1
|
Svedung Wettervik T, Hånell A, Ronne-Engström E, Lewén A, Enblad P. Temperature Changes in Poor-Grade Aneurysmal Subarachnoid Hemorrhage: Relation to Injury Pattern, Intracranial Pressure Dynamics, Cerebral Energy Metabolism, and Clinical Outcome. Neurocrit Care 2023; 39:145-154. [PMID: 36922474 PMCID: PMC10499919 DOI: 10.1007/s12028-023-01699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND The aim was to study the course of body temperature in the acute phase of poor-grade aneurysmal subarachnoid hemorrhage (aSAH) in relation to the primary brain injury, cerebral physiology, and clinical outcome. METHODS In this observational study, 166 patients with aSAH treated at the neurosurgery department at Uppsala University Hospital in Sweden between 2008 and2018 with temperature, intracranial pressure (ICP), and microdialysis (MD) monitoring were included. The first 10 days were divided into the early phase (days 1-3) and the vasospasm phase (days 4-10). RESULTS Normothermia (temperature = 36-38 °C) was most prevalent in the early phase. A lower mean temperature at this stage was univariately associated with a worse primary brain injury, with higher Fisher grade and higher MD glycerol concentration, as well as a worse neurological recovery at 1 year. There was otherwise no association between temperature and cerebral physiological variables in the early phase. There was a transition toward an increased burden of hyperthermia (temperature > 38 °C) in the vasospasm phase. This was associated with concurrent infections but not with neurological or radiological injury severity at admission. Elevated temperature was associated with higher MD pyruvate concentration, lower rate of an MD pattern indicative of ischemia, and higher rate of poor neurological recovery at 1 year. There was otherwise no association between temperature and cerebral physiological variables in the vasospasm phase. The associations between temperature and clinical outcome did not hold true in multiple logistic regression analyses. CONCLUSIONS Spontaneously low temperature in the early phase reflected a worse primary brain injury and indicated a worse outcome prognosis. Hyperthermia was common in the vasospasm phase and was more related to infections than primary injury severity but also with a more favorable energy metabolic pattern with better substrate supply, possibly related to hyperemia.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden.
| | - Anders Hånell
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Elisabeth Ronne-Engström
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Lewén
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
2
|
Kendall HJ, VAN Kuijk SM, VAN DER Horst IC, Dings JT, Aries MJ, Haeren RH. Difference between brain temperature and core temperature in severe traumatic brain injury: a systematic review. J Neurosurg Sci 2023; 67:46-54. [PMID: 35301834 DOI: 10.23736/s0390-5616.21.05519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Intensive care management for traumatic brain injury (TBI) patients aims to prevent secondary cerebral damage. Targeted temperature management is one option to prevent cerebral damage, as hypothermia may have protective effects. By conducting a systematic literature review we evaluated: 1) the presence of a temperature difference (gradient) between brain temperature (Tb) and core temperature (Tc) in TBI patients; and 2) clinical factors associated with reported differences. EVIDENCE ACQUISITION The PubMed database was systematically searched using Mesh terms and key words, and Web of Sciences was assessed for additional article citations. We included studies that continuously and simultaneously measured Tb and Tc in severe TBI patients. The National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies was modified to fit the purpose of our study. Statistical data were extracted for further meta-analyses. EVIDENCE SYNTHESIS We included 16 studies, with a total of 480 patients. Clinical heterogeneity consisted of Tb/Tc measurement site, measurement device, physiological changes, local protocols, and medical or surgical interventions. The studies have a high statistical heterogeneity (I2). The pooled mean temperature gradient between Tb and Tc was +0.14 °C (95% confidence interval: 0.03 to 0.24) and ranged from -1.29 to +1.1 °C. Patients who underwent a decompressive (hemi)craniectomy showed lower Tb values compared to Tc found in three studies. CONCLUSIONS Studies on Tb and Tc are heterogeneous and show that, on average, Tb and Tc are not clinically significant different in TBI patients (<0.2 °C). Interpretations and interventions of the brain and central temperatures will benefit from standardization of temperature measurements.
Collapse
Affiliation(s)
- Harry J Kendall
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands -
| | - Sander M VAN Kuijk
- KEMTA, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Iwan C VAN DER Horst
- School of Mental Health and Neurosciences, Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jim T Dings
- School of Mental Health and Neurosciences, Department of Neurosurgery, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands
| | - Marcel J Aries
- School of Mental Health and Neurosciences, Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands
| | - Roel H Haeren
- School of Mental Health and Neurosciences, Department of Neurosurgery, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Temperature measurements of a wearable and wireless axillary sensor iThermonitor but not a bladder probe represents the core temperature during laparoscopic rectal surgery. J Clin Monit Comput 2023; 37:303-309. [PMID: 35788943 DOI: 10.1007/s10877-022-00892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To investigate whether the temperature recorded by an iThermonitor has better concordance with the core temperature than the bladder temperature recorded by a Foley catheter sensor in laparoscopic rectal surgery. METHODS Eighty-two adults undergoing laparoscopic rectal surgery were enrolled. Temperatures were continuously measured by a distal oesophageal probe (the reference core temperature), axillary iThermonitor and Foley catheter sensor (bladder temperature) in each patient during surgery. Pairs of axillary and core temperatures or pairs of bladder temperature and core temperatures were compared and summarized using linear regression and the repeated-measured Bland-Altman method during the whole surgical period and pneumoperitoneum period. RESULTS There were 3303 pairs of temperature measurements during the whole surgical period. The mean difference between iThermonitor and oesophageal was 0.05 °C ; the limits of agreement were - 0.48 to 0.56 °C. The mean difference between the oesophagus and bladder was 0.28 °C; the limits of agreement were - 0.39 to 0.94 °C (P < 0.001, F-test vs. iThermonitor). Ninety -five% of all iThermonitor values were within 0.5 °C of oesophageal temperature, whereas the proportion for oesophageal and bladder differences within 0.5 °C was only 84% (95% confidence interval 80-88%). Lin's CCC for the iThermonitor and bladder measurements were 0.842 (95%CI: 0.831-0.851) and 0.688 (95%CI: 0.673-0.703) respectively. Similar results were found during the pneumoperitoneum period. CONCLUSIONS The temperature recorded by iThermonitor has better concordance with the core temperature than the bladder temperature recorded by Foley catheter sensor in laparoscopic rectal surgery.
Collapse
|
4
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
5
|
Navarro JC, Kofke WA. Perioperative Management of Acute Central Nervous System Injury. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
6
|
Marini CP, McNelis J, Petrone P. Multimodality Monitoring and Goal-Directed Therapy for the Treatment of Patients with Severe Traumatic Brain Injury: A Review for the General and Trauma Surgeon. Curr Probl Surg 2021; 59:101070. [DOI: 10.1016/j.cpsurg.2021.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
|
7
|
Marini CP, McNelis J, Petrone P. In Brief. Curr Probl Surg 2021. [DOI: 10.1016/j.cpsurg.2021.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Brain Temperature Influences Intracranial Pressure and Cerebral Perfusion Pressure After Traumatic Brain Injury: A CENTER-TBI Study. Neurocrit Care 2021; 35:651-661. [PMID: 34331210 PMCID: PMC8692292 DOI: 10.1007/s12028-021-01294-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/09/2021] [Indexed: 11/05/2022]
Abstract
Background After traumatic brain injury (TBI), fever is frequent. Brain temperature (BT), which is directly linked to body temperature, may influence brain physiology. Increased body and/or BT may cause secondary brain damage, with deleterious effects on intracranial pressure (ICP), cerebral perfusion pressure (CPP), and outcome. Methods Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI), a prospective multicenter longitudinal study on TBI in Europe and Israel, includes a high resolution cohort of patients with data sampled at a high frequency (from 100 to 500 Hz). In this study, simultaneous BT, ICP, and CPP recordings were investigated. A mixed-effects linear model was used to examine the association between different BT levels and ICP. We additionally focused on changes in ICP and CPP during the episodes of BT changes (Δ BT ≥ 0.5 °C lasting from 15 min to 3 h) up or downward. The significance of ICP and CPP variations was estimated with the paired samples Wilcoxon test (also known as Wilcoxon signed-rank test). Results Twenty-one patients with 2,435 h of simultaneous BT and ICP monitoring were studied. All patients reached a BT of 38 °C and experienced at least one episode of ICP above 20 mm Hg. The linear mixed-effects model revealed an association between BT above 37.5 °C and higher ICP levels that was not confirmed for lower BT. We identified 149 episodes of BT changes. During BT elevations (n = 79) ICP increased, whereas CPP was reduced; opposite ICP and CPP variations occurred during episodes of BT reduction (n = 70). All these changes were of moderate clinical relevance (increase of ICP of 4.5 and CPP decrease of 7.5 mm Hg for BT rise, and ICP reduction of 1.7 and CPP elevation of 3.7 mm Hg during BT defervescence), even if statistically significant (p < 0.0001). It has to be noted, however, that a number of therapeutic interventions against intracranial hypertension was documented during those episodes. Conclusions Patients after TBI usually develop BT > 38 °C soon after the injury. BT may influence brain physiology, as reflected by ICP and CPP. An association between BT exceeding 37.5 °C and a higher ICP was identified but not confirmed for lower BT ranges. The relationship between BT, ICP, and CPP become clearer during rapid temperature changes. During episodes of temperature elevation, BT seems to have a significant impact on ICP and CPP.
Collapse
|
9
|
Rass V, Huber L, Ianosi BA, Kofler M, Lindner A, Picetti E, Ortolano F, Beer R, Rossi S, Smielewski P, Stocchetti N, Helbok R. The Effect of Temperature Increases on Brain Tissue Oxygen Tension in Patients with Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Substudy. Ther Hypothermia Temp Manag 2020; 11:122-131. [PMID: 33202157 DOI: 10.1089/ther.2020.0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fever may aggravate secondary brain injury after traumatic brain injury (TBI). The aim of this study was to identify episodes of temperature increases through visual plot analysis and algorithm supported detection, and to describe associated patterns of changes in on brain tissue oxygen tension (PbtO2). Data derive from the high-resolution cohort of the multicenter prospective Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. Temperature increases (≥0.5°C) were visually identified in 33 patients within the first 11 days of monitoring. Generalized estimating equations were used to detect significant changes of systemic and neuromonitoring parameters from baseline to the highest temperature. Patients were median 50 (interquartile range [IQR], 35-62) years old, and presented with a Glasgow Coma Scale (GCS) of 8 (IQR, 4-10). In 202 episodes of temperature increases, mean temperature rose by 1.0°C ± 0.5°C within 4 hours. Overall, PbtO2 slightly increased (ΔPbtO2 = 0.9 ± 6.1 mmHg, p = 0.022) during temperature increases. PbtO2 increased in 35% (p < 0.001), was stable in 49% (p = 0.852), and decreased in 16% (p < 0.001) of episodes. During episodes of temperature increases and simultaneous drops in PbtO2, cerebral perfusion pressure (CPP) decreased (ΔCPP -6.3 ± 11.5 mmHg; p < 0.001). Brain tissue hypoxia (PbtO2 <20 mmHg) developed during 27/164 (17%) episodes of effervescences, in the remaining 38/202 episodes baseline PbtO2 was already <20 mmHg. Comparable results were found when using algorithm-supported detection of temperature increases. In conclusion, during effervescences, PbtO2 was mostly stable or slightly increased. A decrease of PbtO2 was observed in every sixth episode, where it was associated with a decrease in CPP. Our data highlight the need for special attention to CPP monitoring and maintenance during episodes of fever.
Collapse
Affiliation(s)
- Verena Rass
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Huber
- Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Bogdan-Andrei Ianosi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Mario Kofler
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Lindner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Fabrizio Ortolano
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ronny Beer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandra Rossi
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
10
|
Systemic Hyperthermia in Traumatic Brain Injury-Relation to Intracranial Pressure Dynamics, Cerebral Energy Metabolism, and Clinical Outcome. J Neurosurg Anesthesiol 2020; 33:329-336. [PMID: 32433101 DOI: 10.1097/ana.0000000000000695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Systemic hyperthermia is common after traumatic brain injury (TBI) and may induce secondary brain injury, although the pathophysiology is not fully understood. In this study, our aim was to determine the incidence and temporal course of hyperthermia after TBI and its relation to intracranial pressure dynamics, cerebral metabolism, and clinical outcomes. MATERIALS AND METHODS This retrospective study included 115 TBI patients. Data from systemic physiology (body temperature, blood pressure, and arterial glucose), intracranial pressure dynamics (intracranial pressure, cerebral perfusion pressure, compliance, and pressure reactivity), and cerebral microdialysis (glucose, pyruvate, lactate, glycerol, glutamate, and urea) were analyzed during the first 10 days after injury. RESULTS Overall, 6% of patients did not have hyperthermia (T>38°C) during the first 10 days after injury, whereas 20% had hyperthermia for >50% of the time. Hyperthermia increased from 21% (±27%) of monitoring time on day 1 to 36% (±29%) on days 6 to 10 after injury. In univariate analyses, higher body temperature was not associated with higher intracranial pressure nor lower cerebral perfusion pressure, but was associated with lower cerebral glucose concentration (P=0.001) and higher percentage of lactate-pyruvate ratio>25 (P=0.02) on days 6 to 10 after injury. Higher body temperature and lower arterial glucose concentration were associated with lower cerebral glucose in a multiple linear regression analysis (P=0.02 for both). There was no association between hyperthermia and worse clinical outcomes. CONCLUSION Hyperthermia was most common between days 6 and 10 following TBI, and associated with disturbances in cerebral energy metabolism but not worse clinical outcome.
Collapse
|
11
|
Nyholm L, Howells T, Lewén A, Hillered L, Enblad P. The influence of hyperthermia on intracranial pressure, cerebral oximetry and cerebral metabolism in traumatic brain injury. Ups J Med Sci 2017; 122:177-184. [PMID: 28463046 PMCID: PMC5649323 DOI: 10.1080/03009734.2017.1319440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Hyperthermia is a common secondary insult in traumatic brain injury (TBI). The aim was to evaluate the relationship between hyperthermia and intracranial pressure (ICP), and if intracranial compliance and cerebral blood flow (CBF) pressure autoregulation affected that relationship. The relationships between hyperthermia and cerebral oximetry (BtipO2) and cerebral metabolism were also studied. METHODS A computerized multimodality monitoring system was used for data collection at the neurointensive care unit. Demographic and monitoring data (temperature, ICP, blood pressure, microdialysis, BtipO2) were analyzed from 87 consecutive TBI patients. ICP amplitude was used as measure of compliance, and CBF pressure autoregulation status was calculated using collected blood pressure and ICP values. Mixed models and comparison between groups were used. RESULTS The influence of hyperthermia on intracranial dynamics (ICP, brain energy metabolism, and BtipO2) was small, but individual differences were seen. Linear mixed models showed that hyperthermia raises ICP slightly more when temperature increases in the groups with low compliance and impaired CBF pressure autoregulation. There was also a tendency (not statistically significant) for increased BtipO2, and for increased pyruvate and lactate, with higher temperature, while the lactate/pyruvate ratio and glucose were stable. CONCLUSIONS The major finding was that the effects of hyperthermia on intracranial dynamics (ICP, brain energy metabolism, and BtipO2) were not extensive in general, but there were exceptional cases. Hyperthermia treatment has many side effects, so it is desirable to identify cases in which hyperthermia is dangerous. Information from multimodality monitoring may be used to guide treatment in individual patients.
Collapse
Affiliation(s)
- Lena Nyholm
- Department of Neuroscience/Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
12
|
Madden LK, DeVon HA. A Systematic Review of the Effects of Body Temperature on Outcome After Adult Traumatic Brain Injury. J Neurosci Nurs 2015; 47:190-203. [PMID: 25951311 PMCID: PMC4497869 DOI: 10.1097/jnn.0000000000000142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This systematic review describes effects of body temperature alterations defined as fever, controlled normothermia, and spontaneous or induced hypothermia on outcome after traumatic brain injury (TBI) in adults. DATA SOURCES A search was conducted using PubMed, Cochrane Library database, Cumulative Index to Nursing and Allied Health Literature, EMBASE, and ISI Web of Science in July 2013 with no back date restriction except for induced hypothermia (2009). STUDY SELECTION Of 1366 titles identified, 712 were reviewed. Sixteen articles met inclusion criteria: randomized controlled trials in hypothermia since 2009 (last Cochrane review) or cohort studies of temperature in TBI, measure core and/or brain temperature, neurologic outcome reporting, primarily adult patients, and English language publications. Exclusion criteria were as follows: most patients with non-TBI diagnosis, primarily pediatric patients, case reports, or laboratory/animal studies. DATA SYNTHESIS Most studies found that fever avoidance resulted in positive outcomes including decreased length of stay in the intensive care unit; mortality; and incidence of hypertension, elevated intracranial pressure, and tachycardia. Hypothermia on admission correlated with poor outcomes. Controlled normothermia improved surrogate outcomes. Prophylactic induced hypothermia is not supported by the available evidence from randomized controlled trial. CONCLUSION Setting a goal of normothermia, avoiding fever, and aggressively treating fever may be most important after TBI. Further research is needed to characterize the magnitude and duration of temperature alteration after TBI, determine if temperature alteration influences or predicts neurologic outcome, determine if rate of temperature change influences or predicts neurologic outcome, and compare controlled normothermia versus standard practice or hypothermia.
Collapse
Affiliation(s)
- Lori Kennedy Madden
- PhD Candidate, Betty Irene Moore School of Nursing, Nurse Practitioner, Department of Neurological Surgery, University of California Davis. Work Address: 4860 Y Street, Suite 3740, Sacramento, CA 95817, T 916-734-6518, F 916-703-5006
| | - Holli A DeVon
- Associate Professor, Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago. Work Address: 845 S. Damen Avenue #748 MC 802, Chicago, IL 60612, T 312-413-5362, F 312-996-4979
| |
Collapse
|
13
|
The use of targeted temperature management for elevated intracranial pressure. Curr Neurol Neurosci Rep 2014; 14:453. [PMID: 24740807 DOI: 10.1007/s11910-014-0453-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of hypothermia for treatment of intracranial hypertension is controversial, despite no other medical therapy demonstrating consistent improvements in morbidity or mortality. Much of this may be the result of negative results from randomized controlled trials. However, the patients selected for these trials may have obscured the results in the populations most likely to benefit. Further, brain injury does not behave uniformly, not even within a diagnosis. Therefore, therapies may have more benefit in some diseases, less in others. This review focuses on the effect on outcome of intracranial hypertension in common disease processes in the neurocritical care unit, and identifies who is most likely to benefit from the use of hypothermia.
Collapse
|
14
|
Oxymétrie cérébrale. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-012-0540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
|
16
|
Stippler M, Ortiz V, Adelson PD, Chang YF, Tyler-Kabara EC, Wisniewski SR, Fink EL, Kochanek PM, Brown SD, Bell MJ. Brain tissue oxygen monitoring after severe traumatic brain injury in children: relationship to outcome and association with other clinical parameters. J Neurosurg Pediatr 2012; 10:383-91. [PMID: 22978637 DOI: 10.3171/2012.8.peds12165] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECT Minimizing secondary brain injuries after traumatic brain injury (TBI) in children is critical to maximizing neurological outcome. Brain tissue oxygenation monitoring (as measured by interstitial partial pressure of O2 [PbO2]) is a new tool that may aid in guiding therapies, yet experience in children is limited. This study aims to describe the authors' experience of PbO2 monitoring after TBI. It was hypothesized that PbO2 thresholds could be established that were associated with favorable neurological outcome, and it was determined whether any relationships between PbO2 and other important clinical variables existed. METHODS Forty-six children with severe TBI (Glasgow coma scale score ≤ 8 after resuscitation) who underwent PbO2 and brain temperature monitoring between September 2004 and June 2008 were studied. All patients received standard neurocritical care, and 24 were concurrently enrolled in a trial of therapeutic early hypothermia (n = 12/group). The PbO2 was measured in the uninjured frontal cortex. Hourly recordings and calculated daily means of various variables including PbO2, intracranial pressure (ICP), cerebral perfusion pressure (CPP), mean arterial blood pressure, partial pressure of arterial O2, and fraction of inspired O2 were compared using several statistical approaches. Glasgow outcome scale scores were determined at 6 months after injury. RESULTS The mean patient age was 9.4 years (range 0.1-16.5 years; 13 girls) and 8554 hours of monitoring were analyzed (PbO2 range 0.0-97.2 mm Hg). A PbO2 of 30 mm Hg was associated with the highest sensitivity/specificity for favorable neurological outcome at 6 months after TBI, yet CPP was the only factor that was independently associated with favorable outcome. Surprisingly, instances of preserved PbO2 with altered ICP and CPP were observed in some children with unfavorable outcomes. CONCLUSIONS Monitoring of PbO2 demonstrated complex interactions with clinical variables reflecting intracranial dynamics using this protocol. A higher threshold than reported in studies in adults was suggested as a potential therapeutic target, but this threshold was not associated with improved outcomes. Additional studies to assess the utility of PbO2 monitoring after TBI in children are needed.
Collapse
Affiliation(s)
- Martina Stippler
- Department of Neurological Surgery, Safar Center for Resuscitation Research, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fischer M, Lackner P, Beer R, Helbok R, Klien S, Ulmer H, Pfausler B, Schmutzhard E, Broessner G. Keep the brain cool--endovascular cooling in patients with severe traumatic brain injury: a case series study. Neurosurgery 2012; 68:867-73; discussion 873. [PMID: 21221030 DOI: 10.1227/neu.0b013e318208f5fb] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND As brain temperature is reported to be extensively higher than core body temperature in traumatic brain injury (TBI) patients, posttraumatic hyperthermia is of particular relevance in the injured brain. OBJECTIVE To study the influence of prophylactic normothermia on brain temperature and the temperature gradient between brain and core body in patients with severe TBI using an intravascular cooling system and to assess the relationship between brain temperature and intracranial pressure (ICP) under endovascular temperature control. METHODS Prospective case series study conducted in the neurologic intensive care unit of a tertiary care university hospital. Seven patients with severe TBI with a Glasgow Coma Scale score of 8 or less were consecutively enrolled. Prophylactic normothermia, defined as a target temperature of 36.5°C, was maintained using an intravascular cooling system. Simultaneous measurements of brain and urinary bladder temperature and ICP were taken over a 72-hour period. RESULTS The mean bladder temperature in normothermic patients was 36.3 ± 0.4°C, and the mean brain temperature was determined as 36.4 ± 0.5°C. The mean temperature difference between brain and bladder was 0.1°C. We found a significant direct correlation between brain and bladder temperature (r = 0.95). In 52.4% of all measurements, brain temperature was higher than core body temperature. The mean ICP was 18 ± 8 mm Hg. CONCLUSION Intravascular temperature management stabilizes both brain and body core temperature; prophylactic normothermia reduces the otherwise extreme increase of intracerebral temperature in patients with severe TBI. The intravascular cooling management proved to be an efficacious and feasible method to control brain temperature and to avoid hyperthermia in the injured brain. We could not find a statistically significant correlation between brain temperature and ICP.
Collapse
Affiliation(s)
- Marlene Fischer
- Department of Neurology, Neurologic Intensive Care Unit, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kan EM, Ling EA, Lu J. Microenvironment changes in mild traumatic brain injury. Brain Res Bull 2012; 87:359-72. [PMID: 22289840 DOI: 10.1016/j.brainresbull.2012.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is a major public-health problem for which mild TBI (MTBI) makes up majority of the cases. MTBI is a poorly-understood health problem and can persist for years manifesting into neurological and non-neurological problems that can affect functional outcome. Presently, diagnosis of MTBI is based on symptoms reporting with poor understanding of ongoing pathophysiology, hence precluding prognosis and intervention. Other than rehabilitation, there is still no pharmacological treatment for the treatment of secondary injury and prevention of the development of cognitive and behavioural problems. The lack of external injuries and absence of detectable brain abnormalities lend support to MTBI developing at the cellular and biochemical level. However, the paucity of suitable and validated non-invasive methods for accurate diagnosis of MTBI poses as a substantial challenge. Hence, it is crucial that a clinically useful evaluation and management procedure be instituted for MTBI that encompasses both molecular pathophysiology and functional outcome. The acute microenvironment changes post-MTBI presents an attractive target for modulation of MTBI symptoms and the development of cognitive changes later in life.
Collapse
Affiliation(s)
- Enci Mary Kan
- Combat Care Laboratory, Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | | | | |
Collapse
|
19
|
Kuo JR, Lo CJ, Wang CC, Lu CL, Lin SC, Chen CF. Measuring brain temperature while maintaining brain normothermia in patients with severe traumatic brain injury. J Clin Neurosci 2011; 18:1059-63. [PMID: 21723133 DOI: 10.1016/j.jocn.2010.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/30/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
The aim of this study was to evaluate the relationship between superficial temporal artery temperature (Tt), rectal temperature (Tr) and intracranial temperature (ICT) when attempting to keep the brain in a normothermic condition in patients with severe traumatic brain injury (TBI). We also compared the incidence of temperature gradient reversal in patients who survived (survivors) and patients who did not (non-survivors) and the difference in temperature gradient reversal between survivors and non-survivors. Tr is normally lower than and ICT and temperature gradient reversal, when Tr exceeds ICT, has been demonstrated to be an early sign of brain death. A total of 28 patients with severe TBI were enrolled retrospectively in our study between November 2008 and February 2010. Each patient's Tt, Tr and ICT was recorded every hour for 4 days. Our results show that the frequency of brain hyperthermia in our participants (ICT>38°C) was 17.7%. Using a paired t-test and Bland-Altman plots, it was shown that a significant temperature difference existed between Tt, Tr and ICT (p<0.001). The use of Spearman's correlation method revealed that Tt, Tr and ICT were positively correlated (p<0.001). Brain death occurred in five patients at a mean of 9.6 hours (range: 8-12 hours) after a temperature gradient reversal between Tt, Tr and ICT. Fisher's exact test showed that there was a significant difference in the incidence of temperature gradient reversal between Tt, Tr and ICT in survivors and non-survivors (p<0.001). We conclude that a significant temperature difference exists between Tt, Tr and ICT when maintaining brain normothermia. The daily practice of non-invasive Tt measurement may cause doctors to underestimate ICT; reversal of the ICT and Tt and/or Tr temperatures could be an early marker of a poor prognosis for patients with severe TBI.
Collapse
Affiliation(s)
- Jinn-Rung Kuo
- Institute of Clinical Medicine, School of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Childs C, Wieloch T, Lecky F, Machin G, Harris B, Stocchetti N. Report of a consensus meeting on human brain temperature after severe traumatic brain injury: its measurement and management during pyrexia. Front Neurol 2010; 1:146. [PMID: 21206519 PMCID: PMC3009434 DOI: 10.3389/fneur.2010.00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/01/2010] [Indexed: 01/16/2023] Open
Abstract
Temperature disturbances are common in patients with severe traumatic brain injury. The possibility of an adaptive, potentially beneficial role for fever in patients with severe brain trauma has been dismissed, but without good justification. Fever might, in some patients, confer benefit. A cadre of clinicians and scientists met to debate the clinically relevant, but often controversial issue about whether raised brain temperature after human traumatic brain injury (TBI) should be regarded as "good or bad" for outcome. The objective was to produce a consensus document of views about current temperature measurement and pyrexia treatment. Lectures were delivered by invited speakers with National and International publication track records in thermoregulation, neuroscience, epidemiology, measurement standards and neurocritical care. Summaries of the lectures and workshop discussions were produced from transcriptions of the lectures and workshop discussions. At the close of meeting, there was agreement on four key issues relevant to modern temperature measurement and management and for undergirding of an evidence-based practice, culminating in a consensus statement. There is no robust scientific data to support the use of hypothermia in patients whose intracranial pressure is controllable using standard therapy. A randomized clinical trial is justified to establish if body cooling for control of pyrexia (to normothermia) vs moderate pyrexia leads to a better patient outcome for TBI patients.
Collapse
Affiliation(s)
- Charmaine Childs
- Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Wallenberg Centre for NeuroscienceLund, Sweden
| | - Fiona Lecky
- Trauma Audit Research Network, Salford Royal NHS Foundation Trust, University of ManchesterGreater Manchester, UK
| | - Graham Machin
- Temperature Group, National Physical LaboratoryMiddlesex, UK
| | - Bridget Harris
- School of Clinical Sciences and Community Health, Royal Infirmary, The University of EdinburghEdinburgh, UK
| | - Nino Stocchetti
- Terapia Intensiva Neuroscienze, Ospedale Policlinico, Istituiti di Ricovero e Cura a Carattere ScientificoMilano, Italy
| |
Collapse
|
21
|
Sacho RH, Vail A, Rainey T, King AT, Childs C. The effect of spontaneous alterations in brain temperature on outcome: a prospective observational cohort study in patients with severe traumatic brain injury. J Neurotrauma 2010; 27:2157-64. [PMID: 20822465 DOI: 10.1089/neu.2010.1384] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There are few prospective studies reporting the effect of spontaneous temperature changes on outcome after severe traumatic brain injury (TBI). Where studies have been conducted, results are based on systemic rather than brain temperature per se. However, body temperature is not a reliable surrogate for brain temperature. Consequently, the effect of brain temperature changes on outcome in the acute phase after TBI is not clear. Continuous intraparenchymal brain temperature was measured in consecutive admissions of severe TBI patients during the course of the first 5 days of admission to the intensive care unit (ICU). Patients received minimal temperature altering therapy during their ICU stay. Logistic regression was used to explore the relationship between the initial, the 24-h mean, and the 48-h mean brain temperature with outcome for mortality at 30 days and outcome at 3 months. Multifactorial analysis was performed to account for potential confounders. At the 24-h time point, brain temperature within the range of 36.5°C to 38°C was associated with a lower probability of death (10-20%). Brain temperature outside of this range was associated with a higher probability of death and poor 3-month neurological outcome. After adjusting for other predictors of outcome, low brain temperature was independently associated with a worse outcome. Lower brain temperatures (below 37°C) are independently associated with a higher mortality rate after severe TBI. The results suggest that, contrary to current opinion, temperatures within the normal to moderate fever range during the acute post-TBI period do not impose an additional risk for a poor outcome after severe TBI.
Collapse
Affiliation(s)
- Raphael H Sacho
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Childs C, Sacho RH, King AT. Brain hyperthermia after traumatic brain injury does not reduce brain oxygen. Neurosurgery 2009; 64:E1206. [PMID: 19487872 DOI: 10.1227/01.neu.0000346232.65178.c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Kimberger O, Thell R, Schuh M, Koch J, Sessler DI, Kurz A. Accuracy and precision of a novel non-invasive core thermometer. Br J Anaesth 2009; 103:226-31. [PMID: 19482858 DOI: 10.1093/bja/aep134] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Accurate measurement of core temperature is a standard component of perioperative and intensive care patient management. However, core temperature measurements are difficult to obtain in awake patients. A new non-invasive thermometer has been developed, combining two sensors separated by a known thermal resistance ('double-sensor' thermometer). We thus evaluated the accuracy of the double-sensor thermometer compared with a distal oesophageal thermometer to determine if the double-sensor thermometer is a suitable substitute. METHODS In perioperative and intensive care patient populations (n=68 total), double-sensor measurements were compared with measurements from a distal oesophageal thermometer using Bland-Altman analysis and Lin's concordance correlation coefficient (CCC). RESULTS Overall, 1287 measurement pairs were obtained at 5 min intervals. Ninety-eight per cent of all double-sensor values were within +/-0.5 degrees C of oesophageal temperature. The mean bias between the methods was -0.08 degrees C; the limits of agreement were -0.66 degrees C to 0.50 degrees C. Sensitivity and specificity for detection of fever were 0.86 and 0.97, respectively. Sensitivity and specificity for detection of hypothermia were 0.77 and 0.93, respectively. Lin's CCC was 0.93. CONCLUSIONS The new double-sensor thermometer is sufficiently accurate to be considered an alternative to distal oesophageal core temperature measurement, and may be particularly useful in patients undergoing regional anaesthesia.
Collapse
Affiliation(s)
- O Kimberger
- Department of Anesthesiology and General Intensive Care, Medical University of Vienna, Waehringer Gurtel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
24
|
Sacho RH, Childs C. The significance of altered temperature after traumatic brain injury: an analysis of investigations in experimental and human studies: part 2. Br J Neurosurg 2008; 22:497-507. [PMID: 18649161 DOI: 10.1080/02688690802245558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Raised body temperature is a common occurrence after severe traumatic brain injury (TBI). It is widely accepted that experimental evidence points to a harmful effect of raised temperature both during and after TBI. Consequently, the policy of many neurocritical care units is to implement therapies for body temperature control. This article reviews the evidence that links spontaneous temperature changes with worsened outcome after experimentally-induced and human brain trauma. The current evidence-base and rationale for treatment of raised temperature after TBI is presented with discussion positing areas for further work to explore the notion that raised temperature may not be deleterious in all neurosurgical patients.
Collapse
Affiliation(s)
- R H Sacho
- University of Manchester School of Translational Medicine, UK
| | | |
Collapse
|