1
|
Influence of Perioperative Anesthesia on Cancer Recurrence: from Basic Science to Clinical Practice. Curr Oncol Rep 2023; 25:63-81. [PMID: 36512273 PMCID: PMC9745294 DOI: 10.1007/s11912-022-01342-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSEOF REVIEW In this review, we will summarize the effects of these perioperative anesthetics and anesthetic interventions on the immune system and tumorigenesis as well as address the related clinical evidence on cancer-related mortality and recurrence. RECENT FINDINGS Cancer remains a leading cause of morbidity and mortality worldwide. For many solid tumors, surgery is one of the major therapies. Unfortunately, surgery promotes angiogenesis, shedding of circulating cancer cells, and suppresses immunity. Hence, the perioperative period has a close relationship with cancer metastases or recurrence. In the perioperative period, patients require multiple anesthetic management including anesthetics, anesthetic techniques, and body temperature control. Preclinical and retrospective studies have found that these anesthetic agents and interventions have complex effects on cancer outcomes. Therefore, well-planned, prospective, randomized controlled trials are required to explore the effects of different anesthetics and techniques on long-term outcomes after cancer surgery. Due to the conflicting effects of anesthetic management on cancer recurrence, further preclinical and clinical trials are required and beneficial to the development of systemic cancer therapies.
Collapse
|
2
|
Yu H, Chen L, Yue CJ, Xu H, Cheng J, Cornett EM, Kaye AD, Urits I, Viswanath O, Liu H. Effects of propofol and sevoflurane on T-cell immune function and Th cell differentiation in children with SMPP undergoing fibreoptic bronchoscopy. Ann Med 2022; 54:2574-2580. [PMID: 36370066 PMCID: PMC9665898 DOI: 10.1080/07853890.2022.2121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The potentially different effects of commonly used anaesthetic agents propofol and sevoflurane on T-cell immune function and Th cell differentiation were investigated in patients with severe mycoplasmal pneumonia (SMPP) undergoing fibreoptic bronchoscopy. METHODS Sixty children (2-12 years of age) with SMPP were randomized into the sevoflurane group and the propofol group. Patients in the sevoflurane group were anaesthetised with inhalational sevoflurane and intravenous remifentanil. Patients in the propofol group were anaesthetised with intravenous propofol and remifentanil. Patients in both groups underwent fibreoptic bronchoscopy and lavage therapy. We compared the clinical outcomes, cellular immunity function, and Th cell differentiation into Th1 and Th2 levels in both groups. RESULTS There was no significant difference in clinical outcomes and hospital stay between the two groups (7.94 vs 7.36, p > .05). However, the CD3+ T cells, CD4+ T cells, and CD4+/CD8+ in the propofol group were significantly higher than those in the sevoflurane group (T1 51.96 vs 48.33, T2 58.08 vs 55.31, p < .05). The ratio of Th1/Th2 in the two groups was significantly increased postoperatively in both groups (Sevoflurane 8.53 vs 7.23, Propofol 9.35 vs 7.18), and the propofol group was significantly higher than the sevoflurane group (9.35 vs 8.53, p < .05). CONCLUSIONS Propofol might have a less inhibitory effect on T lymphocytes in children with SMPP than sevoflurane. And propofol may have less impact on the differentiation of Th cells into Th1 cells and better preserving the Th1/Th2 ratio than sevoflurane. KEY MESSAGESThe pathogenesis of SMPP is still unclear, likely through alveolar infiltration with neutrophils and lymphocytes, lymphocyte/plasma cell infiltrates in the peri-bronchovascular area, and immune dysfunction.Recent experimental and clinical studies showed that sevoflurane might have immunosuppressive effects, and multiple studies confirmed that the immune function of children with SMPP had been reduced.This study found that propofol administered in children with SMPP had a less inhibitory effect on T lymphocytes than inhalational sevoflurane, had little inhibitory effect on the differentiation of Th cells into Th1 cells, and better preserve Th1/Th2 ratio and maintain the balanced immune function.
Collapse
Affiliation(s)
- Hui Yu
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Lin Chen
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Cheng-Jin Yue
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Heng Xu
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Elyse M Cornett
- Departments of Anesthesiology and Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, Shreveport, LA, USA
| | - Ivan Urits
- Departments of Anesthesiology and Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, Shreveport, LA, USA.,Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA, USA
| | - Omar Viswanath
- Departments of Anesthesiology and Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, Shreveport, LA, USA.,University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.,Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA.,Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ, USA
| | - Henry Liu
- Department of Anesthesiology & Perioperative Medicine, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Rules of thumb to obtain, isolate, and preserve porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2022; 251:110461. [PMID: 35870231 DOI: 10.1016/j.vetimm.2022.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
One of the most used biospecimens in immunology are peripheral blood mononuclear cells (PBMC). PBMC are particularly useful when evaluating immunity through responses of circulating B- and T-cells, during an infection, or after a vaccination. While several reviews and research papers have been published aiming to point out critical steps when sampling, isolating, and cryopreserving human PBMC -or even analyzing any parameter before sampling that could impair the immune assays' outcomes-, there are almost no publications in swine research dealing with these topics. As it has been demonstrated, several factors, such as stress, circadian rhythmicity, or the anticoagulant used have serious negative impact, not only on the separation performance of PBMC, but also on the ulterior immune assays. The present review aims to discuss studies carried out in humans that could shed some light for swine research. When possible, publications in pigs are also discussed. The main goal of the review is to encourage swine researchers to standardize protocols to obtain, manage and preserve porcine PBMC, as well as to minimize, or at least to consider, the bias that some parameters might induce in their studies before, during and after isolating PBMC.
Collapse
|
4
|
Evaluation of microbial contamination on cuff syringe, cuff pressure gauge, and their surroundings in the operating room. JA Clin Rep 2021; 7:83. [PMID: 34873655 PMCID: PMC8648932 DOI: 10.1186/s40981-021-00486-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background Some institutions reuse cuff syringes and do not periodically sterilize cuff pressure gauges. Pathogenic bacterial contamination of such equipment may increase the probability of pathogen transmission to patients during anesthetic procedures. Therefore, microbial contamination on cuff syringes, cuff pressure gauges, and their surroundings was assessed in the operating rooms of a university-affiliated tertiary care hospital in Japan. Methods This study was conducted between April and May 2019 in 14 operating suites at a hospital. The following sites in each operating suite were sampled: cuff syringe (inner/outer components), outer components of cuff pressure gauge, cuff syringe and cuff pressure gauge storage drawers, and computer mice. The swabs were directly streaked onto agar plates and incubated. Then, the bacterial species were identified using mass spectrometry. Results The highest bacterial isolation was observed in computer mice, followed by the outside of cuff pressure gauges and the drawers of cuff pressure gauges (92.9, 78.6, and 64.3%, respectively). Most of the identified bacteria belonged to the Bacillus species, with colonization rates of 85.7, 57.1, and 57.1% on computer mice, cuff pressure gauges, and cuff pressure gauge storage drawers, respectively. Coagulase-negative Staphylococcus was found in 35.7% of the specimens and was more prevalent on computer mice (71.4%), followed by on cuff pressure gauges (64.3%). Conclusion Anesthesiologists should be aware of the possible pathogen contamination risk from cuff syringes, cuff pressure gauges, or associated equipment and take appropriate infection control measures to minimize the risk of pathogenic transmission.
Collapse
|
5
|
The Role of General Anesthetic Drug Selection in Cancer Outcome. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2563093. [PMID: 34660784 PMCID: PMC8516539 DOI: 10.1155/2021/2563093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Cancer remains to be the leading cause of death globally. Surgery is a mainstay treatment for solid tumors. Thus, it is critical to optimize perioperative care. Anesthesia is a requisite component for surgical tumor resection, and general anesthesia is given in the vast majority of tumor resection cases. Because anesthetics are growingly recognized as immunomodulators, it is critical to optimize anesthetic regimens for cancer surgery if the selection can affect outcomes. Here, we reviewed the role of volatile and intravenous anesthesia used for cancer surgery in cancer recurrence.
Collapse
|
6
|
Saha P, Das A, Chatterjee N, Chakrabarti D, Sinha D. Impact of anesthetics on oncogenic signaling network: a review on propofol and isoflurane. Fundam Clin Pharmacol 2021; 36:49-71. [PMID: 34655261 DOI: 10.1111/fcp.12732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
Propofol as an intravenous anesthetic and isoflurane as an inhalational/volatile anesthetic continue to be an important part of surgical anesthetic interventions worldwide. The impact of these anesthetics on tumor progression, immune modulation, and survival rates of cancer patients has been widely investigated. Although most of the preclinical studies have provided a beneficial effect of propofol over isoflurane or other volatile anesthetics, several investigations have shown contradictory results, which warrant more preclinical and clinical studies. Propofol mostly exhibits antitumor properties, whereas isoflurane being a cost-effective anesthetic is frequently used. However, isoflurane has been also reported with protumorigenic activity. This review provides an overall perspective on the network of signaling pathways that may modulate several steps of tumor progression from inflammation, immunomodulation, epithelial-mesenchymal transition (EMT) to invasion, metastasis, angiogenesis, and cancer stemness and extracellular vesicles along with chemotherapeutic applications and clinical status of these anesthetics. A clear understanding of the mechanistic viewpoints of these anesthetics may pave the way for more prospective clinical trials with the ultimate goal of obtaining a safe and optimal anesthetic intervention that would prevent cancer recurrence and may influence better postoperative survival.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ananya Das
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nabanita Chatterjee
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Deepa Chakrabarti
- Department of Anesthesiology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
7
|
Du Z, Wei S, Zhang X, Xiang Z, Qu S. The effect of dexmedetomidine premedication on postoperative systemic inflammatory response in children undergoing hernia repair surgery: A randomized controlled trial. Paediatr Anaesth 2021; 31:794-801. [PMID: 33825304 PMCID: PMC8251734 DOI: 10.1111/pan.14189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surgery results in systemic inflammation, which can affect the central nervous system, leading to changes in mood, emotion, and behavior. Our previous study has shown that compared to midazolam, dexmedetomidine premedication effectively decreased children's postoperative anxiety. AIM To investigate whether dexmedetomidine infusion before hernia repair alleviates postoperative systemic inflammation in children and whether postoperative anxiety may be associated with postoperative inflammation. METHODS This prospective double-blind randomized controlled trial was conducted in 120 children scheduled to undergo elective hernia repair. Before anesthesia induction, all children received an intravenous infusion consisted of dexmedetomidine (n = 40; 0.5 µg/g, group D), midazolam (n = 40; 0.08 mg/kg, group M), or normal saline (n = 40; group C). One-way ANOVA with least significant difference multiple comparison test was used for multigroup comparisons of postoperative plasma levels of inflammatory cytokines and m-YPAS scores. Spearman rank correlation tests were used for analyzing m-YPAS scores with postoperative plasma levels of inflammatory cytokines. RESULTS Plasma levels of tumor necrosis factor-alpha (7.0 ± 1.6 vs. 8.1 ± 1.6, mean difference [95% CI]: 1.19 [0.26-2.11], p = .008) (pg/ml) and of interleukin-6 (1.8 ± 1.2 vs. 3.3 ± 1.6, mean difference [95% CI]: 1.49 [0.74-2.25], p < .001) (pg/ml) and neutrophils-to-lymphocyte ratio (1.0 ± 0.5 vs. 1.5 ± 0.7, mean difference [95% CI]: 0.48 [0.17-0.78], p < .001) were significantly lower in group D than in group C. Furthermore, compared to group M, group D showed significantly lower plasma tumor necrosis factor-alpha levels (7.0 ± 1.6 vs. 7.9 ± 1.9, mean difference [95% CI]: 0.96 [0.04-1.88], p = .04) (pg/ml) and interleukin-6 levels (1.8 ± 1.2 vs. 2.9 ± 1.5, mean difference [95% CI]: 1.06 [0.31-1.81], p = .004) (pg/ml), and neutrophil-to-lymphocyte ratio (1.0 ± 0.5 vs. 1.5 ± 0.6, mean difference [95% CI]: 0.42 [0.11-0.72], p = .004). Anxiety scores at postoperative 2 and 4 h in the three groups positively correlated with plasma levels of proinflammatory cytokines. CONCLUSION A single preoperative intravenous dexmedetomidine dose in children undergoing same-day surgery reduces postoperative systemic inflammation.
Collapse
Affiliation(s)
- Zhen Du
- Department of AnesthesiologyHunan Children’ HospitalChangshaChina
| | - Si‐Wei Wei
- Department of AnesthesiologyHunan Children’ HospitalChangshaChina
| | - Xi‐Ying Zhang
- Department of AnesthesiologyHunan Children’ HospitalChangshaChina
| | - Zhen Xiang
- Department of AnesthesiologyHunan Children’ HospitalChangshaChina
| | - Shuang‐Quan Qu
- Department of AnesthesiologyHunan Children’ HospitalChangshaChina
| |
Collapse
|
8
|
Ackerman RS, Luddy KA, Icard BE, Piñeiro Fernández J, Gatenby RA, Muncey AR. The Effects of Anesthetics and Perioperative Medications on Immune Function: A Narrative Review. Anesth Analg 2021; 133:676-689. [PMID: 34100781 DOI: 10.1213/ane.0000000000005607] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Preclinical and clinical studies have sought to better understand the effect of anesthetic agents, both volatile and intravenous, and perioperative adjuvant medications on immune function. The immune system has evolved to incorporate both innate and adaptive components, which are delicately interwoven and essential for host defense from pathogens and malignancy. This review summarizes the complex and nuanced relationship that exists between each anesthetic agent or perioperative adjuvant medication studied and innate and adaptive immune function with resultant clinical implications. The most commonly used anesthetic agents were chosen for review including volatile agents (sevoflurane, isoflurane, desflurane, and halothane), intravenous agents (propofol, ketamine, etomidate, and dexmedetomidine), and perioperative adjuvant medications (benzodiazepines, opioids, nonsteroidal anti-inflammatory drugs [NSAIDs], and local anesthetic agents). Patients who undergo surgery experience varying combinations of the aforementioned anesthetic agents and adjuncts, depending on the type of surgery and their comorbidities. Each has unique effects on immunity, which may be more or less ideal depending on the clinical situation. Further study is needed to better understand the clinical effects of these relationships so that patient-specific strategies can be developed to improve surgical outcomes.
Collapse
Affiliation(s)
- Robert S Ackerman
- From the Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Benjamin E Icard
- University of South Florida Morsani College of Medicine, Tampa, Florida
| | | | - Robert A Gatenby
- the Department of Cancer Biology and Evolution.,Department of Radiology
| | - Aaron R Muncey
- Department of Anesthesiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
9
|
Zhang Y, Wu Y, Xu D, Xiao P, Xie B, Huang H, Shang Y, Yuan S, Zhang J. Very-Short-Term Sleep Deprivation Slows Early Recovery of Lymphocytes in Septic Patients. Front Med (Lausanne) 2021; 8:656615. [PMID: 34109195 PMCID: PMC8180857 DOI: 10.3389/fmed.2021.656615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Sleep plays an important role in immune function. However, the effects of very-short-term sleep deprivation on the early recovery of immune function after sepsis remain unclear. This study was conducted in the intensive care unit to investigate the effects of 2 consecutive days of sleep deprivation (SD) on lymphocyte recovery over the following few days in septic patients who were recovering from a critical illness. The patients' self-reports of sleep quality was assessed using the Richards–Campbell Sleep Questionnaire at 0 and 24 h after inclusion. The demographic, clinical, laboratory, treatment, and outcome data were collected and compared between the good sleep group and poor sleep group. We found that 2 consecutive days of SD decreased the absolute lymphocyte count (ALC) and ALC recovery at 3 days after SD. Furthermore, post-septic poor sleep decreased the plasma levels of atrial natriuretic peptide (ANP) immediately after 2 consecutive days of SD. The ANP levels at 24 h after inclusion were positively correlated with ALC recovery, the number of CD3+ T cells, or the number of CD3+ CD4+ cells in the peripheral blood on day 5 after inclusion. Our data suggested that very-short-term poor sleep quality could slow down lymphocyte recovery over the following few days in septic patients who were recovering from a critical illness. Our results underscore the significance of very-short-term SD on serious negative effects on the immune function. Therefore, it is suggested that continuous SD or several short-term SD with short intervals should be avoided in septic patients.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuming Wu
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Xu
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xiao
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Huang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
The Role of Anesthetic Selection in Perioperative Bleeding. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5510634. [PMID: 34036098 PMCID: PMC8123995 DOI: 10.1155/2021/5510634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Perioperative bleeding is one of the major comorbidities associated with surgery. While anesthesia is a critical component to perform surgery, a number of clinical studies supported the contribution of anesthetic drugs to perioperative bleeding. Here, we reviewed the literature on this topic including the underlying mechanism and discussed the future direction on coagulation research in anesthesia.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Surgery remains integral to treating solid cancers. However, the surgical stress response, characterized by physiologic perturbation of the adrenergic, inflammatory, and immune systems, may promote procancerous pathways. Anesthetic technique per se may attenuate/enhance these pathways and thereby could be implicated in long-term cancer outcomes. RECENT FINDINGS To date, clinical studies have predominantly been retrospective and underpowered and, thus limit meaningful conclusions. More recently, prospective studies of regional anesthesia for breast and colorectal cancer surgery have failed to demonstrate long-term cancer outcome benefit. However, based on the consistent observation of protumorigenic effects of surgical stress and that of volatile anesthesia in preclinical studies, supported by in vivo models of tumor progression and metastasis, we await robust prospective clinical studies exploring the role of propofol-based total intravenous anesthesia (cf. inhalational volatiles). Additionally, anti-adrenergic/anti-inflammatory adjuncts, such as lidocaine, nonsteroidal anti-inflammatory drugs and the anti-adrenergic propranolol warrant ongoing research. SUMMARY The biologic perturbation of the perioperative period, compounded by the effects of anesthetic agents, renders patients with cancer particularly vulnerable to enhanced viability of minimal residual disease, with long-term outcome consequences. However, low level and often conflicting clinical evidence equipoise currently exists with regards to optimal oncoanesthesia techniques. Large, prospective, randomized control trials are urgently needed to inform evidence-based clinical practice guidelines.
Collapse
|
12
|
Yuki K. The immunomodulatory mechanism of dexmedetomidine. Int Immunopharmacol 2021; 97:107709. [PMID: 33933842 DOI: 10.1016/j.intimp.2021.107709] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Dexmedetomidine has been increasingly introduced into the perioperative care of surgical patients. Because a subset of anesthetics/sedatives are immunomodulatory, it is critical to understand the role of dexmedetomidine in our host immune functions. Here we reviewed the role of dexmedetomidine in different immune cells. We also reviewed published clinical articles that described the role of dexmedetomidine in organ injury, cancer surgery, and infection. In animal studies, dexmedetomidine attenuated organ injury. In clinical studies, dexmedetomidine was associated with an improvement in outcomes in cardiac surgery and transplant surgery. However, there is a paucity in research examining how dexmedetomidine is associated with these outcomes. Further studies are needed to understand its clinical application from immunological standpoints.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, USA; Department of Anaesthesia, Harvard Medical School, USA; Department of Immunology, Harvard Medical School, USA.
| |
Collapse
|
13
|
Koutsogiannaki S, Huang SX, Lukovits K, Kim S, Bernier R, Odegard KC, Yuki K. The Characterization of Postoperative Mechanical Respiratory Requirement in Neonates and Infants Undergoing Cardiac Surgery on Cardiopulmonary Bypass in a Single Tertiary Institution. J Cardiothorac Vasc Anesth 2021; 36:215-221. [PMID: 34023203 DOI: 10.1053/j.jvca.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Although neonates and infants undergoing cardiac surgery on cardiopulmonary bypass (CPB) are at high risk of developing perioperative morbidity and mortality, including lung injury, the intraoperative profile of lung injury in this cohort is not well-described. Given that the postoperative course of patients in the pediatric cardiac surgical arena has become increasingly expedited, the objective of this study was to characterize the profiles of postoperative mechanical ventilatory support in neonates and infants undergoing cardiac surgery on CPB and to examine the characteristics of lung mechanics and lung injury in this patient population who are potentially amendable to early postoperative recovery in a single tertiary pediatric institution. DESIGN A retrospective data analysis of neonates and infants who underwent cardiac surgery on cardiopulmonary bypass. SETTING A single-center, university teaching hospital. PARTICIPANTS The study included 328 neonates and infants who underwent cardiac surgery on cardiopulmonary bypass. INTERVENTIONS A subset of 128 patients were studied: 58 patients undergoing ventricular septal defect (VSD) repair, 36 patients undergoing complete atrioventricular canal (CAVC) repair, and 34 patients undergoing bidirectional Glenn (BDG) shunt surgery. MEASUREMENTS AND MAIN RESULTS Of the entire cohort, 3.7% experienced in-hospital mortality. Among all surgical procedures, VSD repair (17.7%) was the most common, followed by CAVC repair (11.0%) and BDG shunt surgery (10.4%). Of patients who underwent VSD repair, CAVC repair, and BDG shunt surgery, 65.5%, 41.7%, and 67.6% were off mechanical ventilatory support within 24 hours postoperatively, respectively. In all three of the surgical repairs, lung compliance decreased after CPB compared to pre-CPB phase. Sixty point three percent of patients with VSD repair and 77.8% of patients with CAVC repair showed a PaO2/FIO2 (P/F) ratio of <300 after CPB. Post- CPB P/F ratios of 120 for VSD patients and 100 for CAVC patients were considered as optimal cutoff values to highly predict prolonged (>24 hours) postoperative mechanical ventilatory support. A higher volume of transfused platelets also was associated with postoperative ventilatory support ≥24 hours in patients undergoing VSD repair, CAVC repair, and BDG shunt surgery. CONCLUSIONS There was a high incidence of lung injury after CPB in neonates and infants, even in surgeries amendable for early recovery. Given that CPB-related factors (CPB duration, crossclamp time) and volume of transfused platelet were significantly associated with prolonged postoperative ventilatory support, the underlying cause of cardiac surgery-related lung injury can be multi-factorial.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Immunology, Harvard Medical School, Boston, MA
| | - Sheng Xiang Huang
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Karina Lukovits
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Samuel Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rachel Bernier
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Kirsten C Odegard
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Immunology, Harvard Medical School, Boston, MA.
| |
Collapse
|
14
|
Yuki K, Mitsui Y, Shibamura-Fujiogi M, Hou L, Odegard KC, Soriano SG, Priebe GP, Koutsogiannaki S. Anesthetics isoflurane and sevoflurane attenuate flagellin-mediated inflammation in the lung. Biochem Biophys Res Commun 2021; 557:254-260. [PMID: 33894411 DOI: 10.1016/j.bbrc.2021.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Isoflurane and sevoflurane are volatile anesthetics (VA) widely used in clinical practice to provide general anesthesia. We and others have previously shown that VAs have immunomodulatory effects and may have a significant impact on the progression of disease states. Flagellin is a component of Gram negative bacteria and plays a significant role in the pathophysiology of bacterial pneumonia through its binding to Toll-like Receptor 5 (TLR5). Our results showed that VAs, not an intravenous anesthetic, significantly attenuated the activation of TLR5 and the release of the neutrophil chemoattractant IL-8 from lung epithelial cells. Furthermore, flagellin-induced lung injury was significantly attenuated by VAs by inhibiting neutrophil migration to the bronchoalveolar space. The lungs of cystic fibrosis (CF) patients are highly colonized by Pseudomonas aeruginosa, which causes inflammation. The retrospective study of oxygenation in patients with CF who had received VA versus intravenous anesthesia suggested that VAs might have the protective effect for gas exchange. To understand the interaction between VAs and TLR5, a docking simulation was performed, which indicated that isoflurane and sevoflurane docked into the binding interphase between TLR5 and flagellin.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Yusuke Mitsui
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kirsten C Odegard
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Gregory P Priebe
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Shibamura-Fujiogi M, Ormsby J, Breibart M, Warf B, Priebe GP, Soriano SG, Sandora TJ, Yuki K. Risk factors for pediatric surgical site infection following neurosurgical procedures for hydrocephalus: a retrospective single-center cohort study. BMC Anesthesiol 2021; 21:124. [PMID: 33882858 PMCID: PMC8059169 DOI: 10.1186/s12871-021-01342-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Background Infection is a major complication following cerebral spinal fluid (CSF) diversion procedures for hydrocephalus. However, pediatric risk factors for surgical site infection (SSI) are currently not well defined. Because a SSI prevention bundle is increasingly introduced, the purpose of this study was to evaluate risk factors associated with SSIs following CSF diversion surgeries following a SSI bundle at a single quaternary care pediatric hospital. Methods We performed a retrospective cohort study of patients undergoing CSF diversion procedures from 2017 to 2019. SSIs were identified prospectively through continuous surveillance. We performed unadjusted logistic regression analyses and univariate analyses to determine an association between SSIs and patient demographics, comorbidities and perioperative factors to identify independent risk factors for SSI. Results We identified a total of 558 CSF diversion procedures with an overall SSI rate of 3.4%. The SSI rates for shunt, external ventricular drain (EVD) placement, and endoscopic third ventriculostomy (ETV) were 4.3, 6.9 and 0%, respectively. Among 323 shunt operations, receipt of clindamycin as perioperative prophylaxis and presence of cardiac disease were significantly associated with SSI (O.R. 4.99, 95% C.I. 1.27–19.70, p = 0.02 for the former, and O.R. 7.19, 95% C.I. 1.35–38.35, p = 0.02 for the latter). No risk factors for SSI were identified among 72 EVD procedures. Conclusion We identified receipt of clindamycin as perioperative prophylaxis and the presence of cardiac disease as risk factors for SSI in shunt procedures. Cefazolin is recommended as a standard antibiotic for perioperative prophylaxis. Knowing that unsubstantiated beta-lactam allergy label is a significant medical problem, efforts should be made to clarify beta-lactam allergy status to maximize the number of patients who can receive cefazolin for prophylaxis before shunt placement. Further research is needed to elucidate the mechanism by which cardiac disease may increase SSI risk after shunt procedures.
Collapse
Affiliation(s)
- Miho Shibamura-Fujiogi
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Anaesthesia, Harvard Medical School, Boston, USA.,Department of Immunology, Harvard Medical School, Boston, USA
| | - Jennifer Ormsby
- Department of Pediatrics, Division of Infectious Diseases, Boston Children's Hospital, Boston, USA
| | - Mark Breibart
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Benjamin Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, USA
| | - Gregory P Priebe
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Anaesthesia, Harvard Medical School, Boston, USA.,Department of Pediatrics, Division of Infectious Diseases, Boston Children's Hospital, Boston, USA
| | - Sulpicio G Soriano
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Anaesthesia, Harvard Medical School, Boston, USA
| | - Thomas J Sandora
- Department of Pediatrics, Division of Infectious Diseases, Boston Children's Hospital, Boston, USA.,Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Koichi Yuki
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Anaesthesia, Harvard Medical School, Boston, USA. .,Department of Immunology, Harvard Medical School, Boston, USA.
| |
Collapse
|
16
|
Surgical Site Infections and Perioperative Optimization of Host Immunity by Selection of Anesthetics. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5576959. [PMID: 33763473 PMCID: PMC7963902 DOI: 10.1155/2021/5576959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Surgical site infections are significant health care issues, and efforts to mitigate their occurrence have been ongoing worldwide, mainly focusing to reduce the spillage of microbes to the otherwise sterile tissues. Optimization of host immunity has been also recognized including temperature regulation (normothermia), adequate oxygenation, and glucose management. A number of papers have described the role of anesthetics in host immunity. The role of anesthetics in postoperative outcomes including surgical site infections has been also studied. We will review the current literature and propose the importance of anesthetic selection to potentially mitigate surgical site infections.
Collapse
|
17
|
Park HJ, Piao L, Seo EH, Lee SH, Kim SH. The effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. Int J Med Sci 2020; 17:428-436. [PMID: 32174773 PMCID: PMC7053311 DOI: 10.7150/ijms.41899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction: This study was designed to assess the effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. Materials and Methods: The mice were divided into six groups: three intravenous anesthetic agents groups (dexmedetomidine, midazolam and propofol groups), and three corresponding control groups (CD, CM, and CP groups). The intravenous injections were administered once per day for 5 days. The immunity of mice was checked after the last intravenous injection. Histopathology and immunochemistry of liver and kidneys were evaluated. Cytokine levels in the blood was also checked. vs. evaluated with cytokine levels in the blood. Results: Cluster of differentiation (CD)4+ T cells were significantly less expressed in dexmedetomidine and propofol groups, compared with the corresponding control groups [34.08 ± 5.63% in the dexmedetomidine group vs. 59.74 ± 8.64% in the CD group, p < 0.05; 25.28 ± 7.28% in the propofol group vs. 61.12 ± 2.70% in the Cp group, p < 0.05]. Apoptosis of CD4+ T cells was increased significantly in dexmedetomidine and propofol groups, compared with the corresponding control groups. Histopathological findings of liver and kidneys did not show any specific differences of any of three intravenous anesthetic agents groups with their corresponding control groups, although immunohistochemical examination indicated significantly lower expression of Toll-like receptor-4 from liver and kidneys in dexmedetomidine and propofol groups. The cytokine levels were not different between the groups. Conclusion: Repetitive exposure to dexmedetomidine and propofol reduced the expression of CD4+ T cells but did not induce any significant liver or kidney injuries.
Collapse
Affiliation(s)
- Hyun Jun Park
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Liyun Piao
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Eun-Hye Seo
- BK21 plus, Department of Cellular and Molecular Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Seoul, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea
| | - Seong-Hyop Kim
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea.,Department of Anesthesiology and Pain medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
The influence of dexmedetomidine and propofol on circulating cytokine levels in healthy subjects. BMC Anesthesiol 2019; 19:222. [PMID: 31805854 PMCID: PMC6894489 DOI: 10.1186/s12871-019-0895-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Background Surgery and diseases modify inflammatory responses and the immune system. Anesthetic agents also have effects on the human immune system but the responses they induce may be altered or masked by the surgical procedures or underlying illnesses. The aim of this study was to assess how single-drug dexmedetomidine and propofol anesthesia without any surgical intervention alter acute immunological biomarkers in healthy subjects. Methods Thirty-five healthy, young male subjects were anesthetized using increasing concentrations of dexmedetomidine (n = 18) or propofol (n = 17) until loss of responsiveness (LOR) was detected. The treatment allocation was randomized. Multi-parametric immunoassays for the detection of 48 cytokines, chemokines and growth factors were used. Concentrations were determined at baseline and at the highest drug concentration for each subject. Results The changes in the concentration of eotaxin (decrease after dexmedetomidine) and platelet-derived growth factor (PDGF, increase after propofol) were statistically significantly different between the groups. Significant changes were detected within both groups; the concentrations of monocyte chemotactic protein 1, chemokine ligand 27 and macrophage migration inhibitory factor were lower in both groups after the drug administration. Dexmedetomidine decreased the concentration of eotaxin, interleukin-18, interleukin-2Rα, stem cell factor, stem cell growth factor and vascular endothelial growth factor, and propofol decreased significantly the levels of hepatocyte growth factor, IFN-γ-induced protein 10 and monokine induced by IFN-γ, and increased the levels of interleukin-17, interleukin-5, interleukin-7 and PDGF. Conclusions Dexmedetomidine seemed to have an immunosuppressive effect on the immune system whereas propofol seemed to induce mixed pro- and anti-inflammatory effects on the immune system. The choice of anesthetic agent could be relevant when treating patients with compromised immunological defense mechanisms. Trial registration Before subject enrollment, the study was registered in the European Clinical Trials database (EudraCT number 2013–001496-21, The Neural Mechanisms of Anesthesia and Human Consciousness) and in ClinicalTrials.gov (Principal Investigator: Harry Scheinin, number NCT01889004, The Neural Mechanisms of Anesthesia and Human Consciousness, Part 2, on the 23rd of June 2013).
Collapse
|
19
|
Okuno T, Koutsogiannaki S, Hou L, Bu W, Ohto U, Eckenhoff RG, Yokomizo T, Yuki K. Volatile anesthetics isoflurane and sevoflurane directly target and attenuate Toll-like receptor 4 system. FASEB J 2019; 33:14528-14541. [PMID: 31675483 DOI: 10.1096/fj.201901570r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
General anesthesia has been the requisite component of surgical procedures for over 150 yr. Although immunomodulatory effects of volatile anesthetics have been growingly appreciated, the molecular mechanism has not been understood. In septic mice, the commonly used volatile anesthetic isoflurane attenuated the production of 5-lipoxygenase products and IL-10 and reduced CD11b and intercellular adhesion molecule-1 expression on neutrophils, suggesting the attenuation of TLR4 signaling. We confirmed the attenuation of TLR4 signaling in vitro and their direct binding to TLR4-myeloid differentiation-2 (MD-2) complex by photolabeling experiments. The binding sites of volatile anesthetics isoflurane and sevoflurane were located near critical residues for TLR4-MD-2 complex formation and TLR4-MD-2-LPS dimerization. Additionally, TLR4 activation was not attenuated by intravenous anesthetics, except for a high concentration of propofol. Considering the important role of TLR4 system in the perioperative settings, these findings suggest the possibility that anesthetic choice may modulate the outcome in patients or surgical cases in which TLR4 activation is expected.-Okuno, T., Koutsogiannaki, S., Hou, L., Bu, W., Ohto, U., Eckenhoff, R. G., Yokomizo, T., Yuki, K. Volatile anesthetics isoflurane and sevoflurane directly target and attenuate Toll-like receptor 4 system.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Lifei Hou
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Weiming Bu
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Roderic G Eckenhoff
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Guo F, Ding Y, Yu X, Cai X. Effect of dexmedetomidine, midazolam, and propofol on lipopolysaccharide-stimulated dendritic cells. Exp Ther Med 2018; 15:5487-5494. [PMID: 29904429 DOI: 10.3892/etm.2018.6094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Dexmedetomidine, midazolam and propofol are common sedative drugs used in the intensive care unit. Lipopolysaccharides (LPS) are a potent inducer of human dendritic cells (DCs) maturation and survival, which induces cytokine production. The present study aimed to investigate the effect and mechanisms of sedative drugs on LPS-induced cytokine production in DCs. The mouse bone marrow-derived dendritic DC2.4 cell line was used in the present study. The Cell Counting Kit-8 assay was used to measure the viability of cells. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 mRNA expression levels and contents were measured using reverse transcription-quantitative polymerase chain reaction and ELISA, respectively. The expression levels of proteins associated with nuclear factor-κB (NF-κB) and mitogen activated protein kinase signaling pathways were assessed by western blotting. The three sedatives had different roles on TNF-α, IL-1β, IL-6, and IL-10 mRNA expression levels and content in DCs. Dexmedetomidine promoted inflammatory cytokine production at high clinical concentrations (10, 1 and 0.1 µM), however suppressed them at the lowest clinical concentration (0.001 µM), which was associated with NF-κB and c-Jun N-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) signaling. Midazolam inhibited inflammatory cytokine production via suppression of the NF-κB and JNK signaling pathways. Propofol partly inhibited inflammatory cytokine production, including IL-1β and IL-6, and the anti-inflammatory effect may result from inhibition of JNK-MAPK, and enhanced NF-κB and extracellular signal-regulated kinase-MAPK signaling at clinical concentrations. The present study helped to elucidate the function of sedatives in LPS-induced cytokine production in DCs, which will facilitate rational implementation of these sedatives in patients undergoing tracheal intubation with sepsis or multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Feng Guo
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ying Ding
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xue Yu
- Department of Medicine, Tengzhou Central People's Hospital, Zaozhuang, Shandong 277500, P.R. China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
21
|
Wang K, Li C. Effects of dexmedetomidine on inflammatory factors, T lymphocyte subsets and expression of NF-κB in peripheral blood mononuclear cells in patients receiving radical surgery of colon carcinoma. Oncol Lett 2018; 15:7153-7157. [PMID: 29725437 PMCID: PMC5920235 DOI: 10.3892/ol.2018.8205] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 01/16/2023] Open
Abstract
The effects of dexmedetomidine on inflammatory factors, T lymphocyte subsets and expression of nuclear factor-κB (NF-κB) in peripheral blood mononuclear cells in patients receiving radical surgery of colon carcinoma were investigated. A total of 141 patients receiving radical surgery of colon carcinoma from January 2014 to April 2017 were divided into two groups randomly. The patients in the treatment group were given dexmedetomidine, while the patients in the control group were treated with saline. Results showed that there were no significant differences in preoperative levels of NF-κB, sICAM-1 and IL-8 between the two groups. However, the above three indexes of the groups were all significantly increased at 0.5 and 24 h after operation, and the results showed that the control group had a higher degree of increase (P<0.05). It was also found that the changes in levels of IL-6 and CRP in patients were the same as those of the above three indexes; in other words, the degree of the increase in the control group was significantly higher than that in the treatment group after operation. Moreover, it was found that there was little difference in the preoperative Ramsay score of patients between the two groups. The scores at 0.5 and 12 h after operation in the treatment group were significantly higher than those in the control group (P<0.05). It was also found that the intraoperative and postoperative dosages of fentanyl in the treatment group were significantly less than those in the control group (P<0.05). We can conclude that the application of dexmedetomidine during anesthesia in patients receiving radical operation of colon carcinoma has a better clinical treatment effect, which can reduce the secretion of inflammatory factors, decrease the inhibition of immunity and reduce the use of fentanyl.
Collapse
Affiliation(s)
- Kun Wang
- Department of Anesthesiology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chengwen Li
- Department of Anesthesiology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
22
|
Song P, Dong T, Zhang J, Li J, Lu W. Effects of different methods of anesthesia and analgesia on immune function and serum tumor marker levels in critically ill patients. Exp Ther Med 2017; 14:2206-2210. [PMID: 28962143 PMCID: PMC5609158 DOI: 10.3892/etm.2017.4762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022] Open
Abstract
This study investigated the effects of different anesthesia and analgesia methods on immune function and serum tumor marker levels of critically ill patients undergoing tumor resection surgery. Seventy-six critically ill patients with indications for tumor resection surgery were selected in The Second Affiliated Hospital of Zhengzhou University from September 2015 to August 2016. The patients were randomly divided into a control and an observation group (38 patients each). The patients in the control group were treated with general anesthesia and postoperative intravenous analgesia, while the patients in the observation group were treated with general anesthesia and epidural anesthesia and postoperative epidural analgesia. Venous blood samples were collected at 30 min before anesthesia (T1), 2 h after the beginning of the surgery (T2), immediately after surgery (T3), 24 h after surgery (T4) and 72 h after surgery (T5). The viable cell percentage of T lymphocyte subsets (CD3+, CD4+, CD8+, CD4+/CD8+) and natural killer (NK) cells were measured by flow cytometry. The levels of carcinoembryonic antigen, sugar chain antigen 199, sugar chain antigen 125, neuron specific enolase and cytokeratin 19 were detected by electrochemiluminescence at 24 h before and after operation. Our results showed the levels of CD3+, CD4+ and CD4+/CD8+ in the control group at T3-T5 were significantly lower than those at T1 (p<0.05). The CD3+ level in observation group at T3 was also significantly lower than the level at T1 (p<0.05), but it increased at T4 and T5 and showed no significant difference compared with the initial level (p>0.05). The levels of CD4+ and CD4+/CD8+ in the observation group were significantly higher than those in the control group at T2-T5 (p<0.05). And, the levels of CD3+ and CD4+ were significantly higher than those in the control group at T4 (p<0.05). The level of CD4+/CD8+ was significantly higher than that in the control group at T5 (p<0.05). No significant differences were found in the levels of CD8+ and NK cells between the 2 groups at any of the time-points (p>0.05). No significant differences were found either in any of the tested tumor markers in either group after 24 h. Even without differences on the tumor marker levels, these results suggest that general anesthesia combined with epidural anesthesia and analgesia produces milder deleterious effects on the immune function of perioperative critically ill patients than general anesthesia combined with intravenous analgesia.
Collapse
Affiliation(s)
- Pei Song
- Department of Pain Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Tieli Dong
- Department of Anesthesia, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Jun Zhang
- Department of Pain Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Jianfeng Li
- Department of Pain Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Wenliang Lu
- Department of Anesthesia, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| |
Collapse
|
23
|
Wu RSC, Wu KC, Huang CC, Chiang YY, Chen CC, Liao CL, Chu CN, Chung JG. Different cellular responses of dexmedetomidine at infected site and peripheral blood of emdotoxemic BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:1416-1422. [PMID: 24910415 DOI: 10.1002/tox.22011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Various sedative agents, including dexmedetomidine (dex), induce immunosuppression, and enhance infection progression. However, there was no information on how anesthetic affects local and systemic cellular immune function. We conducted this study to examine the impact of dex on the differentiation and function of immune cells at site of inflammation and in peripheral blood during endotoxemia of mice. In BALB/c mice with and without endotoxemia, we evaluated the influence of two dosages of 5 and 50 mcg/kg/h intravenous dex on immune cells: including number of T cells (CD3), B cells (CD19), natural killer cells (CD8a), monocytes (CD11b), and macrophages (Mac-3) in peripheral blood, the activities of macrophages in peripheral blood and in peritoneal lavage, and proliferation of B and T cells and of natural killer cells activity in the spleen. Endotoxemia increased the number of CD3 T cells, CD 19 B cells and macrophages in the peripheral blood, augmented macrophage activity in the peritoneum, and increased T cell proliferation and natural killer cell activity in the spleen. Further administration of 5 mcg/kg/h dex attenuated systemic increase in number of T cells, B cells, and macrophages during endotoxemia and 50 mcg/kg/h dex significantly attenuated the increase in activity of macrophages in the peripheral blood during endotoxemia. In the peritoneum, however, 5 mcg/kg/h dex preserved and 50 mcg/kg/h dexmedetomidine enhanced the activity of macrophages during endotoxemia. Increased in proliferation of T cells in spleen during endotoxemia was attenuated by both doses of dex. Last, 50 mcg/kg/h dex enhanced natural killer cells activity during endotoxemia. While preserving the effects of endotoxemia on macrophage's activity in the infection site and natural killer cell's activity in the spleen, dex decreased systemic fulminant immune reaction in endotoxemia, by attenuating the augmented response in the number of T cells, B cells and macrophages, activity of macrophages in the peripheral blood, and proliferation of T cells in spleen during endotoxemia.
Collapse
Affiliation(s)
- Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - King-Chuen Wu
- Department of Anesthesia, E-da Hospital / I-Shou University, Kaohsiung, Taiwan, Republic of China
| | - Chiu-Chen Huang
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Yi-Ying Chiang
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Chia-Chen Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chin-Nan Chu
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China
- Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China
| |
Collapse
|
24
|
Miao J, Wang L, Chen L, Yang T, Jin L, Lin L. Fentanyl inhibits cell viability in human pancreatic cancer cell line and tumor growth in pancreatic cancer cell-transplanted mice. Int J Clin Exp Med 2015; 8:17684-17693. [PMID: 26770358 PMCID: PMC4694258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Pancreatic cancer is a kind of devastating disease with a high mortality rate. Fentanyl has been widely applied to anesthesia and analgesia in pancreatic cancer therapy, and is also demonstrated to inhibit the growth of some kinds of cancer cells in existed studies. To investigate the functions of fentanyl in pancreatic cancer, we conducted a series of in vivo and in vitro experiments using human pancreatic cancer cells SW1990 and fentanyl treatment. The cells were transplanted to BALB/c nude mice to generate pancreatic tumor for monitoring tumor growth. Viability, apoptosis, migration and invasion, and cell cycle of SW1990 cells were also analyzed. To reveal the functional mechanisms of fentanyl, the expression changes of factors in these cellular activities were detected. Results showed a significant inhibition of pancreatic tumor growth in the fentanyl-treated group. Fentanyl also inhibited viability of SW1990 cells in vitro. Detailed results showed fentanyl led to promoted cell apoptosis via arresting cells in G0/G1 phase. It also suppressed cell migration and invasion. Further proofs indicated that the factors related to cell apoptosis (Bcl-2, p53 and Caspase-3), cell cycle (p21, Cyclin D1 and CDK4) and epithelial-mesenchymal transition (E-cadherin, Vimentin and α-SMA) showed the corresponding expression changes. Fentanyl might execute its functions via the suppressed MAPK pathways, since the key factors, p38, ERK1/2 and JNK were all down-regulated by fentanyl. This study indicated fentanyl could inhibit viability and growth of pancreatic cancer cells, providing a possible strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jianxia Miao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Liangrong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Lei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Tao Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Lida Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Lina Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| |
Collapse
|
25
|
Bu W, Pereira LM, Eckenhoff RG, Yuki K. Stereoselectivity of isoflurane in adhesion molecule leukocyte function-associated antigen-1. PLoS One 2014; 9:e96649. [PMID: 24801074 PMCID: PMC4011845 DOI: 10.1371/journal.pone.0096649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Isoflurane in clinical use is a racemate of S- and R-isoflurane. Previous studies have demonstrated that the effects of S-isoflurane on relevant anesthetic targets might be modestly stronger (less than 2-fold) than R-isoflurane. The X-ray crystallographic structure of the immunological target, leukocyte function-associated antigen-1 (LFA-1) with racemic isoflurane suggested that only S-isoflurane bound specifically to this protein. If so, the use of specific isoflurane enantiomers may have advantage in the surgical settings where a wide range of inflammatory responses is expected to occur. Here, we have further tested the hypothesis that isoflurane enantioselectivity is apparent in solution binding and functional studies. METHODS First, binding of isoflurane enantiomers to LFA-1 was studied using 1-aminoanthracene (1-AMA) displacement assays. The binding site of each enantiomer on LFA-1 was studied using the docking program GLIDE. Functional studies employed the flow-cytometry based ICAM binding assay. RESULTS Both enantiomers decreased 1-AMA fluorescence signal (at 520 nm), indicating that both competed with 1-AMA and bound to the αL I domain. The docking simulation demonstrated that both enantiomers bound to the LFA-1 "lovastatin site." ICAM binding assays showed that S-isoflurane inhibited more potently than R-isoflurane, consistent with the result of 1-AMA competition assay. CONCLUSIONS In contrast with the x-ray crystallography, both enantiomers bound to and inhibited LFA-1. S-isoflurane showed slight preference over R-isoflurane.
Collapse
Affiliation(s)
- Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Luis M. Pereira
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Jang Y, Yeom MY, Kang ES, Kang JW, Song HK. The antinociceptive effect of dexmedetomidine modulates spleen cell immunity in mice. Int J Med Sci 2014; 11:226-33. [PMID: 24516345 PMCID: PMC3917109 DOI: 10.7150/ijms.7897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/24/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pain plays roles in both the nervous system and immune system. Changes in the neuroendocrine pathway under pain conditions give rise to sympathetic outflow with increased plasma catecholamines and activate immune reactions. Dexmedetomidine exerts sedative, analgesic, and anesthetic-sparing effects and is known to diminish pro-inflammatory processes by central sympatholytic effects. To investigate the influence of the analgesic effect of dexmedetomidine on immunomodulation under pain conditions, splenic natural killer (NK) tumoricidal cytotoxic activity, proliferative ability of T lymphocytes, and cytokine changes were assessed. METHODS After evaluation of the analgesic efficacy of dexmedetomidine in C57BL mice that were subjected to formalin-induced pain, dexmedetomidine (30 µg/kg) or saline was injected intraperitoneally (ip) 30 min before formalin (20 µL of 2% formalin in 0.9% saline) injection. NK cell activity against NK-sensitive YAC-1 lymphoma cells was evaluated by the percentage of specific lactate dehydrogenase (LDH) release. Various numbers of effector cells (NK cells) were added to the wells of a microtiter plate containing 2 × 10(4) target YAC-1 cells in 100 μL, to achieve final effector-to-target cell ratios of 80:1, 40:1, and 20:1. The level of lymphocyte proliferation in response to phytohemagglutinin (PHA) was detected by bromodeoxyuridine (BrdU) incorporation assay. TNF-α, IL-1β, and IL-10 levels were determined in blood samples and supernatants of splenocyte preparations. RESULTS IP administration of dexmedetomidine significantly decreased the time of licking and biting during the first and second phases of the formalin test (p <0.001). Formalin-induced pain led to higher activity of NK cells than in sham-treated mice (p <0.05), but NK activity was not increased significantly by ip dexmedetomidine treatment. Formalin-induced pain significantly increased splenic lymphocyte proliferation (p <0.05), but dexmedetomidine did not alter this response. There was a significant increase in plasma TNF-α (p = 0.048) and IL-6 (p = 0.014) levels after formalin-induced pain. However, the differences between the responses after ip dexmedetomidine did not change significantly. CONCLUSIONS Dexmedetomidine showed antinociceptive effect on both of acute pain phase 1 and hyperalgesic phase 2 of formalin pain model. Formalin-induced pain alters cellular immunity of spleen in mice. Dexmedetomidine attenuates the activation of NK cells under pain condition, but neither the proliferative response of the splenic lymphocytes nor the cytokine production was affected by dexmedetomidine.
Collapse
Affiliation(s)
- Yeon Jang
- 1. Department of Anesthesiology and pain medicine, The Catholic University of Korea, Inchon St. Mary's Hospital, 56 Dongsu-ro, Bupyong-gu, Incheon, S.Korea 403-720
| | - Mi-Young Yeom
- 2. Clinical Research Laboratory, The Catholic University of Korea, Inchon St. Mary's Hospital, 56 Dongsu-ro, Bupyong-gu, Incheon, S.Korea 403-720
| | - Eun-Sun Kang
- 2. Clinical Research Laboratory, The Catholic University of Korea, Inchon St. Mary's Hospital, 56 Dongsu-ro, Bupyong-gu, Incheon, S.Korea 403-720
| | - Ji-Won Kang
- 1. Department of Anesthesiology and pain medicine, The Catholic University of Korea, Inchon St. Mary's Hospital, 56 Dongsu-ro, Bupyong-gu, Incheon, S.Korea 403-720
| | - Ho-Kyung Song
- 1. Department of Anesthesiology and pain medicine, The Catholic University of Korea, Inchon St. Mary's Hospital, 56 Dongsu-ro, Bupyong-gu, Incheon, S.Korea 403-720
| |
Collapse
|
27
|
Weiser BP, Woll KA, Dailey WP, Eckenhoff RG. Mechanisms revealed through general anesthetic photolabeling. CURRENT ANESTHESIOLOGY REPORTS 2013; 4:57-66. [PMID: 24563623 DOI: 10.1007/s40140-013-0040-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
General anesthetic photolabels are used to reveal molecular targets and molecular binding sites of anesthetic ligands. After identification, the relevance of anesthetic substrates or binding sites can be tested in biological systems. Halothane and photoactive analogs of isoflurane, propofol, etomidate, neurosteroids, anthracene, and long chain alcohols have been used in anesthetic photolabeling experiments. Interrogated protein targets include the nicotinic acetylcholine receptor, GABAA receptor, tubulin, leukocyte function-associated antigen-1, and protein kinase C. In this review, we summarize insights revealed by photolabeling these targets, as well as general features of anesthetics, such as their propensity to partition to mitochondria and bind voltage-dependent anion channels. The theory of anesthetic photolabel design and the experimental application of photoactive ligands are also discussed.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 ; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - Kellie A Woll
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 ; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, 231 S. 34th Street, Philadelphia, PA 19104
| | - Roderic G Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
28
|
Yuki K, Bu W, Xi J, Shimaoka M, Eckenhoff R. Propofol shares the binding site with isoflurane and sevoflurane on leukocyte function-associated antigen-1. Anesth Analg 2013; 117:803-811. [PMID: 23960033 DOI: 10.1213/ane.0b013e3182a00ae0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND We previously demonstrated that propofol interacted with the leukocyte adhesion molecule leukocyte function-associated antigen-1 (LFA-1) and inhibited the production of interleukin-2 via LFA-1 in a dependent manner. However, the binding site(s) of propofol on LFA-1 remains unknown. METHODS First, the inhibition of LFA-1's ligand binding by propofol was confirmed in an enzyme-linked immunosorbent assay (ELISA) ELISA-type assay. The binding site of propofol on LFA-1 was probed with a photolabeling experiment using a photoactivatable propofol analog called azi-propofol-m. The adducted residues of LFA-1 by this compound were determined using liquid chromatography-mass spectrometry. In addition, the binding of propofol to the ligand-binding domain of LFA-1 was examined using 1-aminoanthracene (1-AMA) displacement assay. Furthermore, the binding site(s) of 1-AMA and propofol on LFA-1 was studied using the docking program GLIDE. RESULTS We demonstrated that propofol impaired the binding of LFA-1 to its ligand intercellular adhesion molecule-1. The photolabeling experiment demonstrated that the adducted residues were localized in the allosteric cavity of the ligand-binding domain of LFA-1 called "lovastatin site." The shift of fluorescence spectra was observed when 1-AMA was coincubated with the low-affinity conformer of LFA-1 ligand-binding domain (wild-type [WT] αL I domain), not with the high-affinity conformer, suggesting that 1-AMA bound only to WT αL I domain. In the 1-AMA displacement assay, propofol decreased 1-AMA fluorescence signal (at 520 nm), suggesting that propofol competed with 1-AMA and bound to the WT αL I domain. The docking simulation demonstrated that both 1-AMA and propofol bound to the lovastatin site, which agreed with the photolabeling experiment. CONCLUSIONS We demonstrated that propofol bound to the lovastatin site in LFA-1. Previously we showed that the volatile anesthetics isoflurane and sevoflurane bound to this site. Taken together, the lovastatin site is an example of the common binding sites for anesthetics currently used clinically.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115.
| | | | | | | | | |
Collapse
|
29
|
Ye HH, Wu KJ, Fei SJ, Zhang XW, Liu HX, Zhang JL, Zhang YM. Propofol participates in gastric mucosal protection through inhibiting the toll-like receptor-4/nuclear factor kappa-B signaling pathway. Clin Res Hepatol Gastroenterol 2013; 37:e3-15. [PMID: 22516481 DOI: 10.1016/j.clinre.2012.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/20/2012] [Accepted: 03/02/2012] [Indexed: 02/04/2023]
Abstract
AIMS Propofol has demonstrated protective effects against digestive injury. Toll-like receptor-4 (TLR4) is involved in gastric mucosal injury. However, it has not yet been clarified whether propofol protects gastric mucosa from ethanol-induced injury and whether the mechanism involved is related to TLR4 activation. Therefore, this prospective study was carried out to address the issue. METHODS Gastric mucosal injury was induced in mice by intragastric administration of ethanol. Propofol was given intraperitoneally 30 min before ethanol intragastric administration and, 1h later, gastric specimens were studied using hematoxylin--eosin staining, quantitative real-time RT-PCR, immunohistochemical staining and Western blot assays; serum specimens were studied using ELISA kits. RESULTS Propofol at 25mg/kg significantly attenuated ethanol-induced gastric mucosal injury. In addition, propofol pretreatment significantly inhibited the upregulated expression of high-mobility group box-1 (HMGB1) protein, TLR4 and its downstream signaling molecules--myeloid differentiation factor 88 (MyD88) and nuclear factor kappa-B (NF-κB)--in gastric mucosa, while suppressing the increased release of tumor neurosis factor-α (TNF-α) and interleukin-1β (IL-1β) in serum. Furthermore, upregulation of the Bax/Bcl-2 ratio in gastric mucosa was clearly depressed by propofol. CONCLUSION Propofol can inhibit HMGB1 expression and TLR4/MyD88/NF-κB-mediated inflammatory responses, and hamper apoptosis, which may contribute to its protective action against ethanol-induced gastric mucosal injury.
Collapse
Affiliation(s)
- Hui-Hui Ye
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, 84, West Huaihai Road, Jiangsu Province 221002, Xuzhou, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhao T, Liu Z, Yu A, Zhang Z. Effects of Intraoperative Administration of Dexmedetomidine on the Percentage of T-Lymphocyte Subsets and Natural Killer Cells in Patients with Colorectal Cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojanes.2013.32026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Conte AH, Esmailian F, LaBounty T, Lubin L, Hardy WD, Yumul R. The patient with the human immunodeficiency virus-1 in the cardiovascular operative setting. J Cardiothorac Vasc Anesth 2012; 27:135-55. [PMID: 22920840 DOI: 10.1053/j.jvca.2012.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Antonio Hernandez Conte
- Division of Cardiothoracic Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Current world literature. Curr Opin Allergy Clin Immunol 2012; 12:211-7. [PMID: 22382450 DOI: 10.1097/aci.0b013e3283520fda] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|