1
|
Casaril AM, Gaffney CM, Shepherd AJ. Animal models of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:339-401. [PMID: 39580217 DOI: 10.1016/bs.irn.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Animal models continue to be crucial to developing our understanding of the molecular, cellular, and neurophysiological mechanisms that lead to neuropathic pain. The overwhelming majority of animal studies use rodent models, ranging from surgical and trauma-induced models to those induced by metabolic diseases, genetic mutations, viruses, neurotoxic drugs, and cancer. We discuss the clinical relevance of the available models and the pain behavior tests commonly used as outcome measures. Finally, we summarize the refinements that have been proposed to improve the ability of animal model studies to predict clinical efficacy.
Collapse
Affiliation(s)
- Angela M Casaril
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
2
|
Ma X, Zhu T, Ke J. Progress in animal models of trigeminal neuralgia. Arch Oral Biol 2023; 154:105765. [PMID: 37480619 DOI: 10.1016/j.archoralbio.2023.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This review aims to systematically summarize the methods of establishing various models of trigeminal neuralgia (TN), the scope of application, and current animals used in TN research and the corresponding pain measurements, hoping to provide valuable reference for researchers to select appropriate TN animal models and make contributions to the research of pathophysiology and management of the disease. DESIGN The related literatures of TN were searched through PubMed database using different combinations of the following terms and keywords including but not limited: animal models, trigeminal neuralgia, orofacial neuropathic pain. To find the maximum number of eligible articles, no filters were used in the search. The references of eligible studies were analyzed and reviewed comprehensively. RESULTS This study summarized the current animal models of TN, categorized them into the following groups: chemical induction, photochemical induction, surgery and genetic engineering, and introduced various measurement methods to evaluate animal pain behaviors. CONCLUSIONS Although a variety of methods are used to establish disease models, there is no ideal TN model that can reflect all the characteristics of the disease. Therefore, there is still a need to develop more novel animal models in order to further study the etiology, pathological mechanism and potential treatment of TN.
Collapse
Affiliation(s)
- Xiaohan Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Taomin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
3
|
Zhi HW, Jia YZ, Bo HQ, Li HT, Zhang SS, Wang YH, Yang J, Hu MZ, Wu HY, Cui WQ, Xu XD. Curcumin alleviates orofacial allodynia and improves cognitive impairment via regulating hippocampal synaptic plasticity in a mouse model of trigeminal neuralgia. Aging (Albany NY) 2023; 15:8458-8470. [PMID: 37632838 PMCID: PMC10496987 DOI: 10.18632/aging.204984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE Cognitive impairment, one of the most prevalent complications of trigeminal neuralgia, is troubling for patients and clinicians due to limited therapeutic options. Curcumin shows antinociception and neuroprotection pharmacologically, suggesting that it may have therapeutic effect on this complication. This study aimed to investigate whether curcumin alleviates orofacial allodynia and improves cognitive impairment by regulating hippocampal CA1 region synaptic plasticity in trigeminal neuralgia. METHODS A mouse model of trigeminal neuralgia was established by partially transecting the infraorbital nerve (pT-ION). Curcumin was administered by gavage twice daily for 14 days. Nociceptive thresholds were measured using the von Frey and acetone test, and the cognitive functions were evaluated using the Morris water maze test. Dendritic spines and synaptic ultrastructures in the hippocampal CA1 area were observed by Golgi staining and transmission electron microscopy. RESULTS Curcumin intervention increased the mechanical and cold pain thresholds of models. It decreased the escape latency and distance to the platform and increased the number of platform crossings and dwell time in the target quadrant of models, and improved spatial learning and memory deficits. Furthermore, it partially restored the disorder of the density and proportion of dendritic spines and the abnormal density and structure of synapses in the hippocampal CA1 region of models. CONCLUSION Curcumin alleviates abnormal orofacial pain and cognitive impairment in pT-ION mice by a mechanism that may be related to the synaptic plasticity of hippocampal CA1, suggesting that curcumin is a potential strategy for repairing cognitive dysfunction under long-term neuropathic pain conditions.
Collapse
Affiliation(s)
- Hong-Wei Zhi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Yu-Zhi Jia
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Huai-Qian Bo
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Hai-Tao Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Si-Shuo Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Ya-Han Wang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Jie Yang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Ming-Zhe Hu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Xiang-Dong Xu
- Experimental Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
4
|
Sadighparvar S, Al-Hamed FS, Sharif-Naeini R, Meloto CB. Preclinical orofacial pain assays and measures and chronic primary orofacial pain research: where we are and where we need to go. FRONTIERS IN PAIN RESEARCH 2023; 4:1150749. [PMID: 37293433 PMCID: PMC10244561 DOI: 10.3389/fpain.2023.1150749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Chronic primary orofacial pain (OFP) conditions such as painful temporomandibular disorders (pTMDs; i.e., myofascial pain and arthralgia), idiopathic trigeminal neuralgia (TN), and burning mouth syndrome (BMS) are seemingly idiopathic, but evidence support complex and multifactorial etiology and pathophysiology. Important fragments of this complex array of factors have been identified over the years largely with the help of preclinical studies. However, findings have yet to translate into better pain care for chronic OFP patients. The need to develop preclinical assays that better simulate the etiology, pathophysiology, and clinical symptoms of OFP patients and to assess OFP measures consistent with their clinical symptoms is a challenge that needs to be overcome to support this translation process. In this review, we describe rodent assays and OFP pain measures that can be used in support of chronic primary OFP research, in specific pTMDs, TN, and BMS. We discuss their suitability and limitations considering the current knowledge of the etiology and pathophysiology of these conditions and suggest possible future directions. Our goal is to foster the development of innovative animal models with greater translatability and potential to lead to better care for patients living with chronic primary OFP.
Collapse
Affiliation(s)
- Shirin Sadighparvar
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | | | - Reza Sharif-Naeini
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada
| | - Carolina Beraldo Meloto
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Increased cerebrospinal fluid S100B protein levels in patients with trigeminal neuralgia and hemifacial spasm. Acta Neurochir (Wien) 2022; 165:959-965. [PMID: 36459237 DOI: 10.1007/s00701-022-05434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND The pathophysiology of neurovascular compression syndrome has not been fully elucidated, and cerebrospinal fluid levels of nerve tissue-related markers involved in this disorder have not yet been reported. METHODS We measured cerebrospinal fluid levels of S100B protein, neuron-specific enolase, and myelin basic protein in 21 patients with trigeminal neuralgia, 9 patients with hemifacial spasms, and 10 patients with non-ruptured intracranial aneurysms (control). Cerebrospinal fluid levels of these markers were determined using commercially available assay kits. RESULTS Both trigeminal neuralgia and hemifacial spasm groups showed significantly increased cerebrospinal fluid levels of S100B compared with the control group (1120 [IQR 391-1420], 766 [IQR 583-1500], and 255 [IQR 190-285] pg/mL, respectively; p = 0.001). There were no statistically significant differences in cerebrospinal fluid levels of neuron-specific enolase or myelin basic protein among the groups. CONCLUSION Cerebrospinal fluid S100B levels were significantly higher in patients with trigeminal neuralgia and hemifacial spasm than in controls, which suggests the involvement of S100B in the underlying pathophysiology of neurovascular compression syndrome.
Collapse
|
6
|
Resveratrol Ameliorates Trigeminal Neuralgia-Induced Cognitive Deficits by Regulating Neural Ultrastructural Remodelling and the CREB/BDNF Pathway in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4926678. [PMID: 36478990 PMCID: PMC9722315 DOI: 10.1155/2022/4926678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain often leads to cognitive impairment. Resveratrol (Res), a natural polyphenol existing in Polygonum cuspidatum, has been widely investigated for its antinociceptive, anti-inflammatory, and neuroprotective properties. Our aim was to explore the ameliorating effects of resveratrol on pain-related behaviors and learning and memory deficits induced by cobra venom-induced trigeminal neuralgia (TN). The TN model of rats was established by injecting cobra venom solution beneath the epineurium of the infraorbital nerve. Resveratrol was intragastrically administered at a dose of 40 mg/kg twice daily beginning on postoperative day 15. CREB inhibitor 666-15 was intraperitoneally administered at a dose of 10 mg/kg from POD 35-42 after morning resveratrol treatment. Mechanical allodynia was measured via von Frey filaments. Rat free movement was videotaped and analyzed. Spatial learning and memory were evaluated via the Morris water maze test. Ultrastructures of the hippocampal DG region and infraorbital nerve were observed by transmission electron microscopy. We found that resveratrol alleviated TN-induced allodynia, ameliorated learning and memory deficits, restored the ultrastructure of hippocampal neurons and synapses, repaired the damaged myelin sheath of the infraorbital nerve, and activated the CREB/BDNF pathway in the hippocampus of TN rats. CREB inhibitor administration suppressed the resveratrol-rescued abnormal hippocampal ultrastructural changes and aggravated spatial learning and memory impairment by inhibiting CREB/BDNF pathway activation in the hippocampus. Our findings indicated that resveratrol alleviated pain and improved cognitive deficits, probably by regulating neural ultrastructure remodelling and the CREB/BDNF pathway.
Collapse
|
7
|
Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int J Mol Sci 2021; 22:ijms22126406. [PMID: 34203854 PMCID: PMC8232571 DOI: 10.3390/ijms22126406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/25/2023] Open
Abstract
This review highlights potential molecular targets for treating neuropathic orofacial pain based on current findings in animal models. Preclinical research is currently elucidating the pathophysiology of the disease and identifying the molecular targets for better therapies using animal models that mimic this category of orofacial pain, especially post-traumatic trigeminal neuropathic pain (PTNP) and primary trigeminal neuralgia (PTN). Animal models of PTNP and PTN simulate their etiologies, that is, trauma to the trigeminal nerve branch and compression of the trigeminal root entry zone, respectively. Investigations in these animal models have suggested that biological processes, including inflammation, enhanced neuropeptide-mediated pain signal transmission, axonal ectopic discharges, and enhancement of interactions between neurons and glial cells in the trigeminal pathway, are underlying orofacial pain phenotypes. The molecules associated with biological processes, whose expressions are substantially altered following trigeminal nerve damage or compression of the trigeminal nerve root, are potentially involved in the generation and/or exacerbation of neuropathic orofacial pain and can be potential molecular targets for the discovery of better therapies. Application of therapeutic candidates, which act on the molecular targets and modulate biological processes, attenuates pain-associated behaviors in animal models. Such therapeutic candidates including calcitonin gene-related peptide receptor antagonists that have a reasonable mechanism for ameliorating neuropathic orofacial pain and meet the requirements for safe administration to humans seem worth to be evaluated in clinical trials. Such prospective translation of the efficacy of therapeutic candidates from animal models to human patients would help develop better therapies for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
- Correspondence:
| | - Shogo Nagaoka
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| | - Takahiro Kurose
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| |
Collapse
|
8
|
Zhang L, Ma Z, Wu Z, Jin M, An L, Xue F. Curcumin Improves Chronic Pain Induced Depression Through Regulating Serum Metabolomics in a Rat Model of Trigeminal Neuralgia. J Pain Res 2020; 13:3479-3492. [PMID: 33402844 PMCID: PMC7778445 DOI: 10.2147/jpr.s283782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background Depression is a prevalent and complex psychiatric disorder with high incidence in patients with chronic pain. The underlying pathogenesis of chronic pain-induced depression is complicated and remains largely unclear. An integrated analysis of endogenous substance-related metabolisms would help to understand the molecular mechanism of chronic pain-induced depression. Curcumin was reported to exert various health benefits, such as anti-depression, antioxidant, antineoplastic, analgesia, and anti-inflammation. Objective The aim of this study was to analyze the biomarkers related to depression in serum and to evaluate the anti-depression properties of curcumin in a chronic pain-induced depression model of rats. Design This is a randomized, controlled experiment. Setting This study was conducted at the Experimental Animal Center, Beijing Friendship Hospital, Capital Medical University. Methods Trigeminal neuralgia (TN) was produced by injecting 4 µL, 10% cobra venom saline solution into the infraorbital nerve (ION). Curcumin was administered by gavage twice a day from post-operation day (POD) 15 to POD 42. Mechanical allodynia was assessed using von Frey filaments. Sucrose preference and forced swimming tests were performed to evaluate depression-like behaviors. The metabolomics analysis was preceded by LCMS-IT-TOF and multivariate statistical methods for sample detection and biomarker screening. Results Cobra venom intra-ION injection led to chronic mechanical allodynia, reduced sucrose preference, and prolonged immobility during forced swimming. Curcumin treatment alleviated chronic mechanical allodynia, regained sucrose preference, and reduced immobility time. Differential analysis identified 30 potential metabolites changed under TN condition. The integrated analyses further revealed two major metabolic changes by comparing the serums from sham operated rats, TN rats, and TN rats treated with curcumin: 1) ether lipid metabolism; and 2) glycerophospholipid metabolism, and suggested that curcumin may improve chronic pain-induced depression by regulating these two types of lipid metabolisms. Conclusion Ether lipid and glycerophospholipid metabolism might be two of the pathways with the most potential related to chronic pain induced-depression; and curcumin could alleviate chronic pain induced-depression by modulating these two pathways. These results provide further insights into the mechanisms of chronic pain-induced depression and may help to identify potential targets for anti-depression properties of curcumin.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Wu
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Mu Jin
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lixin An
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
9
|
Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med 2019; 69:555-570. [PMID: 31822322 PMCID: PMC6935695 DOI: 10.30802/aalas-cm-19-000062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Pain is a clinical syndrome arising from a variety of etiologies in a heterogeneous population, which makes successfully treating the individual patient difficult. Organizations and governments recognize the need for tailored and specific therapies, which drives pain research. This review summarizes the different types of pain assessments currently being used and the various rodent models that have been developed to recapitulate the human pain condition.
Collapse
Affiliation(s)
- Christina M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, St Paul, Minnesota
| | - George L Wilcox
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota;,
| |
Collapse
|
10
|
Xia L, Liu MX, Zhong J, Dou NN. Pain threshold monitoring during chronic constriction injury of the infraorbital nerve in rats. Br J Neurosurg 2018; 33:409-412. [PMID: 30431370 DOI: 10.1080/02688697.2018.1538483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: The chronic constriction injury (CCI) of the infraorbital nerve (ION) has been used to establish an animal mode of trigeminal neuralgia (TN), but key parameters of the model have not been quantified until now. Objective: The aim of the study was to quantify a standard of pain threshold to evaluate a successful TN model in Sprague-Dawley (SD) rats. Methods: Forty-eight adult SD rats (200-220 g) underwent chronic constriction injury of the infraorbital nerve. The pain threshold was tested one day preoperatively (baseline) and day 1, 3, 7, 14, 28 postoperatively using the up-down method. At day 28, all the animals were killed by dislocation of the cervical spine and the trigeminal nerve specimens were removed for electron microscopy. Results: The baseline pain threshold was 14.40 ± 0.87 g. Postoperatively, all the rats presented an initial reduced sensitivity to mechanical stimulation from day 1 (15.63 ± 1.92 g) through 7 (17.39 ± 1.43 g) after the surgery. At day 14, 32 (66.7%) began to show significant mechanical allodynia (0.71 ± 0.43 g) which did not change significantly till day 28 (0.88 ± 0.54 g). These animals were regarded as successful TN models with a 95% confidence interval of the pain threshold of 0.58-1.27 at Day 14. The electron microscopy demonstrated homogeneously demyelinated changes in those successful TN model animals rather than severe or mild epineurial lesions in those unsuccessful model animals. Conclusion: Our study showed that an animal TN model could be established with a two-week chronic constriction injury of the infraorbital nerve. The mechanical allodynia index <1.27 at Day 14 was suggested as a criterion for a successful model.
Collapse
Affiliation(s)
- Lei Xia
- a Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Ming-Xing Liu
- a Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Jun Zhong
- a Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Ning-Ning Dou
- a Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| |
Collapse
|
11
|
Zhang L, Ding X, Wu Z, Wang M, Tian M. Curcumin alleviates pain and improves cognitive impairment in a rat model of cobra venom-induced trigeminal neuralgia. J Pain Res 2018; 11:1095-1104. [PMID: 29950886 PMCID: PMC6016256 DOI: 10.2147/jpr.s162668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Cognitive impairment is a common complication in patients with chronic neuropathic pain, without effective therapy. Recent works have indicated that curcumin (Cur) possesses antinociceptive and neuroprotective potentials, suggesting its possible effectiveness for the treatment of this complication. Objective The aim of this study was to explore the effects of Cur on pain behaviors and cognitive impairment in rats with cobra venom-induced trigeminal neuralgia (TN). Design This is a randomized, controlled experiment. Setting This study was conducted at the Experimental Animal Center, Beijing Friendship Hospital, Capital Medical University. Subjects A total of 40 adult male Sprague Dawley rats were used in this study. Methods A cobra venom solution was injected into the sheath of infraorbital nerve. Cur was administered intragastrically at 45 mg/kg twice daily for 28 successive days from postoperative day 15. Mechanical allodynia was evaluated using von Frey filaments. Free behaviors were observed using video recording. Cognitive capacity was tested using the Morris water maze. Both morphology and ultrastructure of the CA1 hippocampal region were visualized using hematoxylin and eosin (HE) staining and transmission electron microscopy, respectively. Results Cur treatment reduced mechanical allodynia and face-grooming activities but increased exploratory activities and improved spatial learning and memory deficits. Microscopic examination revealed nucleus pyknosis, swollen organelles, and decreased synapse density in the CA1 hippocampal region after cobra venom injection. However, chronic Cur treatment reversed damage to hippocampal neurons and synapses. Conclusion Cur can alleviate pain, improve spatial learning and memory deficits, and restore the damage to hippocampal neurons and synapses in cobra venom-induced TN rats. Cur may be useful as an adjuvant to treat chronic neuropathic pain-induced cognitive deficits.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Xinli Ding
- Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021
| | - Zhe Wu
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing 100012, China
| | - Min Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Ming Tian
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| |
Collapse
|
12
|
Chen RW, Liu H, An JX, Qian XY, Jiang YD, Cope DK, Williams JP, Zhang R, Sun LN. Cognitive effects of electro-acupuncture and pregabalin in a trigeminal neuralgia rat model induced by cobra venom. J Pain Res 2017; 10:1887-1897. [PMID: 28860844 PMCID: PMC5558586 DOI: 10.2147/jpr.s140840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective The objective of this study was to investigate the effects of electro-acupuncture (EA) and pregabalin on cognition impairment induced by chronic trigeminal neuralgia (TN) in rats. Design Controlled animal study. Setting Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University. Subjects Forty adult male Sprague Dawley rats. Methods Rats were randomly divided into four groups. The TN model was induced by administration of cobra venom to the left infraorbital nerve. On postoperative day 14, either EA or pregabalin was administered, free behavioral activities were observed. Spatial learning and memory abilities were determined in the Morris water maze. The ultrastructural alterations of the Gasserian ganglion, medulla oblongata and hippocampus were examined by electron microscopy. The changes on long-term potentiation were investigated. Results After treatment, the exploratory behavior increased and the grooming behavior decreased (P<0.05) for the EA group and pregabalin group compared with the cobra venom group; moreover, demyelination of neurons in Gasserian ganglion and medulla oblongata was reversed. The number of platform site crossings, the average percentages of time in the target quadrant and the field excitatory postsynaptic potential slopes increased (P<0.05) in the EA group compared to the cobra venom group. However, the pregabalin group showed no differences compared to the cobra venom group (P>0.05). Vacuolar degeneration in the hippocampal neurons was mild in the EA group, while it was severe in the pregabalin group. Conclusion EA and pregabalin could alleviate TN induced by cobra venom. EA could also inhibit the cognition deficit induced by TN, while pregabalin could not.
Collapse
Affiliation(s)
- Ruo-Wen Chen
- Department of Anesthesiology, Weifang Medical University, Weifang City, Shandong.,Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Jian-Xiong An
- Department of Anesthesiology, Weifang Medical University, Weifang City, Shandong.,Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yan Qian
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Yi-De Jiang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Doris K Cope
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rui Zhang
- Department of Anesthesiology, Weifang Medical University, Weifang City, Shandong
| | - Li-Na Sun
- Department of Anesthesiology, Weifang Medical University, Weifang City, Shandong
| |
Collapse
|
13
|
Long H, Liao L, Zhou Y, Shan D, Gao M, Huang R, Yang X, Lai W. A novel technique of delivering viral vectors to trigeminal ganglia in rats. Eur J Oral Sci 2017; 125:1-7. [PMID: 28067416 DOI: 10.1111/eos.12326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Hu Long
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Lina Liao
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Yang Zhou
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Di Shan
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Meiya Gao
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Renhuan Huang
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xin Yang
- Department of Stomatology; Shanghai Tenth People's Hospital; Tongji University School of Medicine; Shanghai China
| | - Wenli Lai
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
14
|
Ma F, Zhang L, Oz HS, Mashni M, Westlund KN. Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience 2015; 300:493-507. [PMID: 26033565 DOI: 10.1016/j.neuroscience.2015.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFα) is increased in patients with headache, neuropathic pain, periodontal and temporomandibular disease. This study and others have utilized TNF receptor 1/2 (TNFR1/2) knockout (KO) animals to investigate the effect of TNFα dysregulation in generation and maintenance of chronic neuropathic pain. The present study determined the impact of TNFα dysregulation in a trigeminal inflammatory compression (TIC) nerve injury model comparing wild-type (WT) and TNFR1/2 KO mice. METHODS Chromic gut suture was inserted adjacent to the infraorbital nerve to induce the TIC model mechanical hypersensitivity. Cytokine proteome profiles demonstrated serology, and morphology explored microglial activation in trigeminal nucleus 10weeks post. RESULTS TIC injury induced ipsilateral whisker pad mechanical allodynia persisting throughout the 10-week study in both TNFR1/2 KO and WT mice. Delayed mechanical allodynia developed on the contralateral whisker pad in TNFR1/2 KO mice but not in WT mice. Proteomic profiling 10weeks after chronic TIC injury revealed TNFα, interleukin-1alpha (IL-1α), interleukin-5 (IL-5), interleukin-23 (IL-23), macrophage inflammatory protein-1β (MIP-1β), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased more than 2-fold in TNFR1/2 KO mice compared to WT mice with TIC. Bilateral microglial activation in spinal trigeminal nucleus was detected only in TNFR1/2 KO mice. p38 mitogen-activated protein kinase (MAPK) inhibitor and microglial inhibitor minocycline reduced hypersensitivity. CONCLUSIONS The results suggest the dysregulated serum cytokine proteome profile and bilateral spinal trigeminal nucleus microglial activation are contributory to the bilateral mechanical hypersensitization in this chronic trigeminal neuropathic pain model in the mice with TNFα dysregulation. Data support involvement of both neurogenic and humoral influences in chronic neuropathic pain.
Collapse
Affiliation(s)
- F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - H S Oz
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - M Mashni
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
15
|
Liu C, Qian X, JianXiong AN, Wang Y, Fang Q, Jiang Y, Cope DK, Williams JP. A New Animal Model of Brachial Plexus Neuralgia Produced by Injection of Cobra Venom into the Lower Trunk in the Rat. PAIN MEDICINE 2015; 16:1680-9. [PMID: 25716294 DOI: 10.1111/pme.12722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND To establish a new animal model for the study of neuropathic pain developed by administration of cobra venom to the brachial plexus (BP) lower trunk. METHODS Fifty-eight adult male Sprague-Dawley rats were randomly divided into 5 groups. Under pentobarbital sodium anesthesia, cobra venom was injected into the lower trunk or sham operation was performed in the animals. On postoperative day 1 and day 12, pregabalin was administered intragastricly at 30 mg/kg in two groups. Mechanical withdrawal thresholds (MWT) were tested with von Frey filaments. Video recordings were used to analyze the spontaneous behaviors. Meanwhile, our model was confirmed by observing ultrastructural alterations of the BP and cervical cord (C8-T1) via electron microscope examination. RESULTS In comparison to the blank and sham-operated group, cobra venom-treated rats showed a profound decrease in the MWT, exploratory and increase in grooming behaviors (P<0.05). The changes were long-lasting (up to 60 days), in both ipsilateral and contralateral paws. Furthermore, it was observed under microscopic examination that the myelin sheath was demyelinated in the BP and cervical cord (C8-T1) after injection of cobra venom to the lower trunk. Pregabalin group rats showed changes in MWT and spontaneous behaviors after pregabalin treatment at postoperative day 1 (P>0.05), compared with the control and sham-operated groups. In pregabalin test POD12 group, the decreased MWT and the increased grooming behavior were improved at 20 days after operation. However, pregabalin had no effect on exploratory activity. Results indicate that pregabalin effectively attenuates mechanical hyperalgesia in acute period. CONCLUSIONS The cobra venom model can be used as a model to induce neuropathic pain and to enable study of the mechanism and treatment.
Collapse
Affiliation(s)
- CaiCai Liu
- Department of Anesthesiology, Weifang Medical University, Weifang City, Shandong Province, 261000, China.,Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - XiaoYan Qian
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - A N JianXiong
- Department of Anesthesiology, Weifang Medical University, Weifang City, Shandong Province, 261000, China.,Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Yong Wang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - QiWu Fang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - YiDe Jiang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Doris K Cope
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
16
|
Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum. Eur J Pharmacol 2013; 714:332-44. [PMID: 23911956 DOI: 10.1016/j.ejphar.2013.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/21/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023]
Abstract
Abdominal pain is a frequent symptom of peritoneal cavity irritation, but little is known about the role of the receptors for irritant substances, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), in this painful condition. Thus, we investigated the abdominal nociception caused by peritoneal stimulation with TRPV1 (capsaicin) and TRPA1 (allyl isothiocyanate, AITC) agonists and their mechanisms in rats. The intraperitoneal (i.p.) injection of either capsaicin or AITC (0.03-10 mg/kg) induced short-term (up to 20 min) and dose-dependent abdominal nociception, and also produced c-fos expression in spinal afferents of the dorsal horn. TRPV1 antagonism prevented (94 ± 4% inhibition) nociception induced by capsaicin but not by AITC. In contrast, the TRPA1 antagonism almost abolished AITC-induced nociception (95 ± 2% inhibition) without altering the capsaicin response. Moreover, nociception induced by either capsaicin or AITC was reduced by the desensitisation of TRPV1-positive sensory fibres with resiniferatoxin (73 ± 18 and 76 ± 15% inhibitions, respectively) and by the NK1 receptor antagonist aprepitant (56 ± 5 and 53 ± 8% inhibitions, respectively). Likewise, the i.p. injections of capsaicin or AITC increased the content of substance P in the peritoneal fluid. Nevertheless, neither the mast cell membrane stabiliser cromoglycate, nor the H1 antagonist promethazine, nor depletion of peritoneal macrophages affected abdominal nociception induced either by capsaicin or AITC. Accordingly, neither capsaicin nor AITC increased the histamine content in the peritoneal fluid or provoked peritoneal mast cell degranulation in vitro. Collectively, our findings suggest that TRPV1 and TRPA1 stimulation in the peritoneum produces abdominal nociception that is mediated by sensory fibres activation.
Collapse
|
17
|
Ma F, Zhang L, Lyons D, Westlund KN. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve. Mol Brain 2012; 5:44. [PMID: 23270529 PMCID: PMC3563613 DOI: 10.1186/1756-6606-5-44] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. RESULTS The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. CONCLUSIONS A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks.
Collapse
Affiliation(s)
- Fei Ma
- Department of Physiology MS-508, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
18
|
Wang X, Liang H, Zhou C, Xu M, Xu L. Sensitization induces hypersensitivity in trigeminal nerve. Clin Exp Allergy 2012; 42:1638-42. [PMID: 23106664 DOI: 10.1111/j.1365-2222.2012.04051.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- X. Wang
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| | - H. Liang
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| | - C. Zhou
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| | - M. Xu
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| | - L. Xu
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| |
Collapse
|
19
|
Early demyelination of primary A-fibers induces a rapid-onset of neuropathic pain in rat. Neuroscience 2011; 200:186-98. [PMID: 22061425 DOI: 10.1016/j.neuroscience.2011.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 12/23/2022]
Abstract
Some types of peripheral neuropathic pain are associated with damage to myelin rather than to axons of primary sensory neurons. It is extremely important to develop selective demyelination animal models for understanding neuropathic pain caused by demyelination. We induced a rapid-onset and reversible demyelination of peripheral A-fibers and neuropathic pain behaviors in adult rats by a single injection of cobra venom into the sciatic nerve. The relation between A-fiber demyelination and the abnormal pain behaviors was investigated using this model. Microfilament recordings revealed that cobra venom selectively blocked A-fibers, but not C-fibers. Selective blockade of A-fibers may result from A-fiber demyelination at the site of venom injection as demonstrated by microscope examination. The axons of the demyelinated A-fibers appeared to be otherwise normal. Neuropathic pain behaviors appeared almost immediately after venom injection and lasted about 3 weeks. Electrophysiological studies indicated that venom injection induced loss of conduction in A-fibers, increased sensitivity of C-polymodal nociceptors to innocuous stimuli, and triggered spontaneous activity from both peripheral and central terminals of C-fiber nociceptors. Neurogenic inflammatory responses were also observed in the affected skin via Evan's Blue extravasation experiments. Both antidromic C-fiber spontaneous activity and neurogenic inflammation were substantially decreased by continuous A-fiber threshold electric stimuli applied proximally to the venom injection site. The data suggest that normal activity of peripheral A-fibers may produce inhibitory modulation of C-fiber polymodal nociceptors. Removal of inhibition to C-fiber polymodal nociceptors following demyelination of A-fibers may result in pain and neurogenic inflammation in the affected receptive field.
Collapse
|