1
|
Sekiya T, Holley MC. Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity. Cell Transplant 2021; 30:9636897211035076. [PMID: 34498511 PMCID: PMC8438274 DOI: 10.1177/09636897211035076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally, major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless, there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
- Tetsuji Sekiya, Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan,.
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield, England
| |
Collapse
|
2
|
Schomann T, Mezzanotte L, de Groot JCMJ, Löwik CWGM, Frijns JHM, Huisman MA. Imaging Bioluminescent Exogenous Stem Cells in the Intact Guinea Pig Cochlea. Anat Rec (Hoboken) 2020; 303:427-440. [PMID: 30635981 PMCID: PMC7065152 DOI: 10.1002/ar.24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/25/2018] [Accepted: 08/27/2018] [Indexed: 11/07/2022]
Abstract
Stem-cell-based therapy may be used to replace damaged or lost neurons in the cochlear nerve of patients suffering from severe-to-profound sensorineural hearing loss. In order to achieve functional recovery in future clinical trials, knowledge about survival of grafted cells and their differentiation into functional neurons is a prerequisite. This calls for non-invasive in vivo visualization of cells and long-term monitoring of their survival and fate after cochlear transplantation. We have investigated if molecular optical imaging enables visualization of exogenous cells in the intact cochlea of guinea pig cadaver heads. Transduced (stem) cells, stably co-expressing fluorescent (copGFP) and bioluminescent (Luc2) reporter molecules, were injected into the internal auditory meatus or directly into the cochlea through the round window. After injection of the cells into the internal auditory meatus, a bright bioluminescent signal was observed in the cavum conchae of the auricle, indicating that light generated by Luc2 is passing through the tympanic membrane and the external auditory meatus. Similar results were obtained after injection of the cells through the round window membrane, either directly into the scala tympani or in Rosenthal's canal within the modiolus of the basal cochlear turn. Imaging of the auditory bulla demonstrated that the bioluminescent signal passes through the tympanic membrane and crevices in the bony wall of the bulla. After opening the auditory bulla, the bioluminescent signal was emanating from the round window. This is the first study demonstrating that bioluminescence imaging enables visualization of luciferase-expressing cells injected into the intact guinea pig cochlea. Anat Rec, 303:427-440, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Timo Schomann
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head and Neck SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Laura Mezzanotte
- Optical Molecular Imaging, Department of RadiologyErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - John C. M. J. de Groot
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head and Neck SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Clemens W. G. M. Löwik
- Optical Molecular Imaging, Department of RadiologyErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Johan H. M. Frijns
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head and Neck SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Margriet A. Huisman
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head and Neck SurgeryLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Chen HC, Liang CM, Wang CH, Huang MY, Lin YY, Shih CP, Kuo CY, Lin YC, Chen HK. Transplantation of human limbus-derived mesenchymal stromal cells via occipital approach improves hearing in animal auditory neuropathy. Int J Pediatr Otorhinolaryngol 2019; 117:67-72. [PMID: 30579092 DOI: 10.1016/j.ijporl.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To develop a surgical approach for cell transplantation into mouse cochlear nerves via an intracranial route and investigate whether transplantation of human limbus-derived mesenchymal stromal cells (HL-MSCs) can improve hearing in this model of auditory neuropathy. METHODS We used 8-week-old CBA/CaJ male mice and created ouabain-induced auditory neuropathy. The surgical approach passed through the cerebellum to reveal the superior semicircular canal and brainstem, allowing access to the auditory nerve. Then HL-MSCs were injected around the cochlear nerve trunk using a micropipette driven by a micropump. Hearing thresholds in the mice were determined by auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). RESULTS We produced ouabain-induced neuropathy in mice with an elevated hearing threshold but normal DPOAE. Using immunohistological staining, we detected HL-MSCs were localized in the cochlear nerve trunk 2 days after cell transplantation via this occipital approach. More spiral ganglion neurons were detected in ouabain-treated cochleae 3 months after HL-MSCs transplantation compared to those without HL-MSCs transplantation. The ABR showed significant hearing improvement 3 months after HL-MSCs transplantation. CONCLUSIONS We successfully established a mouse model for cell transplantation into the intracranial cochlear nerve trunk and showed that HL-MSCs potentially can be applied as cell therapy to treat sensorineural hearing loss.
Collapse
Affiliation(s)
- Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan; Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Ming-Yuan Huang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| |
Collapse
|
4
|
Matsuoka AJ, Sayed ZA, Stephanopoulos N, Berns EJ, Wadhwani AR, Morrissey ZD, Chadly DM, Kobayashi S, Edelbrock AN, Mashimo T, Miller CA, McGuire TL, Stupp SI, Kessler JA. Creating a stem cell niche in the inner ear using self-assembling peptide amphiphiles. PLoS One 2017; 12:e0190150. [PMID: 29284013 PMCID: PMC5746215 DOI: 10.1371/journal.pone.0190150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
The use of human embryonic stem cells (hESCs) for regeneration of the spiral ganglion will require techniques for promoting otic neuronal progenitor (ONP) differentiation, anchoring of cells to anatomically appropriate and specific niches, and long-term cell survival after transplantation. In this study, we used self-assembling peptide amphiphile (PA) molecules that display an IKVAV epitope (IKVAV-PA) to create a niche for hESC-derived ONPs that supported neuronal differentiation and survival both in vitro and in vivo after transplantation into rodent inner ears. A feature of the IKVAV-PA gel is its ability to form organized nanofibers that promote directed neurite growth. Culture of hESC-derived ONPs in IKVAV-PA gels did not alter cell proliferation or viability. However, the presence of IKVAV-PA gels increased the number of cells expressing the neuronal marker beta-III tubulin and improved neurite extension. The self-assembly properties of the IKVAV-PA gel allowed it to be injected as a liquid into the inner ear to create a biophysical niche for transplanted cells after gelation in vivo. Injection of ONPs combined with IKVAV-PA into the modiolus of X-SCID rats increased survival and localization of the cells around the injection site compared to controls. Human cadaveric temporal bone studies demonstrated the technical feasibility of a transmastoid surgical approach for clinical intracochlear injection of the IKVAV-PA/ONP combination. Combining stem cell transplantation with injection of self-assembling PA gels to create a supportive niche may improve clinical approaches to spiral ganglion regeneration.
Collapse
Affiliation(s)
- Akihiro J. Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Zafar A. Sayed
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nicholas Stephanopoulos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
| | - Eric J. Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Anil R. Wadhwani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zachery D. Morrissey
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Duncan M. Chadly
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shun Kobayashi
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexandra N. Edelbrock
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Tomoji Mashimo
- The Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Charles A. Miller
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tammy L. McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - John A. Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Shi F, Edge ASB. Prospects for replacement of auditory neurons by stem cells. Hear Res 2013; 297:106-12. [PMID: 23370457 DOI: 10.1016/j.heares.2013.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
6
|
Palmgren B, Jin Z, Jiao Y, Kostyszyn B, Olivius P. Horseradish peroxidase dye tracing and embryonic statoacoustic ganglion cell transplantation in the rat auditory nerve trunk. Brain Res 2011; 1377:41-9. [DOI: 10.1016/j.brainres.2010.12.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/20/2010] [Accepted: 12/28/2010] [Indexed: 01/05/2023]
|
7
|
Sekiya T, Matsumoto M, Kojima K, Ono K, Kikkawa YS, Kada S, Ogita H, Horie RT, Viola A, Holley MC, Ito J. Mechanical stress-induced reactive gliosis in the auditory nerve and cochlear nucleus. J Neurosurg 2010; 114:414-25. [PMID: 20367075 DOI: 10.3171/2010.2.jns091817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Hearing levels following microsurgical treatment gradually deteriorate in a number of patients treated for vestibular schwannoma (VS), especially in the subacute postoperative stage. The cause of this late-onset deterioration of hearing is not completely understood. The aim of this study was to investigate the possibility that reactive gliosis is a contributory factor. METHODS Mechanical damage to nerve tissue is a feature of complex surgical procedures. To explore this aspect of VS treatment, the authors compressed rat auditory nerves with 2 different degrees of injury while monitoring the compound action potentials of the auditory nerve and the auditory brainstem responses. In this experimental model, the axons of the auditory nerve were quantitatively and highly selectively damaged in the cerebellopontine angle without permanent compromise of the blood supply to the cochlea. The temporal bones were processed for immunohistochemical analysis at 1 week and at 8 weeks after compression. RESULTS Reactive gliosis was induced not only in the auditory nerve but also in the cochlear nucleus following mechanical trauma in which the general shape of the auditory brainstem response was maintained. There was a substantial outgrowth of astrocytic processes from the transitional zone into the peripheral portion of the auditory nerve, leading to an invasion of dense gliotic tissue in the auditory nerve. The elongated astrocytic processes ran in parallel with the residual auditory neurons and entered much further into the cochlea. Confocal images disclosed fragments of neurons scattered in the gliotic tissue. In the cochlear nucleus, hypertrophic astrocytic processes were abundant around the soma of the neurons. The transverse diameter of the auditory nerve at and proximal to the compression site was considerably reduced, indicating atrophy, especially in rats in which the auditory nerve was profoundly compressed. CONCLUSIONS The authors found for the first time that mechanical stress to the auditory nerve causes substantial reactive gliosis in both the peripheral and central auditory pathways within 1-8 weeks. Progressive reactive gliosis following surgical stress may cause dysfunction in the auditory pathways and may be a primary cause of progressive hearing loss following microsurgical treatment for VS.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bogaerts S, Clements JD, Sullivan JM, Oleskevich S. Automated threshold detection for auditory brainstem responses: comparison with visual estimation in a stem cell transplantation study. BMC Neurosci 2009; 10:104. [PMID: 19706195 PMCID: PMC3224692 DOI: 10.1186/1471-2202-10-104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 08/26/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Auditory brainstem responses (ABRs) are used to study auditory acuity in animal-based medical research. ABRs are evoked by acoustic stimuli, and consist of an electrical signal resulting from summated activity in the auditory nerve and brainstem nuclei. ABR analysis determines the sound intensity at which a neural response first appears (hearing threshold). Traditionally, threshold has been assessed by visual estimation of a series of ABRs evoked by different sound intensities. Here we develop an automated threshold detection method that eliminates the variability and subjectivity associated with visual estimation. RESULTS The automated method is a robust computational procedure that detects the sound level at which the peak amplitude of the evoked ABR signal first exceeds four times the standard deviation of the baseline noise. Implementation of the procedure was achieved by evoking ABRs in response to click and tone stimuli, under normal and experimental conditions (adult stem cell transplantation into cochlea). Automated detection revealed that the threshold shift from pre- to post-surgery hearing levels was similar in mice receiving stem cell transplantation or sham injection for click and tone stimuli. Visual estimation by independent observers corroborated these results but revealed variability in ABR threshold shifts and significance levels for stem cell-transplanted and sham-injected animals. CONCLUSION In summary, the automated detection method avoids the subjectivity of visual analysis and offers a rapid, easily accessible http://axograph.com/source/abr.html approach to measure hearing threshold levels in auditory brainstem response.
Collapse
Affiliation(s)
- Sofie Bogaerts
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, 2010, Australia.
| | | | | | | |
Collapse
|
9
|
Hendricks JL, Chikar JA, Crumling MA, Raphael Y, Martin DC. Localized cell and drug delivery for auditory prostheses. Hear Res 2008; 242:117-31. [PMID: 18573323 DOI: 10.1016/j.heares.2008.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/09/2008] [Accepted: 06/02/2008] [Indexed: 12/20/2022]
Abstract
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness.
Collapse
Affiliation(s)
- Jeffrey L Hendricks
- Department of Biomedical Engineering, The University of Michigan, 1107 Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA.
| | | | | | | | | |
Collapse
|
10
|
Thonabulsombat C, Johansson S, Spenger C, Ulfendahl M, Olivius P. Implanted embryonic sensory neurons project axons toward adult auditory brainstem neurons in roller drum and Stoppini co-cultures. Brain Res 2007; 1170:48-58. [PMID: 17716633 DOI: 10.1016/j.brainres.2007.06.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 05/18/2007] [Accepted: 06/18/2007] [Indexed: 02/04/2023]
Abstract
Previously we have shown in vivo the survival, migration and integration of embryonic dorsal root ganglion (DRG) neurons that were grafted into the inner ear and peripheral auditory nervous system. In order to evaluate relevant factors determining integration of sensory neurons further into the central auditory nervous system, complementary in vitro techniques are necessary. The advantages of in vitro systems are that a large number of factors including various grafts and different conditions can be efficiently examined for. Hence, we co-cultured 300 microm thick postnatal rat brainstem slices containing the cochlear nucleus including the central part of the 8th cranial nerve with mouse embryonic DRG neurons. The organotypic co-cultures were either grown on coverslips using the roller drum method described by Gähwiler or on membranes according to the interface method described by Stoppini. Neurons in the cochlear nucleus were labeled with DiI. The results demonstrate that (1) brainstem slices survive for up to 5 weeks in culture, and that (2) co-cultures of embryonic sensory neurons and brainstem show a high degree of neuronal survival, and that (3) survival and axonal outgrowth from the implanted embryonic neurons are dependent on the presence of the brainstem slice rather than on exogenous NGF and that (4) implanted embryonic neurons send axons toward neurons in the cochlear nucleus.
Collapse
Affiliation(s)
- Charoensri Thonabulsombat
- Department of Anatomy, Faculty of Science, Bangkok 10400& Institute of Science and Technology for Research and Development, Mahidol University, Salaya, Phutthamonthon, Nakorn Pathom 73170, Thailand
| | | | | | | | | |
Collapse
|