1
|
Keefe DW, Christianson DT, Davis GW, Oya H, Howard MA, Petkov CI, Toor F. Modeling for neurosurgical laser interstitial thermal therapy with and without intracranial recording electrodes. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 7:100139. [PMID: 39347540 PMCID: PMC11437873 DOI: 10.1016/j.crneur.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
Laser thermal ablation has become a prominent neurosurgical treatment approach, but in epilepsy patients it cannot currently be safely implemented with intracranial recording electrodes that are used to study interictal or epileptiform activity. There is a pressing need for computational models of laser interstitial thermal therapy (LITT) with and without intracranial electrodes to enhance the efficacy and safety of optical neurotherapies. In this paper, we aimed to build a biophysical bioheat and ray optics model to study the effects of laser heating in the brain, with and without intracranial electrodes in the vicinity of the ablation zone during the LITT procedure. COMSOL Multiphysics finite element method (FEM) solver software was used to create a bioheat thermal model of brain tissue, with and without blood flow incorporation via Penne's model, to model neural tissue response to laser heating. We report that the close placement of intracranial electrodes can increase the maximum temperature of the brain tissue volume as well as impact the necrosis region volume if the electrodes are placed too closely to the laser coupled diffuse fiber tip. The model shows that an electrode displacement of 4 mm could be considered a safe distance of intracranial electrode placement away from the LITT probe treatment area. This work, for the first time, models the impact of intracranially implanted recording electrodes during LITT, which could improve the understanding of the LITT treatment procedure on the brain's neural networks a sufficient safe distance to the implanted intracranial recording electrodes. We recommend modeling safe distances for placing the electrodes with respect to the infrared laser coupled diffuse fiber tip.
Collapse
Affiliation(s)
- Daniel W. Keefe
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| | - David T. Christianson
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Greyson W. Davis
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| | - Hiroyuki Oya
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Matthew A. Howard
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Christopher I. Petkov
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Fatima Toor
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| |
Collapse
|
2
|
Wang C, Guo L, Zhu J, Zhu L, Li C, Zhu H, Song A, Lu L, Teng GJ, Navab N, Jiang Z. Review of robotic systems for thoracoabdominal puncture interventional surgery. APL Bioeng 2024; 8:021501. [PMID: 38572313 PMCID: PMC10987197 DOI: 10.1063/5.0180494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer, with high morbidity and high mortality, is one of the major burdens threatening human health globally. Intervention procedures via percutaneous puncture have been widely used by physicians due to its minimally invasive surgical approach. However, traditional manual puncture intervention depends on personal experience and faces challenges in terms of precisely puncture, learning-curve, safety and efficacy. The development of puncture interventional surgery robotic (PISR) systems could alleviate the aforementioned problems to a certain extent. This paper attempts to review the current status and prospective of PISR systems for thoracic and abdominal application. In this review, the key technologies related to the robotics, including spatial registration, positioning navigation, puncture guidance feedback, respiratory motion compensation, and motion control, are discussed in detail.
Collapse
Affiliation(s)
- Cheng Wang
- Hanglok-Tech Co. Ltd., Hengqin 519000, People's Republic of China
| | - Li Guo
- Hanglok-Tech Co. Ltd., Hengqin 519000, People's Republic of China
| | | | - Lifeng Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Chichi Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Macau, 999078, People's Republic of China
| | - Haidong Zhu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Aiguo Song
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | | | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | | | - Zhongliang Jiang
- Computer Aided Medical Procedures, Technical University of Munich, Munich 80333, Germany
| |
Collapse
|
3
|
Spennato P, Di Costanzo M, Mirone G, Cicala D, De Martino L, Onorini N, Ruggiero C, Cinalli G. Image-guided biopsy of intracranial lesions in children, with a small robotic device: a case series. Childs Nerv Syst 2024; 40:1681-1688. [PMID: 38441630 DOI: 10.1007/s00381-024-06349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND AND OBJECTIVES Robot-assisted biopsies have gained popularity in the last years. Most robotic procedures are performed with a floor-based robotic arm. Recently, Medtronic Stealth Autoguide, a miniaturized robotic arm that work together with an optical neuronavigation system, was launched. Its application in pediatric cases is relatively unexplored. In this study, we retrospectively report our experience using the Stealth Autoguide, for frameless stereotactic biopsies in pediatric patients. METHODS Pediatric patients who underwent stereotactic biopsy using the Stealth Autoguide cranial robotic platform from July 2020 to May 2023 were included in this study. Clinical, neuroradiological, surgical, and histological data were collected and analyzed. RESULTS Nineteen patients underwent 20 procedures (mean age was 9-year-old, range 1-17). In four patients, biopsy was part of a more complex surgical procedure (laser interstitial thermal therapy - LITT). The most common indication was diffuse intrinsic brain stem tumor, followed by diffuse supratentorial tumor. Nine procedures were performed in prone position, eight in supine position, and three in lateral position. Facial surface registration was adopted in six procedures, skull-fixed fiducials in 14. The biopsy diagnostic tissue acquisition rate was 100% in the patients who underwent only biopsy, while in the biopsy/LITT group, one case was not diagnostic. No patients developed clinically relevant postoperative complications. CONCLUSION The Stealth Autoguide system has proven to be safe, diagnostic, and highly accurate in performing stereotactic biopsies for both supratentorial and infratentorial lesions in the pediatric population.
Collapse
Affiliation(s)
- Pietro Spennato
- Department of Neurosciences, Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy.
| | - Marianna Di Costanzo
- Department of Neurosciences, Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giuseppe Mirone
- Department of Neurosciences, Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Domenico Cicala
- Department of Neurosciences, Division of Neuroradiology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Lucia De Martino
- Department of Onco-Hematology, Unit of Neuro-oncology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Nicola Onorini
- Department of Neurosciences, Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Claudio Ruggiero
- Department of Neurosciences, Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Giuseppe Cinalli
- Department of Neurosciences, Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| |
Collapse
|
4
|
Cao P, Shi D, Li D, Zhu Z, Zhu J, Zhang J, Bai R. Modeling and in vivo experimental validation of 1,064 nm laser interstitial thermal therapy on brain tissue. Front Neurol 2023; 14:1237394. [PMID: 37869141 PMCID: PMC10588634 DOI: 10.3389/fneur.2023.1237394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Laser interstitial thermal therapy (LITT) at 1064 nm is widely used to treat epilepsy and brain tumors; however, no numerical model exists that can predict the ablation region with careful in vivo validation. Methods In this study, we proposed a model with a system of finite element methods simulating heat transfer inside the brain tissue, radiative transfer from the applicator into the brain tissue, and a model for tissue damage. Results To speed up the computation for practical applications, we also validated P1-approximation as an efficient and fast method for calculating radiative transfer by comparing it with Monte Carlo simulation. Finally, we validated the proposed numerical model in vivo on six healthy canines and eight human patients with epilepsy and found strong agreement between the predicted temperature profile and ablation area and the magnetic resonance imaging-measured results. Discussion Our results demonstrate the feasibility and reliability of the model in predicting the ablation area of 1,064 nm LITT, which is important for presurgical planning when using LITT.
Collapse
Affiliation(s)
- Peng Cao
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Dingsheng Shi
- Research and Development Department, Hangzhou GenLight MedTech Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Ding Li
- Research and Development Department, Hangzhou GenLight MedTech Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Zhoule Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Junming Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jianmin Zhang
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ruiliang Bai
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Lamsam L, Brigido MM, Sivaraju A, Hirsch LJ, Spencer DD, Chiang V, Damisah E. Transfrontal Approach to the Amygdala for Ablation With Laser Interstitial Thermal Therapy: An Epilepsy Case Report. Oper Neurosurg (Hagerstown) 2023; 24:e381-e384. [PMID: 36715982 PMCID: PMC10158899 DOI: 10.1227/ons.0000000000000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/06/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND IMPORTANCE Stereotactic laser amygdalohippocampotomy (SLAH) using laser interstitial thermal therapy is a minimally invasive surgery used to treat mesial temporal lobe epilepsy. It uses laser probes inserted through occipital and temporo-occipital trajectories to ablate the hippocampus and amygdala. However, these trajectories are limited in their ability to ablate the superior amygdala and entorhinal cortex (ERC). We present a trajectory through the middle frontal gyrus as an alternative to the temporo-occipital trajectory, which provides more complete ablation of the amygdala and anterior ERC through a single pass. CLINICAL PRESENTATION A 70-year-old woman with seizures characterized by fear were localized to the left superomedial amygdala on intracranial electroencephalography. They developed after resection of a left temporal arteriovenous malformation and were refractory to medication. Her age and prior craniotomy made open resection less desirable. A frontal and occipital SLAH achieved Engel 1a at 1-year follow-up without decline in neuropsychological performance scores. CONCLUSION Typical SLAH uses trajectories that have limited ability to ablate the superior and medial amygdala and ERC in a single passage. A combined approach using an occipital and frontal trajectory allows more complete ablation of the amygdala, hippocampus, and ERC.
Collapse
Affiliation(s)
- Layton Lamsam
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Mauricio Mandel Brigido
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Adithya Sivaraju
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Lawrence J. Hirsch
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Dennis D. Spencer
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Veronica Chiang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Eyiyemisi Damisah
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Hale AT, Barkley AS, Blount JP. Corpus Callosotomy Is a Safe and Effective Procedure for Medically Resistant Epilepsy. Adv Tech Stand Neurosurg 2023; 48:355-369. [PMID: 37770691 DOI: 10.1007/978-3-031-36785-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Corpus callosotomy (CC) is an effective surgical treatment for medically resistant generalized or multifocal epilepsy (MRE). The premise of CC extrapolates from the observation that the corpus callosum is the predominant commissural pathway that allows spread and synchroneity of epileptogenic activity between the hemispheres. Candidacy for CC is typically reserved for patients seeking palliative epilepsy treatment with the goal of reducing the frequency of drop attacks, although reduction of other seizure semiologies (absence, complex partial seizures, and tonic-clonic) has been observed. A reduction in morbidity affiliated with evolution of surgical techniques to perform CC has improved the safety profile of the procedure without necessarily sacrificing efficacy.
Collapse
Affiliation(s)
- Andrew T Hale
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, AL, USA
| | - Ariana S Barkley
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, AL, USA
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, AL, USA.
| |
Collapse
|
7
|
Rogowski A. Scenario-Based Programming of Voice-Controlled Medical Robotic Systems. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239520. [PMID: 36502220 PMCID: PMC9738457 DOI: 10.3390/s22239520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
An important issue in medical robotics is communication between physicians and robots. Speech-based communication is of particular advantage in robot-assisted surgery. It frees the surgeon's hands; hence, he can focus on the principal tasks. Man-machine voice communication is the subject of research in various domains (industry, social robotics), but medical robots are very specific. They must precisely synchronize their activities with operators. Voice commands must be possibly short. They must be executed without significant delays. An important factor is the use of a vision system that provides visual information in direct synchronization with surgeon actions. Its functions could be also controlled using speech. The aim of the research presented in this paper was to develop a method facilitating creation of voice-controlled medical robotic systems, fulfilling the mentioned requirements and taking into account possible scenarios of man-machine collaboration in such systems. A robot skill description (RSD) format was proposed in order to facilitate programming of voice control applications. A sample application was developed, and experiments were conducted in order to draw conclusions regarding the usefulness of speech-based interfaces in medical robotics. The results show that a reasonable selection of system functions controlled by voice may lead to significant improvement of man-machine collaboration.
Collapse
Affiliation(s)
- Adam Rogowski
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, ul. Narbutta 86, 02-524 Warsaw, Poland
| |
Collapse
|
8
|
Musa MJ, Carpenter AB, Kellner C, Sigounas D, Godage I, Sengupta S, Oluigbo C, Cleary K, Chen Y. Minimally Invasive Intracerebral Hemorrhage Evacuation: A review. Ann Biomed Eng 2022; 50:365-386. [PMID: 35226279 DOI: 10.1007/s10439-022-02934-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/11/2022] [Indexed: 11/01/2022]
Abstract
Intracerebral hemorrhage is a leading cause of morbidity and mortality worldwide. To date, there is no specific treatment that clearly provides a benefit in functional outcome or mortality. Surgical treatment for hematoma evacuation has not yet shown clear benefit over medical management despite promising preclinical studies. Minimally invasive treatment options for hematoma evacuation are under investigation but remain in early-stage clinical trials. Robotics has the potential to improve treatment. In this paper, we review intracerebral hemorrhage pathology, currently available treatments, and potential robotic approaches to date. We also discuss the future role of robotics in stroke treatment.
Collapse
Affiliation(s)
- Mishek J Musa
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Christopher Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai Medical System, New York, NY, USA
| | - Dimitri Sigounas
- Department of Neurosurgery, The George Washington University, Washington, Washington, DC, USA
| | - Isuru Godage
- College of Computing and Digital Media, DePaul University, Chicago, IL, USA
| | - Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chima Oluigbo
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Yue Chen
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
9
|
Ung TH, Kahn L, Hirt L, Chatain G, Humes E, David-Gerecht P, Drees C, Thompson JA, Ojemann S, Abosch A. Using a Robotic-Assisted Approach for Stereotactic Laser Ablation Corpus Callosotomy: A Technical Report. Stereotact Funct Neurosurg 2021; 100:61-66. [PMID: 34515241 DOI: 10.1159/000518109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Corpus callosotomy for medically intractable epilepsy is an effective ablative procedure traditionally achieved using either standard open craniotomy or with less-invasive approaches. Advances in robotic-assisted stereotactic guidance for neurosurgery can be applied for LITT for corpus callosotomy. CLINICAL PRESENTATIONS Two patients were included in this study. One was a 25-year-old female patient with extensive bi-hemispheric malformations of cortical development and medically refractory epilepsy, and the other was an 18-year-old male with medically refractory epilepsy and atonic seizures, who underwent a complete corpus callosotomy using robotic-assisted stereotactic guidance for LITT. RESULTS Both patients underwent successful intended corpus callosotomy with volumetric analysis demonstrating a length disconnection of 74% and a volume disconnection of 55% for patient 1 and a length disconnection of 83% and a volume disconnection of 33% for patient 2. Postoperatively, both patients had clinical reductions in seizure. CONCLUSION Our experience demonstrates that robotic guidance systems can safely and effectively be adapted for minimally invasive LITT corpus callosotomy.
Collapse
Affiliation(s)
- Timothy H Ung
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA.,School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lora Kahn
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA.,School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lisa Hirt
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA
| | - Gregoire Chatain
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA.,School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Elizabeth Humes
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA.,School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Pamela David-Gerecht
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA.,School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Cornelia Drees
- School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Neurology, University of Colorado Hospital, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA.,School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA.,School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado Hospital, Aurora, Colorado, USA.,School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
10
|
Rubino F, Eichberg DG, Cordeiro JG, Di L, Eliahu K, Shah AH, Luther EM, Lu VM, Komotar RJ, Ivan ME. Robotic guidance platform for laser interstitial thermal ablation and stereotactic needle biopsies: a single center experience. J Robot Surg 2021; 16:549-557. [PMID: 34258748 PMCID: PMC8276839 DOI: 10.1007/s11701-021-01278-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/04/2021] [Indexed: 11/28/2022]
Abstract
While laser ablation has become an increasingly important tool in the neurosurgical oncologist's armamentarium, deep seated lesions, and those located near critical structures require utmost accuracy during stereotactic laser catheter placement. Robotic devices have evolved significantly over the past two decades becoming an accurate and safe tool for stereotactic neurosurgery. Here, we present our single center experience with the MedTech ROSA ONE Brain robot for robotic guidance in laser interstitial thermal therapy (LITT) and stereotactic biopsies. We retrospectively analyzed the first 70 consecutive patients treated with ROSA device at a single academic medical center. Forty-three patients received needle biopsy immediately followed by LITT with the catheter placed with robotic guidance and 27 received stereotactic needle biopsy alone. All the procedures were performed frameless with skull bone fiducials for registration. We report data regarding intraoperative details, mortality and morbidity, diagnostic yield and lesion characteristics on MRI. Also, we describe the surgical workflow for both procedures. The mean age was 60.3 ± 15 years. The diagnostic yield was positive in 98.5% (n = 69). Sixty-three biopsies (90%) were supratentorial and seven (10%) were infratentorial. Gliomas represented 54.3% of the patients (n = 38). There were two postoperative deaths (2.8%). No permanent morbidity related to surgery were observed. We did not find intraoperative technical problems with the device. There was no need to reposition the needle after the initial placement. Stereotactic robotic guided placement of laser ablation catheters and biopsy needles is safe, accurate, and can be implemented into a neurosurgical workflow.
Collapse
Affiliation(s)
- Franco Rubino
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA.
| | - Daniel G Eichberg
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA
| | - Joacir G Cordeiro
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA
| | - Long Di
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA
| | - Karen Eliahu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA
| | - Evan M Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA
| | - Victor M Lu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, 33146, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33146, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, 33146, USA
| |
Collapse
|
11
|
Liang AS, Munier SM, Danish SF. Mathematical Modeling of Thermal Damage Estimate Volumes in MR-guided Laser Interstitial Thermal Therapy. J Neuroimaging 2021; 31:334-340. [PMID: 33471941 DOI: 10.1111/jon.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive procedure that produces real-time thermal damage estimates (TDEs) of ablation. Currently, MRgLITT software provides limited quantitative parameters for intraoperative monitoring, but orthogonal TDE-MRI slices can be utilized to mathematically estimate ablation volume. The objective of this study was to model TDE volumes and validate using post-24 hours MRI ablative volumes. METHODS Ablations were performed with the Visualase Laser Ablation System (Medtronic). Using ellipsoidal parameters determined for dual-TDEs from orthogonal MRI planes, TDE volumes were calculated by two definite integral methods (A and B) implemented in Matlab (MathWorks). Post-24 hours MRI ablative volumes were measured in OsiriX (Pixmeo) by two-blinded raters and compared to TDE volumes via paired t-test and Pearson's correlations. RESULTS Twenty-two ablations for 20 patients with various intracranial pathologies were included. Average TDE volume calculated with method A was 3.44 ± 1.96 cm3 and with method B was 4.83 ± 1.53 cm3 . Method A TDE volumes were significantly different than post-24 hours volumes (P < .001). Method B TDE volumes were not significantly different than post-24 hours volumes (P = .39) and strongly correlated with each other (r = .85, R2 = .72, P < .0001). A total of eight of 22 (36%) method A versus 17 of 22 (77%) method B TDE volumes were within 25% of the post-24 hours ablative volume. CONCLUSION We present a viable mathematical method integrating dual-plane TDEs to calculate volumes. Future algorithmic iterations will incorporate additional calculated variables that improve ablative volume estimations.
Collapse
Affiliation(s)
- Allison S Liang
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sean M Munier
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Shabbar F Danish
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
12
|
Development of a Robotic Catheter Manipulation System Based on BP Neural Network PID Controller. Appl Bionics Biomech 2020; 2020:8870106. [PMID: 33425007 PMCID: PMC7775165 DOI: 10.1155/2020/8870106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/15/2020] [Accepted: 12/05/2020] [Indexed: 11/23/2022] Open
Abstract
In the process of artificial interventional therapy, the operation of artificial catheter is not accurate, which will bring strong radiation damage to surgeons. The purpose of this study is to develop a catheter operating system of surgical robot to assist doctors in remote operation and avoid the influence of radiation. BP neural network plays an important role in the flexibility and rapidity of control. According to the actual output of the system, the control parameters of the controller are constantly adjusted to achieve better output effect. This paper introduces the practical application of BP neural network PID controller in the remote operation of the system and compares with the traditional PID controller. The results show that the new control algorithm is feasible and effective. The results show that the synchronization performance of BP neural network PID controller is better than that of traditional PID controller.
Collapse
|
13
|
Faraji AH, Remick M, Abel TJ. Contributions of Robotics to the Safety and Efficacy of Invasive Monitoring With Stereoelectroencephalography. Front Neurol 2020; 11:570010. [PMID: 33391145 PMCID: PMC7772229 DOI: 10.3389/fneur.2020.570010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
The purpose of this review is to provide a discussion of the history and utility of robotics in invasive monitoring for epilepsy surgery using stereoelectroencephalography (sEEG). The authors conducted a literature review of available sources to describe how the advent of surgical robotics has improved the efficacy and ease of performing sEEG surgery. The sEEG method integrates anatomic, electrographic, and clinical information to test hypotheses regarding the localization of the epileptogenic zone (EZ) and has been used in Europe since the 1950s. One of the primary benefits of robot-assisted sEEG implantation techniques is the ability to seamlessly transition between both orthogonal and oblique trajectory types using a single technique. Based on available information, it is our view that, when applied appropriately, robotic sEEG can have a low rate of complications and many advantages over both non-robotic sEEG implantation and traditional craniotomy-based invasive monitoring methods.
Collapse
Affiliation(s)
- Amir H Faraji
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Madison Remick
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Khoo HM, Gotman J, Hall JA, Dubeau F. Treatment of Epilepsy Associated with Periventricular Nodular Heterotopia. Curr Neurol Neurosci Rep 2020; 20:59. [PMID: 33123826 DOI: 10.1007/s11910-020-01082-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Epilepsy associated with periventricular nodular heterotopia (PNH), a developmental malformation, is frequently drug-resistant and requires focal therapeutic intervention. Invasive EEG study is usually necessary to delineate the epileptogenic zone, but constructing an accurate hypothesis to define an appropriate electrode implantation scheme and the treatment is challenging. This article reviews recent studies that help understanding the epileptogenicity and potential therapeutic options in PNH. RECENT FINDINGS New noninvasive diagnostic and intracerebral EEG analytic tools demonstrated that cortical hyperexcitability and aberrant connectivity (between nodules and cortices and among nodules) are likely mechanisms causing epilepsy in most patients. The deeply seated PNH, if epileptogenic, are ideal target for stereotactic ablative techniques, which offer concomitant ablation of multiple regions with relatively satisfactory seizure outcome. Advance in diagnostic and analytic tools have enhanced our understanding of the complex epileptogenicity in PNH. Development in stereotactic ablative techniques now offers promising therapeutic options for these patients.
Collapse
Affiliation(s)
- Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita-shi, Osaka Prefecture, 565-0871, Japan.
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - François Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
15
|
Ashraf O, Arzumanov G, Luther E, McMahon JT, Malcolm JG, Mansour S, Lee IY, Willie JT, Komotar RJ, Danish SF. Magnetic resonance-guided laser interstitial thermal therapy for posterior fossa neoplasms. J Neurooncol 2020; 149:533-542. [PMID: 33057919 DOI: 10.1007/s11060-020-03645-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Magnetic resonance-guided laser interstitial thermal therapy (LITT) has been increasingly used to treat a number of intracranial pathologies, though its use in the posterior fossa has been limited to a few small series. We performed a multi-institutional review of targets in the posterior fossa, reporting the efficacy and safety profile associated with laser ablation in this region of the brain. METHODS A retrospective review of patients undergoing LITT in the posterior fossa was performed from August 2010 to March 2020. Patient demographic information was collected alongside the operative parameters and patient outcomes. Reported outcomes included local control of the lesion, postoperative complications, hospital length of stay, and steroid requirements. RESULTS 58 patients across four institutions underwent LITT in the posterior fossa for 60 tumors. The median pre-ablation tumor volume was 2.24 cm3. 48 patients (50 tumors) were available for follow-up. An 84% (42/50) overall local control rate was achieved at 9.5 months median follow up. There were two procedural complications, including insertional hemorrhage and laser misplacement and 12/58 (21%) patients developed new neurological deficits. There was one procedure related death. The median length of hospital stay was 1 day, with 20.7% of patients requiring discharge to a rehabilitation facility. CONCLUSIONS LITT is an effective approach for treating pathology in the posterior fossa. The average target size is smaller than what has been reported in the supratentorial space. Care must be taken to prevent injury to surrounding structures given the close proximity of critical structures in this region.
Collapse
Affiliation(s)
- Omar Ashraf
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, 10 Plum St. 5th Floor, New Brunswick, NJ, 08901, USA
| | - Grant Arzumanov
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, 10 Plum St. 5th Floor, New Brunswick, NJ, 08901, USA
| | - Evan Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - J Tanner McMahon
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James G Malcolm
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Samuel Mansour
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jon T Willie
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - Shabbar F Danish
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, 10 Plum St. 5th Floor, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
16
|
Patel NA, Nycz CJ, Carvalho PA, Gandomi KY, Gondokaryono R, Li G, Heffter T, Burdette EC, Pilitsis JG, Fischer GS. An Integrated Robotic System for MRI-Guided Neuroablation: Preclinical Evaluation. IEEE Trans Biomed Eng 2020; 67:2990-2999. [PMID: 32078530 PMCID: PMC7529397 DOI: 10.1109/tbme.2020.2974583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Treatment of brain tumors requires high precision in order to ensure sufficient treatment while minimizing damage to surrounding healthy tissue. Ablation of such tumors using needle-based therapeutic ultrasound (NBTU) under real-time magnetic resonance imaging (MRI) can fulfill this need. However, the constrained space and strong magnetic field in the MRI bore restricts patient access limiting precise placement of the NBTU ablation tool. A surgical robot compatible with use inside the bore of an MRI scanner can alleviate these challenges. METHODS We present preclinical trials of a robotic system for NBTU ablation of brain tumors under real-time MRI guidance. The system comprises of an updated robotic manipulator and corresponding control electronics, the NBTU ablation system and applications for planning, navigation and monitoring of the system. RESULTS The robotic system had a mean translational and rotational accuracy of 1.39 ± 0.64 mm and 1.27 [Formula: see text] in gelatin phantoms and 3.13 ± 1.41 mm and 5.58 [Formula: see text] in 10 porcine trials while causing a maximum reduction in signal to noise ratio (SNR) of 10.3%. CONCLUSION The integrated robotic system can place NBTU ablator at a desired target location in porcine brain and monitor the ablation in realtime via magnetic resonance thermal imaging (MRTI). SIGNIFICANCE Further optimization of this system could result in a clinically viable system for use in human trials for various diagnostic or therapeutic neurosurgical interventions.
Collapse
|
17
|
Vasudevan MK, Isaac JHR, Sadanand V, Muniyandi M. Novel virtual reality based training system for fine motor skills: Towards developing a robotic surgery training system. Int J Med Robot 2020; 16:1-14. [PMID: 32976695 DOI: 10.1002/rcs.2173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Training surgeons to use surgical robots are becoming part of surgical training curricula. We propose a novel method of training fine-motor skills such as Microscopic Selection Task (MST) for robot-assisted surgery using virtual reality (VR) with objective quantification of performance. We also introduce vibrotactile feedback (VTFB) to study its impact on training performance. METHODS We use a VR-based environment to perform MST with varying degrees of difficulties. Using a well-known human-computer interaction paradigm and incorporating VTFB, we quantify the performance: speed, precision and accuracy. RESULTS MST with VTFB showed statistically significant improvement in performance metrics leading to faster completion of MST with higher precision and accuracy compared to that without VTFB. DISCUSSION The addition of VTFB to VR-based training for robot-assisted surgeries may improve performance outcomes in real robotic surgery. VTFB, along with proposed performance metrics, can be used in training curricula for robot-assisted surgeries.
Collapse
Affiliation(s)
- Madhan Kumar Vasudevan
- Touch Lab, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Joseph H R Isaac
- Touch Lab, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.,Reconfigurable Intelligent Systems Engineering (RISE) Lab, Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Venkatraman Sadanand
- Department of Neurosurgery, Loma Linda University Health System, Loma Linda, California, USA
| | - Manivannan Muniyandi
- Touch Lab, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Liang AS, Munier SM, Patel NV, Danish SF. Characterization of ablation dimensions in magnetic resonance-guided laser interstitial thermal therapy via a semi-automated algorithm. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2020. [DOI: 10.1016/j.inat.2020.100782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Nelson JH, Brackett SL, Oluigbo CO, Reddy SK. Robotic Stereotactic Assistance (ROSA) for Pediatric Epilepsy: A Single-Center Experience of 23 Consecutive Cases. CHILDREN-BASEL 2020; 7:children7080094. [PMID: 32784564 PMCID: PMC7465763 DOI: 10.3390/children7080094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 11/18/2022]
Abstract
Robotic assisted neurosurgery has become increasingly utilized for its high degree of precision and minimally invasive approach. Robotic stereotactic assistance (ROSA®) for neurosurgery has been infrequently reported in the pediatric population. The goal of this case series was to describe the clinical experience, anesthetic and operative management, and treatment outcomes for pediatric patients with intractable epilepsy undergoing ROSA® neurosurgery at a single-center institution. Patients who underwent implantation of stereoelectroencephalography (SEEG) leads for intractable epilepsy with ROSA® were retrospectively evaluated between August 2016 and June 2018. Demographics, perioperative management details, complications, and preliminary seizure outcomes after resective or ablative surgery were reviewed. Nineteen children who underwent 23 ROSA® procedures for SEEG implantation were included in the study. Mean operative time was 148 min. Eleven patients had subsequent resective or ablative surgery, and ROSA® was used to assist with laser probe insertion in five patients for seizure foci ablation. In total, 148 SEEG electrodes were placed without any perioperative complications. ROSA® is minimally invasive, provides superior accuracy for electrode placement, and requires less time than traditional surgical approaches for brain mapping. This emerging technology may improve the perioperative outcomes for pediatric patients with intractable epilepsy since large craniotomies are avoided; however, long-term follow-up studies are needed.
Collapse
Affiliation(s)
- Jonathon H. Nelson
- Division of Anesthesiology, Pain and Perioperative Medicine, Children’s National Hospital, The George Washington University School of Medicine & Health Sciences, Washington, DC 20010, USA;
- Correspondence:
| | - Samantha L. Brackett
- Division of Anesthesiology, Pain and Perioperative Medicine, Children’s National Hospital, The George Washington University School of Medicine & Health Sciences, Washington, DC 20010, USA;
| | - Chima O. Oluigbo
- Division of Neurosurgery, Children’s National Hospital, The George Washington University School of Medicine & Health Sciences, Washington, DC 20010, USA;
| | - Srijaya K. Reddy
- Department of Anesthesiology, Division of Pediatric Anesthesiology, Monroe Carell Jr. Children’s Hospital, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
20
|
Li G, Patel NA, Burdette EC, Pilitsis JG, Su H, Fischer GS. A Fully Actuated Robotic Assistant for MRI-Guided Precision Conformal Ablation of Brain Tumors. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2020; 26:255-266. [PMID: 33994771 PMCID: PMC8117662 DOI: 10.1109/tmech.2020.3012903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper reports the development of a fully actuated robotic assistant for magnetic resonance imaging (MRI)-guided precision conformal ablation of brain tumors using an interstitial high intensity needle-based therapeutic ultrasound (NBTU) ablator probe. The robot is designed with an eight degree-of-freedom (DOF) remote center of motion (RCM) manipulator driven by piezoelectric actuators, five for aligning the ultrasound thermal ablator to the target lesions and three for inserting and orienting the ablator and its cannula to generate a desired ablation profile. The 8-DOF fully actuated robot can be operated in the scanner bore during imaging; thus, alleviating the need of moving the patient in or out of the scanner during the procedure, and therefore potentially reducing the procedure time and streamlining the workflow. The free space positioning accuracy of the system is evaluated with the OptiTrack motion capture system, demonstrating the root mean square (RMS) error of the tip position to be 1.11±0.43mm. The system targeting accuracy in MRI is assessed with phantom studies, indicating the RMS errors of the tip position to be 1.45±0.66mm and orientation to be 1.53±0.69°. The feasibility of the system to perform thermal ablation is validated through a preliminary ex-vivo tissue study with position error less than 4.3mm and orientation error less than 4.3°.
Collapse
Affiliation(s)
- Gang Li
- Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Niravkumar A. Patel
- Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | | | - Hao Su
- Department of Mechanical Engineering, City College, City University of New York, NY, USA
| | - Gregory S. Fischer
- Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
21
|
Highly realistic simulation for robot-assisted hypothalamic hamartoma real-time MRI-guided laser interstitial thermal therapy (LITT). Childs Nerv Syst 2020; 36:1131-1142. [PMID: 32166344 DOI: 10.1007/s00381-020-04563-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Real-time MRI-guided laser interstitial thermal therapy (LITT) is a challenging procedure due to its technical complexity, as well as the need for efficient multidisciplinary teamwork and transfer of an anesthetized patient between operating room (OR) and magnetic resonance (MR). A highly realistic simulation was developed to design the safest process before being applied to real patients. In this report, authors address the description of the methodology used for this simulation and its purposefulness. METHODS The entire image planning, anesthetic, and surgical process were performed on a modified pediatric simulation mannequin with a brain made of medical grade silicone including a hypothalamic hamartoma. Preoperative CT and MR were acquired. Stereotactic insertion of the optical fiber was assisted by the Neuromate® stereotactic robot. Laser ablation was performed with the Medtronic Visualase® MRI-guided system in a 3T Phillips Ingenia® MR scanner. All the stages of the process, participants, and equipment were the same as planned for a real surgery. RESULTS No critical errors were found in the process design that prevented the procedure from being performed with adequate safety. Specific proposals for team positioning and interaction in patient transfers and in MR room were validated. Some specific elements that could improve safety were identified. CONCLUSION Highly realistic simulation has been an extremely useful tool for safely planning LITT, because professionals were able to take actions in the workflow based not on ideas but on lived experiences. It contributed definitively to build a well-coordinated surgical team that worked safely and more efficiently.
Collapse
|
22
|
Liu JS, Peng SJ, Li GF, Zhao YX, Meng XY, Yu XR, Li ZH, Chen JM. Polydopamine Nanoparticles for Deep Brain Ablation via Near-Infrared Irradiation. ACS Biomater Sci Eng 2019; 6:664-672. [PMID: 33463219 DOI: 10.1021/acsbiomaterials.9b01097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Local resection or ablation remains an important approach to treat drug-resistant central neurological disease. Conventional surgical approaches are designed to resect the diseased tissues. The emergence of photothermal therapy (PTT) offers a minimally invasive alternative. However, their poor penetration and potential off-target effect limit their clinical application. Here, polydopamine nanoparticles (PDA-NPs) were prepared and characterized. Studies were performed to evaluate whether PDA-NPs combined with near-infrared (NIR) light can be used to ablate deep brain structures in vitro and in vivo. PDA-NPs were prepared with a mean diameter of ∼150 nm. The particles show excellent photothermal conversion efficiency. PDA-NPs did not show remarkable cytotoxicity against neuronal-like SH-SY5Y cell lines. However, it can cause significant cell death when combined with NIR irradiation. Transcranial NIR irradiation after PDA-NPs administration induced enhanced local hyperthermia as compared with NIR alone. Local temperature exceeded 60 °C after 6 min of irradiation plus PDA while it can only reach 48 °C with NIR alone. PTT with PDA (10 mg/mL, 3 μL) and NIR (1.5 W/cm2) can ablate deep brain structures precisely with an ablation volume of ∼6.5 mm3. Histological analysis confirmed necrosis and apoptosis in the targeted area. These results demonstrate the potential of NP-assisted PTT for the treatment against nontumorous central neurological diseases.
Collapse
Affiliation(s)
- Jian-Sheng Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizao Road, Shanghai 200011, PR China
| | - Shao-Jun Peng
- Zhuhai Precision Medical Center, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, Guangdong 519000, PR China
| | - Ge-Fei Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizao Road, Shanghai 200011, PR China
| | - Ya-Xue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiang-Ying Meng
- Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiang-Rong Yu
- Zhuhai Precision Medical Center, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, Guangdong 519000, PR China
| | - Zhao-Hui Li
- Zhuhai Precision Medical Center, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, Guangdong 519000, PR China
| | - Jin-Mei Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizao Road, Shanghai 200011, PR China
| |
Collapse
|
23
|
Munier SM, Hargreaves EL, Patel NV, Danish SF. Ablation dynamics of subsequent thermal doses delivered to previously heat-damaged tissue during magnetic resonance-guided laser-induced thermal therapy. J Neurosurg 2019; 131:1958-1965. [PMID: 30579274 DOI: 10.3171/2018.7.jns18886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Intraoperative dynamics of magnetic resonance-guided laser-induced thermal therapy (MRgLITT) have been previously characterized for ablations of naive tissue. However, most treatment sessions require the delivery of multiple doses, and little is known about the ablation dynamics when additional doses are applied to heat-damaged tissue. This study investigated the differences in ablation dynamics between naive versus damaged tissue. METHODS The authors examined 168 ablations from 60 patients across various surgical indications. All ablations were performed using the Visualase MRI-guided laser ablation system (Medtronic), which employs a 980-nm diffusing tip diode laser. Cases with multiple topographically overlapping doses with constant power were selected for this study. Single-dose intraoperative thermal damage was used to calculate ablation rate based on the thermal damage estimate (TDE) of the maximum area of ablation achieved (TDEmax) and the total duration of ablation (tmax). We compared ablation rates of naive undamaged tissue and damaged tissue exposed to subsequent thermal doses following an initial ablation. RESULTS TDEmax was significantly decreased in subsequent ablations compared to the preceding ablation (initial ablation 227.8 ± 17.7 mm2, second ablation 164.1 ± 21.5 mm2, third ablation 124.3 ± 11.2 mm2; p = < 0.001). The ablation rate of subsequent thermal doses delivered to previously damaged tissue was significantly decreased compared to the ablation rate of naive tissue (initial ablation 2.703 mm2/sec; second ablation 1.559 mm2/sec; third ablation 1.237 mm2/sec; fourth ablation 1.076 mm/sec; p = < 0.001). A negative correlation was found between TDEmax and percentage of overlap in a subsequent ablation with previously damaged tissue (r = -0.164; p < 0.02). CONCLUSIONS Ablation of previously ablated tissue results in a reduced ablation rate and reduced TDEmax. Additionally, each successive thermal dose in a series of sequential ablations results in a decreased ablation rate relative to that of the preceding ablation. In the absence of a change in power, operators should anticipate a possible reduction in TDE when ablating partially damaged tissue for a similar amount of time compared to the preceding ablation.
Collapse
|
24
|
|
25
|
Tomlinson SB, Buch VP, Armstrong D, Kennedy BC. Stereoelectroencephalography in Pediatric Epilepsy Surgery. J Korean Neurosurg Soc 2019; 62:302-312. [PMID: 31085956 PMCID: PMC6514312 DOI: 10.3340/jkns.2019.0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Stereoelectroencephalography (SEEG) is an invasive technique used during the surgical management of medically refractory epilepsy. The utility of SEEG rests in its ability to survey the three-dimensional organization of the epileptogenic zone as well as nearby eloquent cortices. Once concentrated to specialized centers in Europe and Canada, the SEEG methodology has gained worldwide popularity due to its favorable morbidity profile, superior coverage of deep structures, and ability to perform multilobar explorations without the need for craniotomy. This rapid shift in practice represents both a challenge and an opportunity for pediatric neurosurgeons familiar with the subdural grid approach. The purpose of this review is to discuss the indications, technique, and safety of long-term SEEG monitoring in children. In addition to reviewing the conceptual and technical points of the diagnostic evaluation, attention will also be given to SEEG-based interventions (e.g., radiofrequency thermo-coagulation).
Collapse
Affiliation(s)
- Samuel B Tomlinson
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Vivek P Buch
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dallas Armstrong
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin C Kennedy
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
26
|
Upadhyayula P, Rennert R, Hoshide R, Sattar S, Gonda D. Laser Ablation of a Nonlesional Cingulate Gyrus Epileptogenic Zone Using Robotic-Assisted Stereotactic EEG Localization: A Case Report. Stereotact Funct Neurosurg 2019; 97:10-17. [DOI: 10.1159/000496155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/09/2018] [Indexed: 11/19/2022]
|
27
|
Abstract
BACKGROUND Stereoelectroencephalography has been in regular use at the Montreal Neurological Institute since 1972. The technique has been in constant evolution to incorporate advances in materials, imaging, and robotics technology. MRI-compatible electrodes were introduced in 2007 and robotics in 2011. Here we report on the technique, safety, and advantages of our current method of stereoelectroencephalography implantation. METHODS We retrospectively reviewed all patients who underwent stereoelectroencephalography by the senior author. Technical, clinical, and radiological complications, and postimplantation outcomes were analyzed. Only patients implanted with MRI-compatible electrodes were included to review MRI abnormalities with electrodes in situ. RESULTS A total of 53 patients were implanted with 550 electrodes (average=10.4 per patient), for an average duration of 14.6 days. There was no mortality, infection, or new neurologic deficit. Two patients had a superficial screw plunge without clinical consequence. Four patients demonstrated asymptomatic MRI abnormalities (7.54% per patient, or 0.72% per electrode). MRI with electrodes in situ was used for neuronavigation in all 29 who underwent resection and yielded a histopathological diagnosis of focal cortical dysplasia in 15 MRI-negative patients. CONCLUSIONS The technique of stereoelectroencephalography described here was associated with no clinical morbidity although not without technical complications or radiologic (MRI) abnormalities. We should therefore remain vigilant in refining the technique and minimizing the number of electrodes required to answer a well-developed hypothesis regarding the epileptogenic zone. The use of MRI-compatible electrodes allowed neuronavigation using the images with the electrodes in situ, which was useful to tailor the eventual definitive resection and in localizing MRI-negative lesions.
Collapse
|
28
|
Himes BT, Zhang L, Daniels DJ. Treatment Strategies in Diffuse Midline Gliomas With the H3K27M Mutation: The Role of Convection-Enhanced Delivery in Overcoming Anatomic Challenges. Front Oncol 2019; 9:31. [PMID: 30800634 PMCID: PMC6375835 DOI: 10.3389/fonc.2019.00031] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022] Open
Abstract
Diffuse midline gliomas harboring the H3 K27M mutation—including the previously named diffuse intrinsic pontine glioma (DIPG)—are lethal high-grade pediatric brain tumors that are inoperable and without cure. Despite numerous clinical trials, the prognosis remains poor, with a median survival of ~1 year from diagnosis. Systemic administration of chemotherapeutic agents is often hindered by the blood brain barrier (BBB), and even drugs that successfully cross the barrier may suffer from unpredictable distributions. The challenge in treating this deadly disease relies on effective delivery of a therapeutic agent to the bulk tumor as well as infiltrating cells. Therefore, methods that can enhance drug delivery to the brain are of great interest. Convection-enhanced delivery (CED) is a strategy that bypasses the BBB entirely and enhances drug distribution by applying hydraulic pressure to deliver agents directly and evenly into a target region. This technique reliably distributes infusate homogenously through the interstitial space of the target region and achieves high local drug concentrations in the brain. Moreover, recent studies have also shown that continuous delivery of drug over an extended period of time is safe, feasible, and more efficacious than standard single session CED. Therefore, CED represents a promising technique for treating midline tumors with the H3K27M mutation.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
29
|
Miller KJ, Halpern CH, Sedrak MF, Duncan JA, Grant GA. A novel mesial temporal stereotactic coordinate system. J Neurosurg 2019; 130:67-75. [PMID: 29372873 DOI: 10.3171/2017.7.jns162267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 07/06/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stereotactic laser ablation and neurostimulator placement represent an evolution in staged surgical intervention for epilepsy. As this practice evolves, optimal targeting will require standardized outcome measures that compare electrode lead or laser source with postprocedural changes in seizure frequency. The authors propose and present a novel stereotactic coordinate system based on mesial temporal anatomical landmarks to facilitate the planning and delineation of outcomes based on extent of ablation or region of stimulation within mesial temporal structures. METHODS The body of the hippocampus contains a natural axis, approximated by the interface of cornu ammonis area 4 and the dentate gyrus. The uncal recess of the lateral ventricle acts as a landmark to characterize the anterior-posterior extent of this axis. Several volumetric rotations are quantified for alignment with the mesial temporal coordinate system. First, the brain volume is rotated to align with standard anterior commissure-posterior commissure (AC-PC) space. Then, it is rotated through the axial and sagittal angles that the hippocampal axis makes with the AC-PC line. RESULTS Using this coordinate system, customized MATLAB software was developed to allow for intuitive standardization of targeting and interpretation. The angle between the AC-PC line and the hippocampal axis was found to be approximately 20°-30° when viewed sagittally and approximately 5°-10° when viewed axially. Implanted electrodes can then be identified from CT in this space, and laser tip position and burn geometry can be calculated based on the intraoperative and postoperative MRI. CONCLUSIONS With the advent of stereotactic surgery for mesial temporal targets, a mesial temporal stereotactic system is introduced that may facilitate operative planning, improve surgical outcomes, and standardize outcome assessment.
Collapse
Affiliation(s)
- Kai J Miller
- 1Department of Neurosurgery, Stanford University, Stanford; and
| | - Casey H Halpern
- 1Department of Neurosurgery, Stanford University, Stanford; and
| | - Mark F Sedrak
- 1Department of Neurosurgery, Stanford University, Stanford; and
- 2Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | - John A Duncan
- 2Department of Neurosurgery, Kaiser Permanente, Redwood City, California
| | - Gerald A Grant
- 1Department of Neurosurgery, Stanford University, Stanford; and
| |
Collapse
|
30
|
Hooten KG, Werner K, Mikati MA, Muh CR. MRI-guided laser interstitial thermal therapy in an infant with tuberous sclerosis: technical case report. J Neurosurg Pediatr 2019; 23:92-97. [PMID: 30265228 DOI: 10.3171/2018.6.peds1828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/22/2018] [Indexed: 11/08/2022]
Abstract
Cortical tubers associated with tuberous sclerosis complex (TSC) are potential epileptic foci that are often amenable to resective or ablative surgeries, and controlling seizures at a younger age may lead to improved functional outcomes. MRI-guided laser interstitial thermal therapy (MRgLITT) has become a popular minimally invasive alternative to traditional craniotomy. Benefits of MRgLITT include the ability to monitor the ablation in real time, a smaller incision, shorter hospital stay, reduced blood loss, and reduced postoperative pain. To place the laser probe for LITT, however, stereotaxy is required-which classically involves head fixation with cranial pins. This creates a relative minimum age limit of 2 years old because it demands a mature skull and fused cranial sutures. A novel technique is presented for the application of MRgLITT in a 6-month-old infant for the treatment of epilepsy associated with TSC. To the authors' knowledge this is the youngest patient treated with laser ablation. The authors used a frameless navigation technique with a miniframe tripod system and intraoperative reference points. This technique expands the application of MRgLITT to younger patients, which may lead to safer surgical interventions and improved outcomes for these children.
Collapse
Affiliation(s)
- Kristopher G Hooten
- 1Department of Neurosurgery
- 2Department of Neurosurgery, University of Florida, Gainesville, Florida
- 4Tuberous Sclerosis Complex Clinic, Duke University, Durham, North Carolina; and
| | - Klaus Werner
- 3Division of Pediatric Neurology
- 4Tuberous Sclerosis Complex Clinic, Duke University, Durham, North Carolina; and
| | - Mohamad A Mikati
- 3Division of Pediatric Neurology
- 4Tuberous Sclerosis Complex Clinic, Duke University, Durham, North Carolina; and
| | - Carrie R Muh
- 1Department of Neurosurgery
- 4Tuberous Sclerosis Complex Clinic, Duke University, Durham, North Carolina; and
| |
Collapse
|
31
|
Neudorfer C, Hunsche S, Hellmich M, El Majdoub F, Maarouf M. Comparative Study of Robot-Assisted versus Conventional Frame-Based Deep Brain Stimulation Stereotactic Neurosurgery. Stereotact Funct Neurosurg 2018; 96:327-334. [DOI: 10.1159/000494736] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/07/2018] [Indexed: 11/19/2022]
|
32
|
Basov S, Milstein A, Sulimani E, Platkov M, Peretz E, Rattunde M, Wagner J, Netz U, Katzir A, Nisky I. Robot-assisted laser tissue soldering system. BIOMEDICAL OPTICS EXPRESS 2018; 9:5635-5644. [PMID: 30460151 PMCID: PMC6238920 DOI: 10.1364/boe.9.005635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 05/30/2023]
Abstract
Fast and reliable incision closure is critical in any surgical intervention. Common solutions are sutures and clips or adhesives, but they all present difficulties. These difficulties are especially pronounced in classical and robot-assisted minimally-invasive interventions. Laser soldering methods present a promising alternative, but their reproducibility is limited. We present a system that combines a previously reported laser soldering system with a robotic system, and demonstrate its feasibility on the incision-closure of ex-vivo mice skins. In this demonstration, we measured tearing forces of ~2.5N, 73% of the tearing force of a mouse skin without an incision. This robot-assisted laser soldering technique has the potential to make laser tissue soldering more reproducible and revolutionize surgical tissue bonding.
Collapse
Affiliation(s)
- Svetlana Basov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amit Milstein
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Erez Sulimani
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Max Platkov
- Nuclear Research Center Negev, Beer-Sheva, 84190, Israel
| | - Eli Peretz
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Marcel Rattunde
- Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg, Germany
| | - Joachim Wagner
- Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg, Germany
| | - Uri Netz
- Department of Surgery A, Soroka University Medical Center, Beer-Sheva, 85025, Israel
| | - Abraham Katzir
- School of Physics & Astronomy, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ilana Nisky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
33
|
Cobourn K, Fayed I, Keating RF, Oluigbo CO. Early outcomes of stereoelectroencephalography followed by MR-guided laser interstitial thermal therapy: a paradigm for minimally invasive epilepsy surgery. Neurosurg Focus 2018; 45:E8. [DOI: 10.3171/2018.6.focus18209] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVEStereoelectroencephalography (sEEG) and MR-guided laser interstitial thermal therapy (MRgLITT) have both emerged as minimally invasive alternatives to open surgery for the localization and treatment of medically refractory lesional epilepsy. Although some data are available about the use of these procedures individually, reports are almost nonexistent on their use in conjunction. The authors’ aim was to report early outcomes regarding efficacy and safety of sEEG followed by MRgLITT for localization and ablation of seizure foci in the pediatric population with medically refractory lesional epilepsy.METHODSA single-center retrospective review of pediatric patients who underwent sEEG followed by MRgLITT procedures was performed. Demographic, intraoperative, and outcome data were compiled and analyzed.RESULTSFour pediatric patients with 9 total lesions underwent sEEG followed by MRgLITT procedures between January and September 2017. The mean age at surgery was 10.75 (range 2–21) years. Two patients had tuberous sclerosis and 2 had focal cortical dysplasia. Methods of stereotaxy consisted of BrainLab VarioGuide and ROSA robotic guidance, with successful localization of seizure foci in all cases. The sEEG procedure length averaged 153 (range 67–235) minutes, with a mean of 6 (range 4–8) electrodes and 56 (range 18–84) contacts per patient. The MRgLITT procedure length averaged 223 (range 179–252) minutes. The mean duration of monitoring was 6 (range 4–8) days, and the mean total hospital stay was 8 (range 5–11) days. Over a mean follow-up duration of 9.3 (range 5.1–16) months, 3 patients were seizure free (Engel class I, 75%), and 1 patient saw significant improvement in seizure frequency (Engel class II, 25%). There were no complications.CONCLUSIONSThese early data demonstrate that sEEG followed by MRgLITT can be used safely and effectively to localize and ablate epileptogenic foci in a minimally invasive paradigm for treatment of medically refractory lesional epilepsy in pediatric populations. Continued collection of data with extended follow-up is needed.
Collapse
|
34
|
Schmitt FC, Curry DJ, Zhou D, Stefan H. Minimal-invasive, ablative surgery - Potential and limitations for a curative treatment approach in epilepsy. Epilepsy Res 2018; 142:106-108. [PMID: 29622370 DOI: 10.1016/j.eplepsyres.2018.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- F C Schmitt
- Department of Neurology, University Hospital Magdeburg, Leipzigerstr. 44, Magdeburg 39120, Germany.
| | - D J Curry
- Baylor College of Medicine, Texas Children Hospital, United States
| | - D Zhou
- West China Hospital at Si Chuan University in Cheng Du, PR China
| | - H Stefan
- Department of Neurology - Biomagnetism, University Hospital Erlangen, Germany
| |
Collapse
|
35
|
North RY, Raskin JS, Curry DJ. MRI-Guided Laser Interstitial Thermal Therapy for Epilepsy. Neurosurg Clin N Am 2018; 28:545-557. [PMID: 28917283 DOI: 10.1016/j.nec.2017.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MRI-guided laser interstitial thermal therapy for epilepsy (LITT-E) has become an established, minimally invasive alternative to traditional epilepsy surgery. LITT-E is particularly valuable in cases in which open surgery poses unacceptably high morbidity or patient preference precludes craniotomy. Here we present a focused review of technical details and application of LITT to both focal and generalized epilepsy.
Collapse
Affiliation(s)
- Robert Y North
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Suite 9A, Houston, TX 77030, USA
| | - Jeffrey S Raskin
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin Street, Suite 1230, Houston, TX 77030, USA
| | - Daniel J Curry
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin Street, Suite 1230, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Tandon V, Chandra PS, Doddamani RS, Subianto H, Bajaj J, Garg A, Tripathi M. Stereotactic Radiofrequency Thermocoagulation of Hypothalamic Hamartoma Using Robotic Guidance (ROSA) Coregistered with O-arm Guidance—Preliminary Technical Note. World Neurosurg 2018; 112:267-274. [DOI: 10.1016/j.wneu.2018.01.193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
|
37
|
Anyanwu C, Motamedi GK. Diagnosis and Surgical Treatment of Drug-Resistant Epilepsy. Brain Sci 2018; 8:E49. [PMID: 29561756 PMCID: PMC5924385 DOI: 10.3390/brainsci8040049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/29/2022] Open
Abstract
Despite appropriate trials of at least two antiepileptic drugs, about a third of patients with epilepsy remain drug resistant (intractable; refractory). Epilepsy surgery offers a potential cure or significant improvement to those with focal onset drug-resistant seizures. Unfortunately, epilepsy surgery is still underutilized which might be in part because of the complexity of presurgical evaluation. This process includes classifying the seizure type, lateralizing and localizing the seizure onset focus (epileptogenic zone), confirming the safety of the prospective brain surgery in terms of potential neurocognitive deficits (language and memory functions), before devising a surgical plan. Each one of the above steps requires special tests. In this paper, we have reviewed the process of presurgical evaluation in patients with drug-resistant focal onset epilepsy.
Collapse
Affiliation(s)
- Chinekwu Anyanwu
- Department of Neurology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA.
| | - Gholam K Motamedi
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
38
|
Vassileva A, van Blooijs D, Leijten F, Huiskamp G. Neocortical electrical stimulation for epilepsy: Closed-loop versus open-loop. Epilepsy Res 2018; 141:95-101. [DOI: 10.1016/j.eplepsyres.2018.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 11/15/2017] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
|
39
|
Laser-Induced Thermal Therapy in Neuro-Oncology: A Review. World Neurosurg 2018; 112:166-177. [PMID: 29410102 DOI: 10.1016/j.wneu.2018.01.123] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Laser therapy has become an appealing treatment modality in neurosurgery. In this review, we report on the history, physics, surgical steps, indications and uses, and complications that have been reported to date. METHODS An extensive literature search was performed for laser interstitial thermal therapy (LITT) and laser therapy in the context of glial tumors, metastatic lesions, pediatric brain tumors, and radiation necrosis. Reported complications in each series also were reviewed. RESULTS In the past decade, multiple studies have demonstrated the use, outcomes, and complications associated with LITT in neurosurgery. These same studies have consistently reported an overall benefit of LITT in cases in which traditional surgical approaches may be limited by the patient's clinical status, tumor location, or overall prognosis. However, there have been complications reported from local effects of thermal damage, technical error, and edema development. Increased experience has reduced complications and brought more promising results. CONCLUSIONS With the advent of real-time monitoring and damage estimation, LITT has gained ground in the management of intracranial tumors. Larger scale trials must be performed to develop standard protocols to define specific indications for use. Further large clinical studies for LITT in non-oncologic cases are also of interest.
Collapse
|
40
|
Alan N, Lee P, Ozpinar A, Gross BA, Jankowitz BT. Robotic Stereotactic Assistance (ROSA) Utilization for Minimally Invasive Placement of Intraparenchymal Hematoma and Intraventricular Catheters. World Neurosurg 2017; 108:996.e7-996.e10. [DOI: 10.1016/j.wneu.2017.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 11/28/2022]
|
41
|
Belykh E, Yagmurlu K, Martirosyan NL, Lei T, Izadyyazdanabadi M, Malik KM, Byvaltsev VA, Nakaji P, Preul MC. Laser application in neurosurgery. Surg Neurol Int 2017; 8:274. [PMID: 29204309 PMCID: PMC5691557 DOI: 10.4103/sni.sni_489_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/18/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. METHODS We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. RESULTS Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. CONCLUSION Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ting Lei
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kashif M. Malik
- University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
42
|
Lefranc M, Zouitina Y, Tir M, Merle P, Ouendo M, Constans JM, Godefroy O, Peltier J, Krystkowiak P. Asleep Robot-Assisted Surgery for the Implantation of Subthalamic Electrodes Provides the Same Clinical Improvement and Therapeutic Window as Awake Surgery. World Neurosurg 2017; 106:602-608. [DOI: 10.1016/j.wneu.2017.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
43
|
Miller BA, Salehi A, Limbrick DD, Smyth MD. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr 2017; 20:364-370. [PMID: 28777037 DOI: 10.3171/2017.5.peds1782] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The ROSA device is a robotic stereotactic arm that uses a laser system to register the patient's head or spine with MR or CT images. In this study, the authors analyze their experience with this system in pediatric neurosurgical applications and present selected cases that exemplify the usefulness of this system. METHODS The authors reviewed all cases that utilized the ROSA system at their institution. Patient demographics, pathology, complications, electrode placement, laser ablation, and biopsy accuracy were analyzed. Patient disposition and condition at follow-up were also analyzed. RESULTS Seventeen patients underwent 23 procedures using the ROSA system. A total of 87 electroencephalography electrodes were placed, with 13% deviating more than 3 mm from target. Six patients underwent stereotactic needle biopsy, and 9 underwent laser interstitial thermotherapy (LITT). One patient who underwent LITT required a subsequent craniotomy for tumor resection. Another patient experienced an asymptomatic extraaxial hematoma that spontaneously resolved. No patient suffered neurological complications during follow-up. Follow-up from the last procedure averaged 180 days in epilepsy patients and 309 days in oncology patients. CONCLUSIONS The precision, ease of use, and versatility of the ROSA system make it well suited for pediatric neurosurgical practice. Further work, including long-term analysis of results and cost-effectiveness, will help determine the utility of this system and if its applications can be expanded.
Collapse
Affiliation(s)
- Brandon A Miller
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, Missouri
| | - Afshin Salehi
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, Missouri
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, Missouri
| | - Matthew D Smyth
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, Missouri
| |
Collapse
|
44
|
Munier SM, Hargreaves EL, Patel NV, Danish SF. Effects of variable power on tissue ablation dynamics during magnetic resonance-guided laser-induced thermal therapy with the Visualase system. Int J Hyperthermia 2017; 34:764-772. [DOI: 10.1080/02656736.2017.1376355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sean M. Munier
- Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Eric L. Hargreaves
- Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Nitesh V. Patel
- Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Shabbar F. Danish
- Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
45
|
Hoshide R, Calayag M, Meltzer H, Levy ML, Gonda D. Robot-assisted endoscopic third ventriculostomy: institutional experience in 9 patients. J Neurosurg Pediatr 2017; 20:125-133. [PMID: 28598265 DOI: 10.3171/2017.3.peds16636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The endoscopic third ventriculostomy (ETV) is an established and effective treatment for obstructive hydrocephalus. In its most common application, surgeons plan their entry point and the endoscope trajectory for the procedure based on anatomical landmarks, then control the endoscope freehand. Recent studies report an incidence of neural injuries as high as 16.6% of all ETVs performed in North America. The authors have introduced the ROSA system to their ETV procedure to stereotactically optimize endoscope trajectories, to reduce risk of traction on neural structures by the endoscope, and to provide a stable mechanical holder of the endoscope. Here, they present their series in which the ROSA system was used for ETVs. METHODS At the authors' institution, they performed ETVs with the ROSA system in 9 consecutive patients within an 8-month period. Patients had to have a favorable expected response to ETV (ETV Success Score ≥ 70) with no additional endoscopic procedures (e.g., choroid plexus cauterization, septum pellucidum fenestration). The modality of image registration (CT, MRI, surface mapping, or bone fiducials) was dependent on the case. RESULTS Nine pediatric patients with an age range of 1.5 to 16 years, 4 girls and 5 boys, with ETV Success Scores ranging from 70 to 90, underwent successful ETV surgery with the ROSA system within an 8-month period. Their intracranial pathologies included tectal tumors (n = 3), communicating hydrocephalus from hemorrhage or meningeal disease (n = 2), congenital aqueductal stenosis (n = 1), compressive porencephalic cyst (n = 1), Chiari I malformation (n = 1), and pineal region mass (n = 1). Robotic assistance was limited to the ventricular access in the first 2 procedures, but was used for the entirety of the procedure for the following 7 cases. Four of these cases were combined with another procedural objective (3 stereotactic tectal mass biopsies, 1 Chiari decompression). A learning curve was observed with each subsequent surgery as registration and surgical times became shorter and more efficient. All patients had complete resolution of their preprocedural symptoms. There were no complications. CONCLUSIONS The ROSA system provides a stable, precise, and minimally invasive approach to ETVs.
Collapse
Affiliation(s)
- Reid Hoshide
- Division of Neurosurgery, Rady Children's Hospital, San Diego, California
| | - Mark Calayag
- Division of Neurosurgery, Rady Children's Hospital, San Diego, California
| | - Hal Meltzer
- Division of Neurosurgery, Rady Children's Hospital, San Diego, California
| | - Michael L Levy
- Division of Neurosurgery, Rady Children's Hospital, San Diego, California
| | - David Gonda
- Division of Neurosurgery, Rady Children's Hospital, San Diego, California
| |
Collapse
|
46
|
|
47
|
Fahrenholtz SJ, Madankan R, Danish S, Hazle JD, Stafford RJ, Fuentes D. Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images. Int J Hyperthermia 2017; 34:101-111. [PMID: 28540820 DOI: 10.1080/02656736.2017.1319974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Neurosurgical laser ablation is experiencing a renaissance. Computational tools for ablation planning aim to further improve the intervention. Here, global optimisation and inverse problems are demonstrated to train a model that predicts maximum laser ablation extent. METHODS A closed-form steady state model is trained on and then subsequently compared to N = 20 retrospective clinical MR thermometry datasets. Dice similarity coefficient (DSC) is calculated to provide a measure of region overlap between the 57 °C isotherms of the thermometry data and the model-predicted ablation regions; 57 °C is a tissue death surrogate at thermal steady state. A global optimisation scheme samples the dominant model parameter sensitivities, blood perfusion (ω) and optical parameter (μeff) values, throughout a parameter space totalling 11 440 value-pairs. This represents a lookup table of μeff-ω pairs with the corresponding DSC value for each patient dataset. The μeff-ω pair with the maximum DSC calibrates the model parameters, maximising predictive value for each patient. Finally, leave-one-out cross-validation with global optimisation information trains the model on the entire clinical dataset, and compares against the model naïvely using literature values for ω and μeff. RESULTS When using naïve literature values, the model's mean DSC is 0.67 whereas the calibrated model produces 0.82 during cross-validation, an improvement of 0.15 in overlap with the patient data. The 95% confidence interval of the mean difference is 0.083-0.23 (p < 0.001). CONCLUSIONS During cross-validation, the calibrated model is superior to the naïve model as measured by DSC, with +22% mean prediction accuracy. Calibration empowers a relatively simple model to become more predictive.
Collapse
Affiliation(s)
- Samuel John Fahrenholtz
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Reza Madankan
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shabbar Danish
- c Section of Neurosurgery , Rutgers Cancer Institute of New Jersey , New Brunswick , NJ , USA
| | - John D Hazle
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - R Jason Stafford
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - David Fuentes
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| |
Collapse
|
48
|
Brandmeir NJ, Savaliya S, Rohatgi P, Sather M. The comparative accuracy of the ROSA stereotactic robot across a wide range of clinical applications and registration techniques. J Robot Surg 2017; 12:157-163. [DOI: 10.1007/s11701-017-0712-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/01/2017] [Indexed: 12/01/2022]
|
49
|
De Benedictis A, Trezza A, Carai A, Genovese E, Procaccini E, Messina R, Randi F, Cossu S, Esposito G, Palma P, Amante P, Rizzi M, Marras CE. Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus 2017; 42:E7. [DOI: 10.3171/2017.2.focus16579] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEDuring the last 3 decades, robotic technology has rapidly spread across several surgical fields due to the continuous evolution of its versatility, stability, dexterity, and haptic properties. Neurosurgery pioneered the development of robotics, with the aim of improving the quality of several procedures requiring a high degree of accuracy and safety. Moreover, robot-guided approaches are of special interest in pediatric patients, who often have altered anatomy and challenging relationships between the diseased and eloquent structures. Nevertheless, the use of robots has been rarely reported in children. In this work, the authors describe their experience using the ROSA device (Robotized Stereotactic Assistant) in the neurosurgical management of a pediatric population.METHODSBetween 2011 and 2016, 116 children underwent ROSA-assisted procedures for a variety of diseases (epilepsy, brain tumors, intra- or extraventricular and tumor cysts, obstructive hydrocephalus, and movement and behavioral disorders). Each patient received accurate preoperative planning of optimal trajectories, intraoperative frameless registration, surgical treatment using specific instruments held by the robotic arm, and postoperative CT or MR imaging.RESULTSThe authors performed 128 consecutive surgeries, including implantation of 386 electrodes for stereo-electroencephalography (36 procedures), neuroendoscopy (42 procedures), stereotactic biopsy (26 procedures), pallidotomy (12 procedures), shunt placement (6 procedures), deep brain stimulation procedures (3 procedures), and stereotactic cyst aspiration (3 procedures). For each procedure, the authors analyzed and discussed accuracy, timing, and complications.CONCLUSIONSTo the best their knowledge, the authors present the largest reported series of pediatric neurosurgical cases assisted by robotic support. The ROSA system provided improved safety and feasibility of minimally invasive approaches, thus optimizing the surgical result, while minimizing postoperative morbidity.
Collapse
Affiliation(s)
| | - Andrea Trezza
- 1Department of Neuroscience and Neurosurgical Unit and
- 2Neurosurgery, Department of Surgery and Translational Medicine, Milan Center for Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza
| | - Andrea Carai
- 1Department of Neuroscience and Neurosurgical Unit and
| | - Elisabetta Genovese
- 3Enterprise Risk Management, Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Rome
| | | | | | - Franco Randi
- 1Department of Neuroscience and Neurosurgical Unit and
| | - Silvia Cossu
- 1Department of Neuroscience and Neurosurgical Unit and
| | | | - Paolo Palma
- 1Department of Neuroscience and Neurosurgical Unit and
| | | | - Michele Rizzi
- 4“Claudio Munari” Center for Epilepsy Surgery, Niguarda Hospital, Milan; and
- 5Department of Neuroscience, University of Parma, Italy
| | | |
Collapse
|
50
|
Sahyouni R, Moshtaghi O, Tran DK, Kaloostian S, Rajaii R, Bustillo D, Chen JW. Assessment of Google Glass as an adjunct in neurological surgery. Surg Neurol Int 2017; 8:68. [PMID: 28540134 PMCID: PMC5421200 DOI: 10.4103/sni.sni_277_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
Background: We assess Google Glass (“Glass”) in improving postoperative review (“debriefing”) and augmenting education in Neurological Surgery at a tertiary academic medical center. Methods: This was a prospective study. Participants were patients of Neurological Surgery physicians at a Tertiary Care Level 1 Academic Trauma Center. Resident physicians received a pre-questionnaire immediately following surgery. Next, the resident and attending physicians debriefed by reviewing the Glass operative recording. Then, residents completed a 4-part post-questionnaire. Questions 1–3 assessed: (1) the residents’ comfort level with the procedure, (2) the quality of education provided by their superiors, and (3) their comfort level in repeating the operation. Question 4 assessed: (4) the perceived benefit of debriefing using Glass. Results: Twelve surveys were collected. Scores were based on a 5-point Likert scale, with a higher score corresponding to a more positive response. For Questions 1–3, the average pre- and post-questionnaire scores were 3.75 and 4.42, respectively (P <.05). For Question 4, the average post-questionnaire score was 4.63, suggesting that postoperative Glass review improved their technical understanding of the procedure. Conclusions: Glass significantly improved neurosurgery residents’ comfort level and quality of training, and provided a high fidelity, reliable, and modifiable tool that enhanced residents’ understanding, expertise, and educational experience. Of note, certain limitations such as variable battery life, variable image quality, and subpar compatibility with surgeon loupes must still be overcome for Glass to become a realistic addition to neurosurgical education.
Collapse
Affiliation(s)
- Ronald Sahyouni
- School of Medicine, Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Omid Moshtaghi
- School of Medicine, Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Diem Kieu Tran
- Division of Neurotrauma, Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Sean Kaloostian
- Division of Neurotrauma, Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Ramin Rajaii
- School of Medicine, Department of Neurological Surgery, University of California, Irvine, California, USA
| | - David Bustillo
- Division of Neurotrauma, Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Jefferson W Chen
- School of Medicine, Department of Neurological Surgery, University of California, Irvine, California, USA.,Division of Neurotrauma, Department of Neurological Surgery, University of California, Irvine, California, USA
| |
Collapse
|