1
|
Reardon B, Pasalic L, Favaloro EJ. The Role of Viscoelastic Testing in Assessing Hemostasis: A Challenge to Standard Laboratory Assays? J Clin Med 2024; 13:3612. [PMID: 38930139 PMCID: PMC11205135 DOI: 10.3390/jcm13123612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Viscoelastic testing is increasingly being used in clinical and research settings to assess hemostasis. Indeed, there are potential situations in which viscoelastic testing is reportedly superior to standard routine laboratory testing for hemostasis. We report the current testing platforms and terminology, as well as providing a concise narrative review of the published evidence to guide its use in various clinical settings. Notably, there is increasing evidence of the potential utility of viscoelastic testing for assessment of direct oral anticoagulants, and bleeding associated with chronic liver disease, orthotopic liver transplantation, cardiac surgery, trauma, obstetrics and pediatrics.
Collapse
Affiliation(s)
- Benjamin Reardon
- School of Medicine and Public Health, Joint Medical Program, University of Newcastle, Callaghan, NSW 2145, Australia;
- Haematology Department, Calvary Mater Hospital Newcastle, Waratah, NSW 2298, Australia
| | - Leonardo Pasalic
- Haematology Department, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia;
- Westmead Clinical School, University of Sydney, Westmead, NSW 2145, Australia
- Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Emmanuel J. Favaloro
- Haematology Department, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia;
- Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Westmead, NSW 2145, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
2
|
Shaw JR, Castellucci LA, Siegal D, Carrier M. DOAC-associated bleeding, hemostatic strategies, and thrombin generation assays - a review of the literature. J Thromb Haemost 2023; 21:433-452. [PMID: 36696204 DOI: 10.1016/j.jtha.2022.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 01/26/2023]
Abstract
Direct oral anticoagulants (DOACs) account for most oral anticoagulant use. DOAC-associated bleeding events are commonly encountered in clinical practice and are associated with substantial morbidity and mortality. Both specific reversal agents and nonspecific hemostatic therapies, such as prothrombin complex concentrates, are used in the management of DOAC-associated bleeding. Measuring hemostatic efficacy and demonstrating a clinical impact from these therapies among studies of bleeding patients is challenging. Thrombin generation assays provide information on the total hemostatic potential of plasma, and have emerged as a promising modality to both measure the impact of DOACs on coagulation and to evaluate the effects of hemostatic therapies among patients with DOAC-associated bleeding. The mechanisms by which nonspecific hemostatic agents impact coagulation and thrombin generation in the context of DOAC therapy are unclear. As a result, we undertook a review of the literature using a systematic search strategy with the goal of summarizing the effects of DOACs on thrombin generation and the effects of both specific reversal agents and nonspecific hemostatic therapies on DOAC-altered thrombin generation parameters. We sought to identify clinical studies focusing on whether altered thrombin generation is associated with clinical bleeding and whether correction of altered thrombin generation parameters predicts improvements in clinical hemostasis. Lastly, we sought to outline future directions for the application of thrombin generation assays toward anticoagulation therapies and the question of anticoagulation reversal.
Collapse
Affiliation(s)
- Joseph R Shaw
- Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Lana A Castellucci
- Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Canada
| | - Deborah Siegal
- Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Canada
| | - Marc Carrier
- Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
3
|
Sahli SD, Castellucci C, Roche TR, Rössler J, Spahn DR, Kaserer A. The impact of direct oral anticoagulants on viscoelastic testing - A systematic review. Front Cardiovasc Med 2022; 9:991675. [PMID: 36419490 PMCID: PMC9676657 DOI: 10.3389/fcvm.2022.991675] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND In case of bleeding patients and in acute care, the assessment of residual direct oral anticoagulant (DOAC) activity is essential for evaluating the potential impact on hemostasis, especially when a timely decision on urgent surgery or intervention is required. Viscoelastic tests are crucial in a modern goal-directed coagulation management to assess patients' coagulation status. However, the role of viscoelastic test to detect and quantify residual DOAC plasma levels is controversially discussed. The aim of this review was to systematically summarize the evidence of viscoelastic tests for the assessment of residual DOAC activity. METHOD PubMed, Embase, Scopus, and the Cochrane Library were searched for original articles investigating the effect of rivaroxaban, apixaban, edoxaban, or dabigatran plasma levels on different viscoelastic tests of the adult population from database inception to December 31, 2021. RESULTS We included 53 studies from which 31 assessed rivaroxaban, 22 apixaban, six edoxaban, and 29 dabigatran. The performance of viscoelastic tests varied across DOACs and assays. DOAC specific assays are more sensitive than unspecific assays. The plasma concentration of rivaroxaban and dabigatran correlates strongly with the ROTEM EXTEM, ClotPro RVV-test or ECA-test clotting time (CT) and TEG 6s anti-factor Xa (AFXa) or direct thrombin inhibitor (DTI) channel reaction time (R). Results of clotting time (CT) and reaction time (R) within the normal range do not reliable exclude relevant residual DOAC plasma levels limiting the clinical utility of viscoelastic assays in this context. CONCLUSION Viscoelastic test assays can provide fast and essential point-of-care information regarding DOAC activity, especially DOAC specific assays. The identification and quantification of residual DOAC plasma concentration with DOAC unspecific viscoelastic assays are not sensitive enough, compared to recommended anti-Xa activity laboratory measurements. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=320629], identifier [CRD42022320629].
Collapse
Affiliation(s)
- Sebastian D. Sahli
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Clara Castellucci
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Tadzio R. Roche
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Julian Rössler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Donat R. Spahn
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Alexander Kaserer
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Pavoni V, Gianesello L, Conti D, Ballo P, Dattolo P, Prisco D, Görlinger K. "In Less than No Time": Feasibility of Rotational Thromboelastometry to Detect Anticoagulant Drugs Activity and to Guide Reversal Therapy. J Clin Med 2022; 11:1407. [PMID: 35268498 PMCID: PMC8911211 DOI: 10.3390/jcm11051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Anticoagulant drugs (i.e., unfractionated heparin, low-molecular-weight heparins, vitamin K antagonists, and direct oral anticoagulants) are widely employed in preventing and treating venous thromboembolism (VTE), in preventing arterial thromboembolism in nonvalvular atrial fibrillation (NVAF), and in treating acute coronary diseases early. In certain situations, such as bleeding, urgent invasive procedures, and surgical settings, the evaluation of anticoagulant levels and the monitoring of reversal therapy appear essential. Standard coagulation tests (i.e., activated partial thromboplastin time (aPTT) and prothrombin time (PT)) can be normal, and the turnaround time can be long. While the role of viscoelastic hemostatic assays (VHAs), such as rotational thromboelastometry (ROTEM), has successfully increased over the years in the management of bleeding and thrombotic complications, its usefulness in detecting anticoagulants and their reversal still appears unclear.
Collapse
Affiliation(s)
- Vittorio Pavoni
- Anesthesia and Intensive Care Unit, Emergency Department and Critical Care Area, Santa Maria Annunziata Hospital, Bagno a Ripoli, 50012 Florence, Italy; (V.P.); (D.C.)
| | - Lara Gianesello
- Department of Anesthesia and Intensive Care, Orthopedic Anesthesia, University-Hospital Careggi, 50134 Florence, Italy
| | - Duccio Conti
- Anesthesia and Intensive Care Unit, Emergency Department and Critical Care Area, Santa Maria Annunziata Hospital, Bagno a Ripoli, 50012 Florence, Italy; (V.P.); (D.C.)
| | - Piercarlo Ballo
- Cardiology Unit, Santa Maria Annunziata Hospital, Bagno a Ripoli, 50012 Florence, Italy;
| | - Pietro Dattolo
- Nephrology Unit Florence 1, Santa Maria Annunziata Hospital, Bagno a Ripoli, 50012 Florence, Italy;
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Klaus Görlinger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Medical Department, Tem Innovations, 81829 Munich, Germany
| |
Collapse
|
5
|
Sokol J, Nehaj F, Ivankova J, Mokan M, Zolkova J, Lisa L, Linekova L, Mokan M, Stasko J. Impact of Dabigatran Treatment on Rotation Thromboelastometry. Clin Appl Thromb Hemost 2021; 27:1076029620983902. [PMID: 33523711 PMCID: PMC7863152 DOI: 10.1177/1076029620983902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A rapid and reliable assessment of the dabigatran effect is desirable in dabigatran treated patients with uncontrolled bleeding or before acute surgery. The aim of this study was to study the anticoagulant effects of dabigatran in patients with atrial fibrillation (AF) as assessed by the whole blood assays ROTEM, and how data from these methods correlate to plasma dabigatran concentrations measured by Hemoclot. ROTEM was performed with ROTEM Gamma (Pentapharm GmbH, Munich, Germany). The assays used in our study were Ex-tem and In-tem assay. Plasma dabigatran concentrations were determined by hemoclot thrombin inhibitor assay (Hyphen BioMed, France) at trough and post-dose in 27 patients on dabigatran 150 mg BID. Median plasma dabigatran concentrations at trough were 74 ng/mL (11.2–250) and post-dose (2 h after ingestion) 120 ng/mL (31–282). The ROTEM clotting time (CT) and maximum clot firmnes (MCF) correlated strongly with dabigatran concentrations when activated with the reagents Ex-tem (p < 0.0001) and In-tem (p < 0.0001). In summary, in our study, we have found that the ROTEM variable CT and MCF, when activated with triggers Ex-tem and In-tem, has a strong and highly significant correlation with the plasma dabigatran concentration in a real-life population of AF-patients and could thereby be an alternative to estimate dabigatran concentration in emergency situations. However, additional studies are needed to further validate these findings.
Collapse
Affiliation(s)
- Juraj Sokol
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Frantisek Nehaj
- First Department of Internal Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jela Ivankova
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Mokan
- First Department of Internal Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Zolkova
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lisa
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ludmila Linekova
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Mokan
- First Department of Internal Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Stasko
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
6
|
Nadtochiy SM, Baldzizhar A, Stefanos T, Feng C, O'Leary KE, Jones-Smith KL, Angona RE, Eaton MP. High-Dose Dabigatran Is an Effective Anticoagulant for Simulated Cardiopulmonary Bypass Using Human Blood. Anesth Analg 2021; 132:566-574. [PMID: 32833714 DOI: 10.1213/ane.0000000000005089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Currently no ideal alternative exists for heparin for cardiopulmonary bypass (CPB). Dabigatran is a direct thrombin inhibitor for which a reversal agent exists. The primary end point of the study was to explore whether Dabigatran was an effective anticoagulant for 120 minutes of simulated CPB. METHODS The study was designed in 2 sequential steps. Throughout, human blood from healthy donors was used for each experimental step. Initially, increasing concentrations of Dabigatran were added to aliquots of fresh whole blood, and the anticoagulant effect measured using kaolin/tissue factor-activated thromboelastography (rapidTEG). The dynamics of all thromboelastography (TEG) measurements were studied with repeated measures analysis of variance (ANOVA). Based on these data, aliquots of blood were treated with high-concentration Dabigatran and placed in a Chandler loop as a simple ex vivo bypass model to assess whether Dabigatran had sufficient anticoagulant effects to maintain blood fluidity for 2 hours of continuous contact with the artificial surface of the PVC tubing. Idarucizumab, humanized monoclonal antibody fragment, was used to verify the reversibility of Dabigatran effects. Finally, 3 doses of Dabigatran were tested in a simulated CPB setup using a heart-lung machine and a commercially available bypass circuit with an arteriovenous (A-V) loop. The primary outcome was the successful completion of 120 minutes of simulated CPB with dabigatran anticoagulation, defined as lack of visible thrombus. Thromboelastographic reaction (R) time was measured repeatedly in each bypass simulation, and the circuits were continuously observed for clot. Scanning Electron Microscopy (SEM) was used to visualize fibrin formation in the filters meshes during CPB. RESULTS In in vitro blood samples, Dabigatran prolonged R time and reduced the dynamics of clot propagation (as measured by speed of clot formation [Angle], maximum rate of thrombus generation [MRTG], and time to maximum rate of thrombus generation [TMRTG]) in a dose-dependent manner. In the Chandler Loop, high doses of Dabigatran prevented clot formation for 120 minutes, but only at doses higher than expected. Idarucizumab decreased R time and reversed anticoagulation in both in vitro and Chandler Loops settings. In the A-V loop bypass simulation, Dabigatran prevented gross thrombus generation for 120 minutes of simulated CPB. CONCLUSIONS Using sequential experimental approaches, we showed that direct thrombin inhibitor Dabigatran in high doses maintained anticoagulation of blood for simulated CPB. Idarucizumab reduced time for clot formation reversing the anticoagulation action of Dabigatran.
Collapse
Affiliation(s)
- Sergiy M Nadtochiy
- From the Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Härtig F, Birschmann I, Peter A, Ebner M, Spencer C, Gramlich M, Richter H, Kuhn J, Lehmann R, Blumenstock G, Zuern CS, Ziemann U, Poli S. Specific Point-of-Care Testing of Coagulation in Patients Treated with Dabigatran. Thromb Haemost 2021; 121:782-791. [PMID: 33469905 PMCID: PMC8180376 DOI: 10.1055/s-0040-1721775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND PURPOSE Accurate and rapid assessment of coagulation status is necessary to guide thrombolysis or reversal of anticoagulation in stroke patients, but commercially available point-of-care (POC) assays are not suited for coagulation testing in patients treated with direct oral anticoagulants (DOACs). We aimed to evaluate the direct thrombin monitoring (DTM) test card by Helena Laboratories (Texas, United States) for anti-IIa-specific POC coagulation testing, hypothesizing that its POC-ecarin clotting time (POC-ECT) accurately reflects dabigatran plasma concentrations. METHODS A prospective single-center diagnostic study (ClinicalTrials.gov-identifier: NCT02825394) was conducted enrolling patients receiving a first dose of dabigatran and patients already on dabigatran treatment. Blood samples were collected before drug intake and 0.5, 1, 2, 8, and 12 hours after intake. POC-ECT was performed using whole blood (WB), citrated blood (CB), and citrated plasma (CP). Dabigatran plasma concentrations were determined by mass spectrometry. RESULTS In total, 240 blood samples from 40 patients contained 0 to 275 ng/mL of dabigatran. POC-ECT with WB/CB/CP ranged from 20 to 186/184/316 seconds. Pearson's correlation coefficient showed a strong correlation between dabigatran concentrations and POC-ECT with WB/CB/CP (R2 = 0.78/0.90/0.92). Dabigatran concentrations >30 and >50 ng/mL (thresholds for thrombolysis, surgery, and reversal therapy according to clinical guidelines) were detected by POC-ECT with WB/CB/CP (>36/35/45 and >43/45/59 seconds) with 95/97/97 and 96/98/97% sensitivity, and 81/87/94 and 74/60/91% specificity. CONCLUSION This first study evaluating DOAC-specific POC coagulation testing revealed an excellent correlation of POC-ECT with actual dabigatran concentrations. Detecting clinically relevant dabigatran levels with high sensitivity/specificity, the DTM assay represents a suitable diagnostic tool in acute stroke, hemorrhage, and urgent surgery.
Collapse
Affiliation(s)
- Florian Härtig
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ingvild Birschmann
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Center, Ruhr University, Bad Oeynhausen, Germany
| | - Andreas Peter
- German Centre for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Tübingen, Germany
| | - Matthias Ebner
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Internal Medicine and Cardiology, Campus Virchow Hospital, Charité, Berlin, Germany
| | - Charlotte Spencer
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Hardy Richter
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Joachim Kuhn
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Center, Ruhr University, Bad Oeynhausen, Germany
| | - Rainer Lehmann
- German Centre for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Tübingen, Germany
| | - Gunnar Blumenstock
- Department of Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Christine S Zuern
- Department of Cardiology, University Hospital Tübingen, Germany.,Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Sven Poli
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Choi S(C, Tompkins D, Wilczynski J, Kulig CE. Drugs that affect blood coagulation, fibrinolysis and hemostasis. SIDE EFFECTS OF DRUGS ANNUAL 2021:393-414. [DOI: 10.1016/bs.seda.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Mazzeffi MA, Patel PA, Bolliger D, Erdoes G, Tanaka K. The Year in Coagulation: Selected Highlights From 2019. J Cardiothorac Vasc Anesth 2020; 34:1745-1754. [DOI: 10.1053/j.jvca.2020.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 12/26/2022]
|
10
|
Tanaka KA, Henderson RA, Strauss ER. Evolution of viscoelastic coagulation testing. Expert Rev Hematol 2020; 13:697-707. [DOI: 10.1080/17474086.2020.1758929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Erik R. Strauss
- School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|