1
|
Exploring the sensitivity in jellyfish locomotion under variations in scale, frequency, and duty cycle. J Math Biol 2021; 83:56. [PMID: 34731319 DOI: 10.1007/s00285-021-01678-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Jellyfish have been called one of the most energy-efficient animals in the world due to the ease in which they move through their fluid environment, by product of their bell kinematics coupled with their morphological, muscular, material properties. We investigated jellyfish locomotion by conducting in silico comparative studies and explored swimming performance across different fluid scales (i.e., Reynolds Number), bell contraction frequencies, and contraction phase kinematics (duty cycle) for a jellyfish with a fineness ratio of 1 (ratio of bell height to bell diameter). To study these relationships, an open source implementation of the immersed boundary method was used (IB2d) to solve the fully coupled fluid-structure interaction problem of a flexible jellyfish bell in a viscous fluid. Thorough 2D parameter subspace explorations illustrated optimal parameter combinations in which give rise to enhanced swimming performance. All performance metrics indicated a higher sensitivity to bell actuation frequency than fluid scale or duty cycle, via Sobol sensitivity analysis, on a higher performance parameter subspace. Moreover, Pareto-like fronts were identified in the overall performance space involving the cost of transport and forward swimming speed. Patterns emerged within these performance spaces when highlighting different parameter regions, which complemented the global sensitivity results. Lastly, an open source computational model for jellyfish locomotion is offered to the science community that can be used as a starting place for future numerical experimentation.
Collapse
|
2
|
Baldwin T, Battista NA. Hopscotching jellyfish: combining different duty cycle kinematics can lead to enhanced swimming performance. BIOINSPIRATION & BIOMIMETICS 2021; 16:066021. [PMID: 34584025 DOI: 10.1088/1748-3190/ac2afe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Jellyfish (Medusozoa) have been deemed the most energy-efficient animals in the world. Their bell morphology and relatively simple nervous systems make them attractive to robotocists. Although, the science community has devoted much attention to understanding their swimming performance, there is still much to be learned about the jet propulsive locomotive gait displayed by prolate jellyfish. Traditionally, computational scientists have assumed uniform duty cycle kinematics when computationally modeling jellyfish locomotion. In this study we used fluid-structure interaction modeling to determine possible enhancements in performance from shuffling different duty cycles together across multiple Reynolds numbers and contraction frequencies. Increases in speed and reductions in cost of transport were observed as high as 80% and 50%, respectively. Generally, the net effects were greater for cases involving lower contraction frequencies. Overall, robust duty cycle combinations were determined that led to enhanced or impeded performance.
Collapse
Affiliation(s)
- Tierney Baldwin
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ 08628, United States of America
| | - Nicholas A Battista
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ 08628, United States of America
| |
Collapse
|
3
|
Numerical Simulation of Self-Propelled Steady Jet Propulsion at Intermediate Reynolds Numbers: Effects of Orifice Size on Animal Jet Propulsion. FLUIDS 2021. [DOI: 10.3390/fluids6060230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most marine jet-propelled animals have low swimming efficiencies and relatively small jet orifices. Motivated by this, the present computational fluid dynamics study simulates the flow for a jet-propelled axisymmetric body swimming steadily at intermediate Reynolds numbers of order 1–1000. Results show that swimming-imposed flow field, drag coefficients, swimming efficiencies, and performance index (a metric comparing swimming speeds sustained by differently sized orifices ejecting the same volume flow rate) all depend strongly on orifice size, and orifice size affects the configuration of oppositely signed body vorticity and jet vorticity, thereby affecting wake and efficiency. As orifice size decreases, efficiencies decrease considerably, while performance index increases substantially, suggesting that, for a given jet volume flow rate, a smaller orifice supports faster swimming than a larger one does, albeit at reduced efficiency. These results support the notion that most jet-propelled animals having relatively small jet orifices may be an adaptation to deal with the physical constraint of limited total volume of water available for jetting, while needing to compete for fast swimming. Finally, jet orifice size is discussed regarding the role of jet propulsion in jet-propelled animal ecology, particularly for salps that use two relatively large siphons to respectively draw in and expel water.
Collapse
|
4
|
Gemmell BJ, Dabiri JO, Colin SP, Costello JH, Townsend JP, Sutherland KR. Cool your jets: biological jet propulsion in marine invertebrates. J Exp Biol 2021; 224:269180. [PMID: 34137893 DOI: 10.1242/jeb.222083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pulsatile jet propulsion is a common swimming mode used by a diverse array of aquatic taxa from chordates to cnidarians. This mode of locomotion has interested both biologists and engineers for over a century. A central issue to understanding the important features of jet-propelling animals is to determine how the animal interacts with the surrounding fluid. Much of our knowledge of aquatic jet propulsion has come from simple theoretical approximations of both propulsive and resistive forces. Although these models and basic kinematic measurements have contributed greatly, they alone cannot provide the detailed information needed for a comprehensive, mechanistic overview of how jet propulsion functions across multiple taxa, size scales and through development. However, more recently, novel experimental tools such as high-speed 2D and 3D particle image velocimetry have permitted detailed quantification of the fluid dynamics of aquatic jet propulsion. Here, we provide a comparative analysis of a variety of parameters such as efficiency, kinematics and jet parameters, and review how they can aid our understanding of the principles of aquatic jet propulsion. Research on disparate taxa allows comparison of the similarities and differences between them and contributes to a more robust understanding of aquatic jet propulsion.
Collapse
Affiliation(s)
- Brad J Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA
| | - John O Dabiri
- Graduate Aerospace Laboratories and Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sean P Colin
- Department of Marine Biology and Environmental Science, Roger Williams University, Bristol, Rhode Island 02809, USA
| | - John H Costello
- Department of Biology, Providence College, Providence, Rhode Island 02918, USA
| | - James P Townsend
- Department of Biology, Providence College, Providence, Rhode Island 02918, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
5
|
Wong JY, Chan BKK, Chan KYK. Swimming kinematics and hydrodynamics of barnacle larvae throughout development. Proc Biol Sci 2020; 287:20201360. [PMID: 33049170 PMCID: PMC7657860 DOI: 10.1098/rspb.2020.1360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Changes in size strongly influence organisms' ecological performances. For aquatic organisms, they can transition from viscosity- to inertia-dominated fluid regimes as they grow. Such transitions are often associated with changes in morphology, swimming speed and kinematics. Barnacles do not fit into this norm as they have two morphologically distinct planktonic larval phases that swim differently but are of comparable sizes and operate in the same fluid regime (Reynolds number 100-101). We quantified the hydrodynamics of the rocky intertidal stalked barnacle Capitulum mitella from the nauplius II to cyprid stage and examined how kinematics and size increases affect its swimming performance. Cyprids beat their appendages in a metachronal wave to swim faster, more smoothly, and with less backwards slip per beat cycle than did all naupliar stages. Micro-particle image velocimetry showed that cyprids generated trailing viscous vortex rings that pushed water backwards for propulsion, contrary to the nauplii's forward suction current for particle capture. Our observations highlight that zooplankton swimming performance can shift via morphological and kinematic modifications without a significant size increase. The divergence in ecological functions through ontogeny in barnacles and the removal of feeding requirement likely contributed to the evolution of the specialized, taxonomically unique cyprid phase.
Collapse
Affiliation(s)
- J. Y. Wong
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Benny K. K. Chan
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - K. Y. Karen Chan
- Biology Department, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
6
|
Abstract
Medusae (aka jellyfish) have multiphasic life cycles and a propensity to adapt to, and proliferate in, a plethora of aquatic habitats, connecting them to a number of ecological and societal issues. Now, in the midst of the genomics era, affordable next-generation sequencing (NGS) platforms coupled with publically available bioinformatics tools present the much-anticipated opportunity to explore medusa taxa as potential model systems. Genome-wide studies of medusae would provide a remarkable opportunity to address long-standing questions related to the biology, physiology, and nervous system of some of the earliest pelagic animals. Furthermore, medusae have become key targets in the exploration of marine natural products, in the development of marine biomarkers, and for their application to the biomedical and robotics fields. Presented here is a synopsis of the current state of medusa research, highlighting insights provided by multi-omics studies, as well as existing knowledge gaps, calling upon the scientific community to adopt a number of medusa taxa as model systems in forthcoming research endeavors.
Collapse
Affiliation(s)
- Cheryl Lewis Ames
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, NW, Washington, DC, USA.
| |
Collapse
|
7
|
Gemmell BJ, Jiang H, Buskey EJ. A tale of the ciliate tail: investigation into the adaptive significance of this sub-cellular structure. Proc Biol Sci 2015; 282:20150770. [PMID: 26180066 DOI: 10.1098/rspb.2015.0770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ciliates can form an important link between the microbial loop and higher trophic levels primarily through consumption by copepods. This high predation pressure has resulted in a number of ciliate species developing rapid escape swimming behaviour. Several species of these escaping ciliates also possess a long contractile tail for which the functionality remains unresolved. We use high-speed video, specialized optics and novel fluid visualization tools to evaluate the role of this contractile appendage in two free-swimming ciliates, Pseudotontonia sp. and Tontonia sp., and compare the performance to escape swimming behaviour of a non-tailed species, Strobilidium sp. Here, we show that 'tailed' species respond to hydrodynamic disturbances with extremely short response latencies (less than or equal to 0.89 ms) by rapidly contracting the tail which carries the cell body 2-4 cell diameters within a few milliseconds. This provides an advantage over non-tailed species during the critical first 10-30 ms of an escape. Two small, short-lived vortex rings are created during contraction of the tail. The flow imposed by the ciliate jumping can be described as two well-separated impulsive Stokeslets and the overall flow attenuates spatially as r(-3). The high initial velocities and spatio-temporal arrangement of vortices created by tail contractions appear to provide a means for rapid escape as well as hydrodynamic 'camouflage' against fast striking, mechanoreceptive predators such as copepods.
Collapse
Affiliation(s)
- Brad J Gemmell
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Houshuo Jiang
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Edward J Buskey
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
8
|
Katija K. Morphology Alters Fluid Transport and the Ability of Organisms to Mix Oceanic Waters. Integr Comp Biol 2015; 55:698-705. [DOI: 10.1093/icb/icv075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Katija K, Colin SP, Costello JH, Jiang H. Ontogenetic propulsive transitions by medusae Sarsia tubulosa. J Exp Biol 2015; 218:2333-43. [DOI: 10.1242/jeb.115832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/14/2015] [Indexed: 11/20/2022]
Abstract
While swimming in their natural environment, marine organisms must successfully forage, escape from predation, and search for mates to reproduce. In the process, planktonic organisms interact with their fluid environment, generating fluid signatures around their body and in their downstream wake through ontogeny. In the early stages of their life cycle, marine organisms operate in environments where viscous effects dominate and govern physical processes. Ontogenetic propulsive transitions in swimming organisms often involve dramatic changes in morphology and swimming behavior. However, for organisms that do not undergo significant changes in morphology, swimming behavior, or propulsive mode, how is their swimming performance affected?
We investigated the ontogenetic propulsive transitions of the hydromedusa Sarsia tubulosa, which utilizes jet propulsion and possesses similar bell morphology throughout its life cycle. We used digital particle image velocimetry and high-speed imaging to measure the body kinematics, velocity fields, and wake structures induced by swimming S. tubulosa from 1 mm to 10 mm bell exit diameters. Our experimental observations revealed three distinct classes of hydrodynamic wakes: elongated vortex rings for 10<Re<30 (1 to 2 mm bell exit diameter), classical elliptical vortex rings for Re>30 (larger than 2 mm bell exit diameter), and in most instances where Re>100 (larger than 4 or 5 mm bell exit diameter), elliptical vortex rings (or leading vortex rings) were followed by trailing jets. The relative travel distance and propulsive efficiency remained unchanged throughout ontogeny, and the swimming proficiency and hydrodynamic cost of transport decreased nonlinearly.
Collapse
Affiliation(s)
- Kakani Katija
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Sean P. Colin
- Environmental Sciences, Roger Williams University, Bristol, RI 02809, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - John H. Costello
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Biology Department, Providence College, Providence, RI 02819, USA
| | - Houshuo Jiang
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|