1
|
Yang L, Fang F, Wang WX, Xie Y, Cang J, Li SB. Substantia Innominata Glutamatergic Neurons Modulate Sevoflurane Anesthesia in Male Mice. Anesth Analg 2025; 140:353-365. [PMID: 39008422 DOI: 10.1213/ane.0000000000007092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND Accumulated evidence suggests that brain regions that promote wakefulness also facilitate emergence from general anesthesia (GA). Glutamatergic neurons in the substantia innominata (SI) regulate motivation-related aversive, depressive, and aggressive behaviors relying on heightened arousal. Here, we hypothesize that glutamatergic neurons in the SI are also involved in the regulation of the effects of sevoflurane anesthesia. METHODS With a combination of fiber photometry, chemogenetic and optogenetic tools, behavioral tests, and cortical electroencephalogram recordings, we investigated whether and how SI glutamatergic neurons and their projections to the lateral hypothalamus (LH) regulate sevoflurane anesthesia in adult male mice. RESULTS Population activity of glutamatergic neurons in the SI gradually decreased upon sevoflurane-induced loss of consciousness (LOC) and slowly returned as soon as inhalation of sevoflurane discontinued before recovery of consciousness (ROC). Chemogenetic activation of SI glutamatergic neurons dampened the animals' sensitivity to sevoflurane exposure, prolonged induction time (mean ± standard deviation [SD]; 389 ± 67 seconds vs 458 ± 53 seconds; P = .047), and shortened emergence time (305 seconds, 95% confidence interval [CI], 242-369 seconds vs 207 seconds, 95% CI, 135-279 seconds; P = .004), whereas chemogenetic inhibition of these neurons facilitated sevoflurane anesthesia. Furthermore, optogenetic activation of SI glutamatergic neurons and their terminals in LH induced cortical activation and behavioral emergence from different depths of sevoflurane anesthesia. CONCLUSIONS Our study shows that SI glutamatergic neuronal activity facilitates emergence from sevoflurane anesthesia and provides evidence for the involvement of the SI-LH glutamatergic pathway in the regulation of consciousness during GA.
Collapse
Affiliation(s)
- Li Yang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Fang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Xu Wang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, Frontiers Center for Brain Science of the Ministry of Education (MOE), Fudan University, Shanghai, China
| | - Yunli Xie
- Department of Anesthesiology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Cang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Bin Li
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Naganuma F, Girgin B, Agu ABS, Hirano K, Nakamura T, Yanai K, Vetrivelan R, Mochizuki T, Yanagisawa M, Yoshikawa T. Pharmacological inhibition of histamine N-methyltransferase extends wakefulness and suppresses cataplexy in a mouse model of narcolepsy. Sleep 2025; 48:zsae244. [PMID: 39441998 DOI: 10.1093/sleep/zsae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Histamine, a neurotransmitter, plays a predominant role in maintaining wakefulness. Furthermore, our previous studies showed that histamine N-methyltransferase (HNMT), a histamine-metabolizing enzyme, is important for regulating brain histamine concentration. However, the effects of pharmacological HNMT inhibition on mouse behavior, including the sleep-wake cycle and cataplexy, in a mouse model of narcolepsy have not yet been investigated. In the present study, we investigated the effects of metoprine, an HNMT inhibitor with high blood-brain barrier permeability, in wild-type (WT) and orexin-deficient (OxKO) narcoleptic mice. Metoprine increased brain histamine concentration in a time- and dose-dependent manner without affecting peripheral histamine concentrations. Behavioral tests showed that metoprine increased locomotor activity in both novel and familiar environments, but did not alter anxiety-like behavior. Sleep analysis showed that metoprine increased wakefulness and decreased non-rapid eye movement (NREM) sleep through the activation of the histamine H1 receptor (H1R) in WT mice. In contrast, the reduction of rapid eye movement (REM) sleep by metoprine occurred independent of H1R. In OxKO mice, metoprine was found to prolong wakefulness and robustly suppress cataplexy. In addition, metoprine has a greater therapeutic effect on cataplexy than pitolisant, which induces histamine release in the brain and has been approved for patients with narcolepsy. These data demonstrate that HNMT inhibition has a strong effect on wakefulness, demonstrating therapeutic potential against cataplexy in narcolepsy.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Birkan Girgin
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Anne Bernadette S Agu
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Kyosuke Hirano
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University, Iwate, Japan
| | - Kazuhiko Yanai
- Cyclotron and Radioisotope Center, Tohoku University, Miyagi, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Takatoshi Mochizuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
3
|
Hu Y, Wang Y, Zhang L, Luo M, Wang Y. Neural Network Mechanisms Underlying General Anesthesia: Cortical and Subcortical Nuclei. Neurosci Bull 2024; 40:1995-2011. [PMID: 39168960 PMCID: PMC11625048 DOI: 10.1007/s12264-024-01286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/10/2024] [Indexed: 08/23/2024] Open
Abstract
General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lingjing Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
4
|
Sharma K, Deco G, Solodkin A. The localization of coma. Cogn Neuropsychol 2024:1-20. [PMID: 39471280 DOI: 10.1080/02643294.2024.2420406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Coma and disorders of consciousness (DoC) are common manifestations of acute severe brain injuries. Research into their neuroanatomical basis can be traced from Hippocrates to the present day. Lesions causing DoC have traditionally been conceptualized as decreasing "alertness" from damage to the ascending arousal system, and/or, reducing level of "awareness" due to structural or functional impairment of large-scale brain networks. Within this framework, pharmacological and neuromodulatory interventions to promote recovery from DoC have hitherto met with limited success. This is partly due to inter-individual heterogeneity of brain injury patterns, and an incomplete understanding of brain network properties that characterize consciousness. Advances in multiscale computational modelling of brain dynamics have opened a unique opportunity to explore the causal mechanisms of brain activity at the biophysical level. These models can provide a novel approach for selection and optimization of potential interventions by simulation of brain network dynamics individualized for each patient.
Collapse
Affiliation(s)
- Kartavya Sharma
- Neurocritical care division, Departments of Neurology & Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Solodkin
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
5
|
Ravichandar R, Gadelkarim F, Muthaiah R, Glynos N, Murlanova K, Rai NK, Saraswat D, Polanco JJ, Dutta R, Pal D, Sim FJ. Dysregulated Cholinergic Signaling Inhibits Oligodendrocyte Maturation Following Demyelination. J Neurosci 2024; 44:e0051242024. [PMID: 38749703 PMCID: PMC11236584 DOI: 10.1523/jneurosci.0051-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.
Collapse
Affiliation(s)
- Roopa Ravichandar
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Farah Gadelkarim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Rupadevi Muthaiah
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nicolas Glynos
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kateryna Murlanova
- Department of Physiology and Biophysics, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nagendra K Rai
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Darpan Saraswat
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Jessie J Polanco
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fraser J Sim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
6
|
Zhou L, Ran Q, Yi R, Tang H, Zhang Y, Yu T. Glutamatergic neurons of piriform cortex delay induction of inhalational general anesthesia. FUNDAMENTAL RESEARCH 2024; 4:829-840. [PMID: 39156577 PMCID: PMC11330113 DOI: 10.1016/j.fmre.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 01/04/2023] Open
Abstract
Since their clinical application in the 1840s, the greatest mystery surrounding general anesthesia (GA) is how different kinds of general anesthetics cause reversible unconsciousness, and the precise neural mechanisms underlying the processes. Over past years, although many studies revealed the roles of cortex, thalamus, brainstem, especially the sleep-wake circuits in GA-induced loss of consciousness (LOC),the full picture of the neural circuit mechanism of GA is still largely unknown. Recent studies have focused on the importance of other brain regions. Here, we report that the activity of glutamatergic (Glu) neurons in the piriform cortex (PC), a critical brain region for odor encoding, began to increase during the LOC of GA and gradually recovered after recovery of consciousness. Chemical lesions of the anterior PC (APC) neurons accelerated the induction time of isoflurane anesthesia. Chemogenetic and optogenetic activation of APCGlu neurons prolonged isoflurane and sevoflurane anesthesia induction, whereas APCGlu neuron inhibition displayed the opposite effects. Moreover, the modification of APCGlu neurons did not affect the induction or emergence time of propofol GA. In addition, odor processing may be partially involved in the induction of isoflurane and sevoflurane GA regulated by APCGlu neurons. In conclusion, our findings reveal a critical role of APCGlu neurons in inhalational GA induction.
Collapse
Affiliation(s)
- Liang Zhou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563003, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, China
| | - Qipeng Ran
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563003, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, China
| | - Rulan Yi
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563003, China
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Huanyao Tang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563003, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, China
| | - Yu Zhang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563003, China
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, China
| | - Tian Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563003, China
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
7
|
Yu Q, Wang Y, Gu L, Shao W, Gu J, Liu L, Lian X, Xu Q, Zhang Y, Yang Y, Zhang Z, Wu Y, Ma H, Shen Y, Ye W, Wu Y, Yang H, Chen L, Nagayasu K, Zhang H. Dorsal raphe nucleus to basolateral amygdala 5-HTergic neural circuit modulates restoration of consciousness during sevoflurane anesthesia. Biomed Pharmacother 2024; 176:116937. [PMID: 38870632 DOI: 10.1016/j.biopha.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The advent of general anesthesia (GA) has significant implications for clinical practice. However, the exact mechanisms underlying GA-induced transitions in consciousness remain elusive. Given some similarities between GA and sleep, the sleep-arousal neural nuclei and circuits involved in sleep-arousal, including the 5-HTergic system, could be implicated in GA. Herein, we utilized pharmacology, optogenetics, chemogenetics, fiber photometry, and retrograde tracing to demonstrate that both endogenous and exogenous activation of the 5-HTergic neural circuit between the dorsal raphe nucleus (DR) and basolateral amygdala (BLA) promotes arousal and facilitates recovery of consciousness from sevoflurane anesthesia. Notably, the 5-HT1A receptor within this pathway holds a pivotal role. Our findings will be conducive to substantially expanding our comprehension of the neural circuit mechanisms underlying sevoflurane anesthesia and provide a potential target for modulating consciousness, ultimately leading to a reduction in anesthetic dose requirements and side effects.
Collapse
Affiliation(s)
- Qian Yu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - LeYuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - XiTing Lian
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - HaiXiang Ma
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Wen Ye
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - YanHui Wu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - HuiFang Yang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - LiHai Chen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501, Japan
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
8
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Song XJ, Hu JJ. Neurobiological basis of emergence from anesthesia. Trends Neurosci 2024; 47:355-366. [PMID: 38490858 DOI: 10.1016/j.tins.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| | - Jiang-Jian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
10
|
Luppi AI, Uhrig L, Tasserie J, Signorelli CM, Stamatakis EA, Destexhe A, Jarraya B, Cofre R. Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain. Nat Commun 2024; 15:2171. [PMID: 38462641 PMCID: PMC10925605 DOI: 10.1038/s41467-024-46382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo M Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, Oxford, OX1 3QG, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Neurology, Hopital Foch, 92150, Suresnes, France
| | - Rodrigo Cofre
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Cao F, Guo Y, Guo S, Hao X, Yang L, Cao J, Zhou Z, Mi W, Tong L. Prelimbic cortical pyramidal neurons to ventral tegmental area projections promotes arousal from sevoflurane anesthesia. CNS Neurosci Ther 2024; 30:e14675. [PMID: 38488453 PMCID: PMC10941502 DOI: 10.1111/cns.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/27/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
AIMS General anesthesia has been used in surgical procedures for approximately 180 years, yet the precise mechanism of anesthetic drugs remains elusive. There is significant anatomical connectivity between the ventral tegmental area (VTA) and the prelimbic cortex (PrL). Projections from VTA dopaminergic neurons (VTADA ) to the PrL play a role in the transition from sevoflurane anesthesia to arousal. It is still uncertain whether the prelimbic cortex pyramidal neuron (PrLPyr ) and its projections to VTA (PrLPyr -VTA) are involved in anesthesia-arousal regulation. METHODS We employed chemogenetics and optogenetics to selectively manipulate neuronal activity in the PrLPyr -VTA pathway. Electroencephalography spectra and burst-suppression ratios (BSR) were used to assess the depth of anesthesia. Furthermore, the loss or recovery of the righting reflex was monitored to indicate the induction or emergence time of general anesthesia. To elucidate the receptor mechanisms in the PrLPyr -VTA projection's impact on anesthesia and arousal, we microinjected NMDA receptor antagonists (MK-801) or AMPA receptor antagonists (NBQX) into the VTA. RESULTS Our findings show that chemogenetic or optogenetic activation of PrLPyr neurons prolonged anesthesia induction and promoted emergence. Additionally, chemogenetic activation of the PrLPyr -VTA neural pathway delayed anesthesia induction and promoted anesthesia emergence. Likewise, optogenetic activation of the PrLPyr -VTA projections extended the induction time and facilitated emergence from sevoflurane anesthesia. Moreover, antagonizing NMDA receptors in the VTA attenuates the delayed anesthesia induction and promotes emergence caused by activating the PrLPyr -VTA projections. CONCLUSION This study demonstrates that PrLPyr neurons and their projections to the VTA are involved in facilitating emergence from sevoflurane anesthesia, with the PrLPyr -VTA pathway exerting its effects through the activation of NMDA receptors within the VTA.
Collapse
Affiliation(s)
- Fuyang Cao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of AnesthesiologyThe Sixth Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Yongxin Guo
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Shuting Guo
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Xinyu Hao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Lujia Yang
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jiangbei Cao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhikang Zhou
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Weidong Mi
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Li Tong
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
12
|
Hutt A, Hudetz AG. Arousal system stimulation and anesthetic state alter visuoparietal connectivity. Front Syst Neurosci 2023; 17:1157488. [PMID: 37139471 PMCID: PMC10150228 DOI: 10.3389/fnsys.2023.1157488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cortical information processing is under the precise control of the ascending arousal system (AAS). Anesthesia suppresses cortical arousal that can be mitigated by exogenous stimulation of the AAS. The question remains to what extent cortical information processing is regained by AAS stimulation. We investigate the effect of electrical stimulation of the nucleus Pontis Oralis (PnO), a distinct source of ascending AAS projections, on cortical functional connectivity (FC) and information storage at mild, moderate, and deep anesthesia. Local field potentials (LFPs) recorded previously in the secondary visual cortex (V2) and the adjacent parietal association cortex (PtA) in chronically instrumented unrestrained rats. We hypothesized that PnO stimulation would induce electrocortical arousal accompanied by enhanced FC and active information storage (AIS) implying improved information processing. In fact, stimulation reduced FC in slow oscillations (0.3-2.5 Hz) at low anesthetic level and increased FC at high anesthetic level. These effects were augmented following stimulation suggesting stimulus-induced plasticity. The observed opposite stimulation-anesthetic impact was less clear in the γ-band activity (30-70 Hz). In addition, FC in slow oscillations was more sensitive to stimulation and anesthetic level than FC in γ-band activity which exhibited a rather constant spatial FC structure that was symmetric between specific, topographically related sites in V2 and PtA. Invariant networks were defined as a set of strongly connected electrode channels, which were invariant to experimental conditions. In invariant networks, stimulation decreased AIS and increasing anesthetic level increased AIS. Conversely, in non-invariant (complement) networks, stimulation did not affect AIS at low anesthetic level but increased it at high anesthetic level. The results suggest that arousal stimulation alters cortical FC and information storage as a function of anesthetic level with a prolonged effect beyond the duration of stimulation. The findings help better understand how the arousal system may influence information processing in cortical networks at different levels of anesthesia.
Collapse
Affiliation(s)
- Axel Hutt
- MLMS, MIMESIS, Université de Strasbourg, CNRS, lnria, ICube, Strasbourg, France
- *Correspondence: Axel Hutt,
| | - Anthony G. Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Peng Y, Yuan C, Zhang Y. The role of the basal forebrain in general anesthesia. IBRAIN 2022; 9:102-110. [PMID: 37786520 PMCID: PMC10529324 DOI: 10.1002/ibra.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 10/04/2023]
Abstract
The basal forebrain is a group of nerve nuclei on the ventral side of the ventral ganglion, composed of γ-aminobutyric acid neurons, glutamatergic neurons, cholinergic neurons, and orexigenic neurons. Previous studies have focused on the involvement of the basal forebrain in regulating reward, learning, movement, sleep-awakening, and other neurobiological behaviors, but its role in the regulation of general anesthesia has not been systematically elucidated. Therefore, the different neuronal subtypes in the basal forebrain and projection pathways in general anesthesia will be discussed in this paper. In this paper, we aim to determine and elaborate on the role of the basal forebrain in general anesthesia and the development of theoretical research and provide a new theory.
Collapse
Affiliation(s)
- Yi‐Ting Peng
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Cheng‐Dong Yuan
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Yi Zhang
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
14
|
Mashour GA, Pal D, Brown EN. Prefrontal cortex as a key node in arousal circuitry. Trends Neurosci 2022; 45:722-732. [PMID: 35995629 PMCID: PMC9492635 DOI: 10.1016/j.tins.2022.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
The role of the prefrontal cortex (PFC) in the mechanism of consciousness is a matter of active debate. Most theoretical and empirical investigations have focused on whether the PFC is critical for the content of consciousness (i.e., the qualitative aspects of conscious experience). However, there is emerging evidence that, in addition to its well-established roles in cognition, the PFC is a key regulator of the level of consciousness (i.e., the global state of arousal). In this opinion article we review recent data supporting the hypothesis that the medial PFC is a critical node in arousal-promoting networks.
Collapse
Affiliation(s)
- George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Kelz MB. Consciousness Rebound: The Second-Century Challenge for Anesthesiology and Neuroscience. Anesth Analg 2022; 134:1114-1117. [PMID: 35595687 DOI: 10.1213/ane.0000000000006049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Max B Kelz
- From the Department of Anesthesiology and Critical Care, Mahoney Institute for Neurological Sciences, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|