, El-Sheikh Zayed, 6(th) October City, Giza 12588, Egypt
| |
Collapse
|
7
|
Muscarinic M 1 receptors stimulated by intracerebroventricular administration of McN-A-343 reduces the nerve injury-induced mechanical hypersensitivity via GABA B receptors rather than GABA A receptors in mice. J Pharmacol Sci 2019; 142:50-59. [PMID: 31818640 DOI: 10.1016/j.jphs.2019.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/26/2023] Open
Abstract
Cholinergic neurons play an important role in the higher functions of the brain, such as the memory, cognition, and nociception. However, the exact mechanism behind how the stimulation of all the muscarinic M1 receptors in the entire brain results in the alleviation of partial sciatic nerve ligation (PSNL)-induced mechanical hypersensitivity has not been investigated. Thus, we examined which subtype of GABA receptor was involved in the alleviation of PSNL-induce mechanical hypersensitivity produced by an intracerebroventricular administration of a muscarinic M1 receptor agonist, McN-A-343. Administering a GABAA receptor antagonist, bicuculline, resulted in no changes to the McN-A-343-induced anti-hypersensitivity in PSNL mice whereas a GABAB receptor antagonist, CGP35348, dose-dependently inhibited the anti-hypersensitivity. Furthermore, CGP35348 increased mechanical hypersensitivity in naïve mice, and the hypersensitivity was blocked by NMDA receptor antagonists, MK-801 and D-AP5. Additionally, muscarinic M1 receptors colocalized with GABAB1 receptors and an NMDA receptor subunit, GluN2A, in a large region of the brain. Consequently, these results suggest that the activation of muscarinic M1 receptors in the entire brain reduces nerve injury-induced mechanical hypersensitivity via the GABAB receptors, and the activation of the GABAB receptors regulates glutamatergic transmission via NMDA receptors.
Collapse
|