1
|
Qin X, Xu W, Hu J, Dong Y, Ding R, Huang S, Zhao Z, Chang H, Wang X, Dong S. Structure-activity relationship study of Pseudellone C as anti-glioma agents by targeting TNF/TNFR signaling pathway. Eur J Med Chem 2024; 278:116799. [PMID: 39213937 DOI: 10.1016/j.ejmech.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Glioma, a common primary brain tumor, is highly infiltrative and invasive, often leading to drug resistance and recurrence. Therefore, the development of novel therapeutic agents is urgently needed. Pseudellone C is a novel marine triindole alkaloid. Screening of its antiproliferative activity against 55 cell lines revealed its anti-CNS cancer potential. A total of 42 derivatives of Pseudellone C were designed and synthesized, and their inhibitory activities against two human glioma cell lines (U-87MG and LN-229) were evaluated using the CCK-8 assay. Ten derivatives exhibited potent antiproliferative activity with IC50 values below 10 μmol, which are 18- to 39- fold more potent than Pseudellone C. Among these, derivative 4o demonstrated favorable blood-brain barrier permeability. Mechanistic studies revealed that 4o induces apoptosis primarily by activating the downstream caspase 3 cascade via the TNF/TNFR pathway. Structure-activity relationship correlations were systematically analyzed, and a pharmacophore model for further rational design was constructed.
Collapse
Affiliation(s)
- Xufeng Qin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Weifeng Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Jiangnan Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yong Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Renbo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhendong Zhao
- Analytical & Testing Center, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou 570228, China
| | - Hong Chang
- Hainan Academy of Inspection and Testing, Haikou 570311, China
| | - Xiaokun Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Lenffer B, Ruben J, Senthi S, Millar J, Ong WL. Management and outcomes of glioblastoma: 20-year experience in a single Australian institution. J Med Imaging Radiat Oncol 2023. [PMID: 37997616 DOI: 10.1111/1754-9485.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION We aimed to evaluate the changing patterns in the management of glioblastoma (GBM) and impact on survival outcomes over a 20-year period. METHODS This is a retrospective study of patients diagnosed with GBM between 2001 and 2020, who had radiation therapy (RT) in an Australian institution. The primary outcomes were changes in treatment modalities (including surgery, RT, and chemotherapy) over time and overall survival (OS). Multivariable Cox regressions were used to evaluate factors associated with OS, including age, sex, ECOG performance status, treatment modalities, treatment facility, and year of treatment. RESULTS 1079 patients were included in this study. Thirty-five per cent of patients had gross total resection, increasing from 31% in 2001-2005 to 45% in 2016-2020 (P < 0.001). Sixty-four per cent of patients had ≥60 Gy RT, increasing from 57% in 2001-2005 to 66% in 2016-2020 (P < 0.001). Seventy-five per cent of patients had chemotherapy, increasing from 22% in 2001-2005 to 89% in 2016-2020 (P < 0.001). Treatment received varied based on patients' age and ECOG performance status. The median OS for the entire cohort was 13.0 months (95% CI = 12.0-13.7). Median OS in patients who had maximal treatment (i.e., gross total resection, ≥60 Gy RT and chemotherapy) was 20.6 months (95% CI = 17.3-22.8). In multivariable analyses, age, sex, treatment facility, extent of surgical resection, RT dose, and chemotherapy use were associated with OS. CONCLUSION This is one of the largest Australian series on the management and outcomes of GBM spanning a 20-year period. We observed improvement in OS over time, which is likely associated with evolving treatment options over the study period.
Collapse
Affiliation(s)
- Bianca Lenffer
- Alfred Health Radiation Oncology, Melbourne, Victoria, Australia
| | - Jeremy Ruben
- Alfred Health Radiation Oncology, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sashendra Senthi
- Alfred Health Radiation Oncology, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jeremy Millar
- Alfred Health Radiation Oncology, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Wee Loon Ong
- Alfred Health Radiation Oncology, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Liaropoulos I, Liaropoulos A, Liaropoulos K. Critical Assessment of Cancer Characterization and Margin Evaluation Techniques in Brain Malignancies: From Fast Biopsy to Intraoperative Flow Cytometry. Cancers (Basel) 2023; 15:4843. [PMID: 37835537 PMCID: PMC10571534 DOI: 10.3390/cancers15194843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Brain malignancies, given their intricate nature and location, present significant challenges in both diagnosis and treatment. This review critically assesses a range of diagnostic and surgical techniques that have emerged as transformative tools in brain malignancy management. Fast biopsy techniques, prioritizing rapid and minimally invasive tissue sampling, have revolutionized initial diagnostic stages. Intraoperative flow cytometry (iFC) offers real-time cellular analysis during surgeries, ensuring optimal tumor resection. The advent of intraoperative MRI (iMRI) has seamlessly integrated imaging into surgical procedures, providing dynamic feedback and preserving critical brain structures. Additionally, 5-aminolevulinic acid (5-ALA) has enhanced surgical precision by inducing fluorescence in tumor cells, aiding in their complete resection. Several other techniques have been developed in recent years, including intraoperative mass spectrometry methodologies. While each technique boasts unique strengths, they also present potential limitations. As technology and research continue to evolve, these methods are set to undergo further refinement. Collaborative global efforts will be pivotal in driving these advancements, promising a future of improved patient outcomes in brain malignancy management.
Collapse
|
4
|
Mondal A, Kang J, Kim D. Recent Progress in Fluorescent Probes for Real-Time Monitoring of Glioblastoma. ACS APPLIED BIO MATERIALS 2023; 6:3484-3503. [PMID: 36917648 DOI: 10.1021/acsabm.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Treating glioblastoma (GBM) by resecting to a large extent can prolong a patient's survival by controlling the tumor cells, but excessive resection may produce postoperative complications by perturbing the brain structures. Therefore, various imaging procedures have been employed to successfully diagnose and resect with utmost caution and to protect vital structural or functional features. Fluorescence tagging is generally used as an intraoperative imaging technique in glioma cells in collaboration with other surgical tools such as MRI and navigation methods. However, the existing fluorescent probes may have several limitations, including poor selectivity, less photostability, false signals, and intraoperative re-administration when used in clinical and preclinical studies for glioma surgery. The involvement of smart fluorogenic materials, specifically fluorescent dyes, and biomarker-amended cell-penetrable fluorescent probes have noteworthy advantages for precise glioma imaging. This review outlines the contemporary advancements of fluorescent probes for imaging glioma cells along with their challenges and visions, with the anticipation to develop next-generation smart glioblastoma detection modalities.
Collapse
Affiliation(s)
- Amita Mondal
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jisoo Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Materials Research Science and Engineering Center, University of California at San Diego, 9500 Gilman Drive La Jolla, California 92093, United States
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Tan AJL, Tey ML, Seow WT, Low DCY, Chang KTE, Ng LP, Looi WS, Wong RX, Tan EEK, Low SYY. Intraoperative Fluorescein Sodium in Pediatric Neurosurgery: A Preliminary Case Series from a Singapore Children's Hospital. NEUROSCI 2023; 4:54-64. [PMID: 39484294 PMCID: PMC11523705 DOI: 10.3390/neurosci4010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 11/03/2024] Open
Abstract
(1) Background: Fluorescein sodium (Na-Fl) has been described as a safe and useful neurosurgical adjunct in adult neurooncology. However, its use has yet to be fully established in children. We designed a study to investigate the use of intraoperative Na-Fl in pediatric brain tumor surgery. (2) Methods: This is a single-institution study for pediatric brain tumor patients managed by the Neurosurgical Service, KK Women's and Children's Hospital. Inclusion criteria consists of patients undergoing surgery for suspected brain tumors from 3 to 19 years old. A predefined intravenous dose of 2 mg/kg of 10% Na-Fl is administered per patient. Following craniotomy, surgery is performed under alternating white light and YELLOW-560 nm filter illumination. (3) Results: A total of 21 patients with suspected brain tumours were included. Median age was 12.1 years old. For three patients (14.3%), there was no significant Na-Fl fluorescence detected and their final histologies reported a cavernoma and two radiation-induced high grade gliomas. The remaining patients (85.7%) had adequate intraoperative fluorescence for their lesions. No adverse side effects were encountered with the use of Na-Fl. (4) Conclusions: Preliminary findings demonstrate the safe and efficacious use of intraoperative Na-Fl for brain tumors as a neurosurgical adjunct in our pediatric patients.
Collapse
Affiliation(s)
- Audrey J. L. Tan
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Min Li Tey
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Wan Tew Seow
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - David C. Y. Low
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Kenneth T. E. Chang
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Lee Ping Ng
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Wen Shen Looi
- Department of Radiation Oncology, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Ru Xin Wong
- Department of Radiation Oncology, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Enrica E. K. Tan
- Paediatric Haematology/Oncology Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Sharon Y. Y. Low
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| |
Collapse
|
6
|
Dialogue among Lymphocytes and Microglia in Glioblastoma Microenvironment. Cancers (Basel) 2022; 14:cancers14112632. [PMID: 35681612 PMCID: PMC9179556 DOI: 10.3390/cancers14112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this review, we summarize in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Particularly, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth. Abstract Microglia and lymphocytes are fundamental constituents of the glioblastoma microenvironment. In this review, we summarize the current state-of-the-art knowledge of the microglial role played in promoting the development and aggressive hallmarks of this deadly brain tumor. Particularly, we report in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Furthermore, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth.
Collapse
|
7
|
Netufo O, Connor K, Shiels LP, Sweeney KJ, Wu D, O’Shea DF, Byrne AT, Miller IS. Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents. Pharmaceuticals (Basel) 2022; 15:550. [PMID: 35631376 PMCID: PMC9143023 DOI: 10.3390/ph15050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive adult brain tumour with a dismal 2-year survival rate of 26-33%. Maximal safe resection plays a crucial role in improving patient progression-free survival (PFS). Neurosurgeons have the significant challenge of delineating normal tissue from brain tumour to achieve the optimal extent of resection (EOR), with 5-Aminolevulinic Acid (5-ALA) the only clinically approved intra-operative fluorophore for GBM. This review aims to highlight the requirement for improved intra-operative imaging techniques, focusing on fluorescence-guided imaging (FGS) and the use of novel dyes with the potential to overcome the limitations of current FGS. The review was performed based on articles found in PubMed an.d Google Scholar, as well as articles identified in searched bibliographies between 2001 and 2022. Key words for searches included 'Glioblastoma' + 'Fluorophore'+ 'Novel' + 'Fluorescence Guided Surgery'. Current literature has favoured the approach of using targeted fluorophores to achieve specific accumulation in the tumour microenvironment, with biological conjugates leading the way. These conjugates target specific parts overexpressed in the tumour. The positive results in breast, ovarian and colorectal tissue are promising and may, therefore, be applied to intracranial neoplasms. Therefore, this design has the potential to produce favourable results in GBM by reducing the residual tumour, which translates to decreased tumour recurrence, morbidity and ultimately, mortality in GBM patients. Several preclinical studies have shown positive results with targeted dyes in distinguishing GBM cells from normal brain parenchyma, and targeted dyes in the Near-Infrared (NIR) emission range offer promising results, which may be valuable future alternatives.
Collapse
Affiliation(s)
- Oluwakanyinsolami Netufo
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kate Connor
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Liam P. Shiels
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kieron J. Sweeney
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Centre for Neurosurgery, Beaumont Hospital, 9, D09 V2N0 Dublin, Ireland
| | - Dan Wu
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Donal F. O’Shea
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Annette T. Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| | - Ian S. Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
8
|
Akimoto J, Fukami S, Ichikawa M, Nagai K, Kohno M. Preliminary Report: Rapid Intraoperative Detection of Residual Glioma Cell in Resection Cavity Walls Using a Compact Fluorescence Microscope. J Clin Med 2021; 10:jcm10225375. [PMID: 34830662 PMCID: PMC8620805 DOI: 10.3390/jcm10225375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: The surgical eradication of malignant glioma cells is theoretically impossible. Therefore, reducing the number of remaining tumor cells around the brain–tumor interface (BTI) is crucial for achieving satisfactory clinical results. The usefulness of fluorescence–guided resection for the treatment of malignant glioma was recently reported, but the detection of infiltrating tumor cells in the BTI using a surgical microscope is not realistic. Therefore, we have developed an intraoperative rapid fluorescence cytology system, and exploratorily evaluated its clinical feasibility for the management of malignant glioma. Materials and methods: A total of 25 selected patients with malignant glioma (newly diagnosed: 17; recurrent: 8) underwent surgical resection under photodiagnosis using photosensitizer Talaporfin sodium and a semiconductor laser. Intraoperatively, a crush smear preparation was made from a tiny amount of tumor tissue, and the fluorescence emitted upon 620/660 nm excitation was evaluated rapidly using a compact fluorescence microscope in the operating theater. Results: Fluorescence intensities of tumor tissues measured using a surgical microscope correlated with the tumor cell densities of tissues evaluated by measuring the red fluorescence emitted from the cytoplasm of tumor cells using a fluorescence microscope. A “weak fluorescence” indicated a reduction in the tumor cell density, whereas “no fluorescence” did not indicate the complete eradication of the tumor cells, but indicated that few tumor cells were emitting fluorescence. Conclusion: The rapid intraoperative detection of fluorescence from glioma cells using a compact fluorescence microscope was probably useful to evaluate the presence of tumor cells in the resection cavity walls, and could provide surgical implications for the more complete resection of malignant gliomas.
Collapse
Affiliation(s)
- Jiro Akimoto
- Department of Neurosurgery, Kohsei Chuo General Hospital, Tokyo 153-0062, Japan
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
- Correspondence:
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
| | - Megumi Ichikawa
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
| | - Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
| |
Collapse
|
9
|
Yang G, Li G, Du X, Zhou W, Zou X, Liu Y, Lv H, Li Z. Down-regulation of IGHG1 enhances Protoporphyrin IX accumulation and inhibits hemin biosynthesis in colorectal cancer by suppressing the MEK-FECH axis. Open Life Sci 2021; 16:930-936. [PMID: 34553073 PMCID: PMC8422984 DOI: 10.1515/biol-2021-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin γ-1 heavy chain constant region (IGHG1) is a functional isoform of immunoglobulins and plays an important role in the cytolytic activity of immune effector cells. Dysregulated IGHG1 was implicated in the occurrence and development of various tumors. Protoporphyrin IX (PpIX) is an endogenous fluorophore and is used in photodynamic therapy, which induces the generation of reactive oxygen species to initiate the death of tumor cells. However, the roles of IGHG1 in the colorectal cancer cell proliferation and PpIX accumulation have not been reported yet. Data from qRT-PCR and western blot analysis showed that IGHG1 was up-regulated in the colorectal cancer cells. Colorectal cancer cells were then transfected with shRNA targeting IGHG1 to down-regulate IGHG1 and conducted with Cell Counting Kit 8 (CCK8) and colony formation assays. Results demonstrated that shRNA-mediated down-regulation of IGHG1 decreased cell viability of colorectal cancer and suppressed cell proliferation. Moreover, PpIX accumulation was promoted and the hemin content was decreased by the silence of IGHG1. Interference of IGHG1 reduced the phosphorylated extracellular signal-regulated kinase (ERK) and ferrochelatase (FECH) expression, resulting in retarded cell proliferation in an MEK-FECH axis-dependent pathway.
Collapse
Affiliation(s)
- Guangjian Yang
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Gang Li
- Department of Anorectal, The First People’s Hospital of Longquanyi District of Chengdu, No. 201, Group 3, Chengdu, Sichuan, 610100, China
| | - Xuemei Du
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Wenting Zhou
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Xiaohong Zou
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Yuanfu Liu
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Hong Lv
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Zhenjiang Li
- Department of Research and Development, Sichuan Haosidelifu Science and Technology Ltd, Chengdu, Sichuan, 610041, China
| |
Collapse
|
10
|
An JM, Moon H, Verwilst P, Shin J, Kim BM, Park CK, Kim JS, Yeo SG, Kim HY, Kim D. Human Glioblastoma Visualization: Triple Receptor-Targeting Fluorescent Complex of Dye, SIWV Tetra-Peptide, and Serum Albumin Protein. ACS Sens 2021; 6:2270-2280. [PMID: 34100604 DOI: 10.1021/acssensors.1c00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence guided surgery (FGS) has been highlighted in the clinical site for guiding surgical procedures and providing the surgeon with a real-time visualization of the operating field. FGS is a powerful technique for precise surgery, particularly tumor resection; however, clinically approved fluorescent dyes have often shown several limitations during FGS, such as non-tumor-targeting, low in vivo stability, insufficient emission intensity, and low blood-brain barrier penetration. In this study, we disclose a fluorescent dye complex, peptide, and protein for the targeted visualization of human glioblastoma (GBM) cells and tissues. Our noble triple receptor-targeting fluorescent complex (named BSA-OXN-SIWV) consists of (i) dipolar oxazepine dye (OXN), which has high stability, low cytotoxicity, bright fluorescence, and two-photon excitable, (ii) tetra-peptide (SIWV) for the targeting of the caveolin-1 receptor, and (iii) bovine serum-albumin (BSA) protein for the targeting of albondin (gp60) and secreted protein acidic and rich in cysteine receptor. The photophysical properties and binding mode of BSA-OXN-SIWV were analyzed, and the imaging of GBM cell lines and human clinical GBM tissues were successfully demonstrated in this study. Our findings hold great promise for the application of BSA-OXN-SIWV to GBM identification and the surgery at clinical sites, as a new FGS agent.
Collapse
Affiliation(s)
- Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heejo Moon
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter Verwilst
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - B. Moon Kim
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo Young Kim
- R&D Division of Drug Discovery Department, SPARK Biopharma, Seoul 08791, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Brahimaj BC, Kochanski RB, Pearce JJ, Guryildirim M, Gerard CS, Kocak M, Sani S, Byrne RW. Structural and Functional Imaging in Glioma Management. Neurosurgery 2021; 88:211-221. [PMID: 33313852 DOI: 10.1093/neuros/nyaa360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
The goal of glioma surgery is maximal safe resection in order to provide optimal tumor control and survival benefit to the patient. There are multiple imaging modalities beyond traditional contrast-enhanced magnetic resonance imaging (MRI) that have been incorporated into the preoperative workup of patients presenting with gliomas. The aim of these imaging modalities is to identify cortical and subcortical areas of eloquence, and their relationship to the lesion. In this article, multiple modalities are described with an emphasis on the underlying technology, clinical utilization, advantages, and disadvantages of each. functional MRI and its role in identifying hemispheric dominance and areas of language and motor are discussed. The nuances of magnetoencephalography and transcranial magnetic stimulation in localization of eloquent cortex are examined, as well as the role of diffusion tensor imaging in defining normal white matter tracts in glioma surgery. Lastly, we highlight the role of stimulated Raman spectroscopy in intraoperative histopathological diagnosis of tissue to guide tumor resection. Tumors may shift the normal arrangement of functional anatomy in the brain; thus, utilization of multiple modalities may be helpful in operative planning and patient counseling for successful surgery.
Collapse
Affiliation(s)
- Bledi C Brahimaj
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Ryan B Kochanski
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - John J Pearce
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Melike Guryildirim
- Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland
| | - Carter S Gerard
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - Mehmet Kocak
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Richard W Byrne
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
12
|
Xu H, Han Y, Zhao G, Zhang L, Zhao Z, Wang Z, Zhao L, Hua L, Naveena K, Lu J, Yu R, Liu H. Hypoxia-Responsive Lipid-Polymer Nanoparticle-Combined Imaging-Guided Surgery and Multitherapy Strategies for Glioma. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52319-52328. [PMID: 33166112 DOI: 10.1021/acsami.0c12971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glioma is the most prevalent type of malignant brain tumor and is usually very aggressive. Because of the high invasiveness and aggressive proliferative growth of glioma, it is difficult to resect completely or cure with surgery. Residual glioma cells are a primary cause of postoperative recurrence. Herein, we describe a hypoxia-responsive lipid polymer nanoparticle (LN) for fluorescence-guided surgery, chemotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT) combination multitherapy strategies targeting glioma. The hypoxia-responsive LN [LN (DOX + ICG)] contains a hypoxia-responsive component poly(nitroimidazole)25 [P-(Nis)25], the glioma-targeting peptide angiopep-2 (A2), indocyanine green (ICG), and doxorubicin (DOX). LN (DOX + ICG) comprises four distinct functional components: (1) A2: A2 modified nanoparticles effectively target gliomas, enhancing drug concentration in gliomas; (2) P-(Nis)25: (i) the hydrophobic component of LN (DOX + ICG) with hypoxia responsive ability to encapsulate DOX and ICG; (ii) allows rapid release of DOX from LN (DOX + ICG) after 808 nm laser irradiation; (3) ICG: (i) ICG allows imaging-guided surgery, combining PDT and PTT therapies; (ii) upon irradiation with an 808 nm laser, ICG creates a hypoxic environment; (4) DOX inhibits glioma growth. This work demonstrates that LN (DOX + ICG) might provide a novel clinical approach to preventing post-surgical recurrence of glioma.
Collapse
Affiliation(s)
- Haoyue Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Yuhan Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Zongren Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Zhen Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Liang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Lei Hua
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Konduru Naveena
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| |
Collapse
|
13
|
Zhang C, Wu J, Liu W, Zheng X, Zhang W, Lee CS, Wang P. Hypocrellin-Based Multifunctional Phototheranostic Agent for NIR-Triggered Targeted Chemo/Photodynamic/Photothermal Synergistic Therapy against Glioblastoma. ACS APPLIED BIO MATERIALS 2020; 3:3817-3826. [PMID: 35025252 DOI: 10.1021/acsabm.0c00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A huge challenge exists in the diagnosis and treatment of malignant glioblastoma (GBM) due to the presence of the blood-brain barrier (BBB). Herein, a multifunctional phototheranostic agent is designed on the basis of an octadecane-modified temozolomide (TMZ-C18) for chemotherapy, a dicysteamine-modified hypocrellin derivative (DCHB) as a natural-origin photosensitizer with a singlet oxygen (1O2) quantum yield of 0.51, and a cyclic peptide (cRGD) as a targeting unit against glioblastoma. Co-encapsulated DCHB and TMZ-C18 assembly with cRGD decoration, referred to as DTRGD NPs, shows a wide absorption at the NIR region peaked at 703 nm, an NIR emission peak at 720 nm, good photostability, high photothermal conversion efficiency (33%), and effective degradation of TMZ-C18. More importantly, DTRGD NPs can efficiently break through the blood-brain barrier and enrich in the orthotopic glioblastoma. The treatment of subcutaneous U87MG tumor beard mice demonstrates that DTRGD NPs present remarkable anticancer efficiency and the targeted chemo/photodynamic/photothermal synergistic therapy can be achieved with almost no toxicity. This multifunctional phototheranostic agent shows great potential for the diagnosis and treatment of glioblastoma.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Yin C, Wei L, Kose K, Glaser AK, Peterson G, Rajadhyaksha M, Liu JT. Real-time video mosaicking to guide handheld in vivo microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000048. [PMID: 32246558 PMCID: PMC7969124 DOI: 10.1002/jbio.202000048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 05/05/2023]
Abstract
Handheld and endoscopic optical-sectioning microscopes are being developed for noninvasive screening and intraoperative consultation. Imaging a large extent of tissue is often desired, but miniature in vivo microscopes tend to suffer from limited fields of view. To extend the imaging field during clinical use, we have developed a real-time video mosaicking method, which allows users to efficiently survey larger areas of tissue. Here, we modified a previous post-processing mosaicking method so that real-time mosaicking is possible at >30 frames/second when using a device that outputs images that are 400 × 400 pixels in size. Unlike other real-time mosaicking methods, our strategy can accommodate image rotations and deformations that often occur during clinical use of a handheld microscope. We perform a feasibility study to demonstrate that the use of real-time mosaicking is necessary to enable efficient sampling of a desired imaging field when using a handheld dual-axis confocal microscope.
Collapse
Affiliation(s)
- Chengbo Yin
- University of Washington, Department of Mechanical Engineering, Seattle, WA, 98195, USA
| | - Linpeng Wei
- University of Washington, Department of Mechanical Engineering, Seattle, WA, 98195, USA
| | - Kivanc Kose
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, NY, 10021, USA
| | - Adam K. Glaser
- University of Washington, Department of Mechanical Engineering, Seattle, WA, 98195, USA
| | - Gary Peterson
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, NY, 10021, USA
| | - Milind Rajadhyaksha
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, NY, 10021, USA
| | - Jonathan T.C. Liu
- University of Washington, Department of Mechanical Engineering, Seattle, WA, 98195, USA
- University of Washington School of Medicine, Department of Pathology, Seattle, WA 98195, USA
- University of Washington, Department of Bioengineering, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Near-Infrared Molecular Imaging of Glioblastoma by Miltuximab ®-IRDye800CW as a Potential Tool for Fluorescence-Guided Surgery. Cancers (Basel) 2020; 12:cancers12040984. [PMID: 32316186 PMCID: PMC7226459 DOI: 10.3390/cancers12040984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors and its 5-year survival is approximately 5%. Fluorescence-guided surgery (FGS) improves the extent of resection and leads to better prognosis. Molecular near-infrared (NIR) imaging appears to outperform conventional FGS, however, novel molecular targets need to be identified in GBM. Proteoglycan glypican-1 (GPC-1) is believed to be such a target as it is highly expressed in GBM and is associated with poor prognosis. We hypothesize that an anti-GPC-1 antibody, Miltuximab®, conjugated with the NIR dye, IRDye800CW (IR800), can specifically accumulate in a GBM xenograft and provide high-contrast in vivo fluorescent imaging in rodents following systemic administration. Miltuximab® was conjugated with IR800 and intravenously administered to BALB/c nude mice bearing a subcutaneous U-87 GBM hind leg xenograft. Specific accumulation of Miltuximab®-IR800 in subcutaneous xenograft tumor was detected 24 h later using an in vivo fluorescence imager. The conjugate did not cause any adverse events in mice and caused strong fluorescence of the tumor with tumor-to-background ratio (TBR) reaching 10.1 ± 2.8. The average TBR over the 10-day period was 5.8 ± 0.6 in mice injected with Miltuximab®-IR800 versus 2.4 ± 0.1 for the control group injected with IgG-IR800 (p = 0.001). Ex vivo assessment of Miltuximab®-IR800 biodistribution confirmed its highly specific accumulation in the tumor. The results of this study confirm that Miltuximab®-IR800 holds promise for intraoperative fluorescence molecular imaging of GBM and warrants further studies.
Collapse
|
16
|
Katsevman GA, Turner RC, Urhie O, Voelker JL, Bhatia S. Utility of sodium fluorescein for achieving resection targets in glioblastoma: increased gross- or near-total resections and prolonged survival. J Neurosurg 2020; 132:914-920. [PMID: 30738388 DOI: 10.3171/2018.10.jns181174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/04/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE It is commonly reported that achieving gross-total resection of contrast-enhancing areas in patients with glioblastoma (GBM) improves overall survival. Efforts to achieve an improved resection have included the use of both imaging and pharmacological adjuvants. The authors sought to investigate the role of sodium fluorescein in improving the rates of gross-total resection of GBM and to assess whether patients undergoing resection with fluorescein have improved survival compared to patients undergoing resection without fluorescein. METHODS A retrospective chart review was performed on 57 consecutive patients undergoing 64 surgeries with sodium fluorescein to treat newly diagnosed or recurrent GBMs from May 2014 to June 2017 at a teaching institution. Outcomes were compared to those in patients with GBMs who underwent resection without fluorescein. RESULTS Complete or near-total (≥ 98%) resection was achieved in 73% (47/64) of fluorescein cases. Of 42 cases thought not to be amenable to complete resection, 10 procedures (24%) resulted in gross-total resection and 15 (36%) resulted in near-total resection following the use of sodium fluorescein. No patients developed any local or systemic side effects after fluorescein injection. Patients undergoing resection with sodium fluorescein, compared to the non-fluorescein-treated group, had increased rates of gross- or near-total resection (73% vs 53%, respectively; p < 0.05) as well as improved median survival (78 weeks vs 60 weeks, respectively; p < 0.360). CONCLUSIONS This study is the largest case series to date demonstrating the beneficial effect of utilizing sodium fluorescein as an adjunct in GBM resection. Sodium fluorescein facilitated resection in cases in which it was employed, including dominant-side resections particularly near speech and motor regions. The cohort of patients in which sodium fluorescein was utilized had statistically significantly increased rates of gross- or near-total resection. Additionally, the fluorescein group demonstrated prolonged median survival, although this was not statistically significant. This work demonstrates the promise of an affordable and easy-to-implement strategy for improving rates of total resection of contrast-enhancing areas in patients with GBM.
Collapse
Affiliation(s)
| | | | - Ogaga Urhie
- 2West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | |
Collapse
|
17
|
Targeting MMP-14 for dual PET and fluorescence imaging of glioma in preclinical models. Eur J Nucl Med Mol Imaging 2019; 47:1412-1426. [PMID: 31773232 DOI: 10.1007/s00259-019-04607-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE There is a clinical need for agents that target glioma cells for non-invasive and intraoperative imaging to guide therapeutic intervention and improve the prognosis of glioma. Matrix metalloproteinase (MMP)-14 is overexpressed in glioma with negligible expression in normal brain, presenting MMP-14 as an attractive biomarker for imaging glioma. In this study, we designed a peptide probe containing a near-infrared fluorescence (NIRF) dye/quencher pair, a positron emission tomography (PET) radionuclide, and a moiety with high affinity to MMP-14. This novel substrate-binding peptide allows dual modality imaging of glioma only after cleavage by MMP-14 to activate the quenched NIRF signal, enhancing probe specificity and imaging contrast. METHODS MMP-14 expression and activity in human glioma tissues and cells were measured in vitro by immunofluorescence and gel zymography. Cleavage of the novel substrate and substrate-binding peptides by glioma cells in vitro and glioma xenograft tumors in vivo was determined by NIRF imaging. Biodistribution of the radiolabeled MMP-14-binding peptide or substrate-binding peptide was determined in mice bearing orthotopic patient-derived xenograft (PDX) glioma tumors by PET imaging. RESULTS Glioma cells with MMP-14 activity showed activation and retention of NIRF signal from the cleaved peptides. Resected mouse brains with PDX glioma tumors showed tumor-to-background NIRF ratios of 7.6-11.1 at 4 h after i.v. injection of the peptides. PET/CT images showed localization of activity in orthotopic PDX tumors after i.v. injection of 68Ga-binding peptide or 64Cu-substrate-binding peptide; uptake of the radiolabeled peptides in tumors was significantly reduced (p < 0.05) by blocking with the non-labeled-binding peptide. PET and NIRF signals correlated linearly in the orthotopic PDX tumors. Immunohistochemistry showed co-localization of MMP-14 expression and NIRF signal in the resected tumors. CONCLUSIONS The novel MMP-14 substrate-binding peptide enabled PET/NIRF imaging of glioma models in mice, warranting future image-guided resection studies with the probe in preclinical glioma models.
Collapse
|
18
|
Zhang DY, Singhal S, Lee JYK. Optical Principles of Fluorescence-Guided Brain Tumor Surgery: A Practical Primer for the Neurosurgeon. Neurosurgery 2019; 85:312-324. [PMID: 30085129 DOI: 10.1093/neuros/nyy315] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/18/2018] [Indexed: 01/21/2023] Open
Abstract
Fluorescence-guided surgery is a rapidly growing field that has produced some of the most important innovations in surgical oncology in the past decade. These intraoperative imaging technologies provide information distinguishing tumor tissue from normal tissue in real time as the surgery proceeds and without disruption of the workflow. Many of these fluorescent tracers target unique molecular or cellular features of tumors, which offers the opportunity for identifying pathology with high precision to help surgeons achieve their primary objective of a maximal safe resection. As novel fluorophores and fluorescent probes emerge from preclinical development, a practical understanding of the principles of fluorescence remains critical for evaluating the clinical utility of these agents and identifying opportunities for further innovation. In this review, we provide an "in-text glossary" of the fundamental principles of fluorescence with examples of direct applications to fluorescence-guided brain surgery. We offer a detailed discussion of the various advantages and limitations of the most commonly used intraoperative imaging agents, including 5-aminolevulinic acid, indocyanine green, and fluorescein, with a particular focus on the photophysical properties of these specific agents as they provide a framework through which to understand the new agents that are entering clinical trials. To this end, we conclude with a survey of the fluorescent properties of novel agents that are currently undergoing or will soon enter clinical trials for the intraoperative imaging of brain tumors.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Valli D, Belykh E, Zhao X, Gandhi S, Cavallo C, Martirosyan NL, Nakaji P, Lawton MT, Preul MC. Development of a Simulation Model for Fluorescence-Guided Brain Tumor Surgery. Front Oncol 2019; 9:748. [PMID: 31475107 PMCID: PMC6706957 DOI: 10.3389/fonc.2019.00748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Fluorescence dyes are increasingly used in brain tumor surgeries, and thus the development of simulation models is important for teaching neurosurgery trainees how to perform fluorescence-guided operations. We aimed to create a tumor model for fluorescence-guided surgery in high-grade glioma (HGG). Methods: The tumor model was generated by the following steps: creating a tumor gel with a similar consistency to HGG, selecting fluorophores at optimal concentrations with realistic color, mixing the fluorophores with tumor gel, injecting the gel into fresh pig/sheep brain, and testing resection of the tumor model under a fluorescence microscope. The optimal tumor gel was selected among different combinations of agar and gelatin. The fluorophores included fluorescein, indocyanine green (ICG), europium, chlorin e6 (Ce6), and protoporphyrin IX (PpIX). The tumor model was tested by neurosurgeons and neurosurgery trainees, and a survey was used to assess the validity of the model. In addition, the photobleaching phenomenon was studied to evaluate its influence on fluorescence detection. Results: The best tumor gel formula in terms of consistency and tactile response was created using 100 mL water at 100°C, 0.5 g of agar, and 3 g of gelatin mixed thoroughly for 3 min. An additional 1 g of agar was added when the tumor gel cooled to 50°C. The optimal fluorophore concentration ranges were fluorescein 1.9 × 10−4 to 3.8 × 10−4 mg/mL, ICG 4.9 × 10−3 to 9.8 × 10−3 mg/mL, europium 7.0 × 10−2 to 1.4 × 10−1 mg/mL, Ce6 2.2 × 10−3 to 4.4 × 10−3 mg/mL, and PpIX 1.8 × 10−2 to 3.5 × 10−2 mg/mL. No statistical differences among fluorophores were found for face validity, content validity, and fluorophore preference. Europium, ICG, and fluorescein were shown to be relatively stable during photobleaching experiments, while chlorin e6 and PpIX had lower stability. Conclusions: The model can efficiently highlight the “tumor” with 3 different colors—green, yellow, or infrared green with color overlay. These models showed high face and content validity, although there was no significant difference among the models regarding the degree of simulation and training effectiveness. They are useful educational tools for teaching the key concepts of intra-axial tumor resection techniques, such as subpial dissection and nuances of fluorescence-guided surgery.
Collapse
Affiliation(s)
- Daniel Valli
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Sirin Gandhi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | | | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
20
|
Martínez-Moreno M, Kiesel B, Woehrer A, Mischkulnig M, Furtner J, Timelthaler G, Berger W, Knosp E, Hainfellner JA, Wolfsberger S, Widhalm G. Ex-vivo analysis of quantitative 5-ALA fluorescence intensity in diffusely infiltrating gliomas using a handheld spectroscopic probe: Correlation with histopathology, proliferation and microvascular density. Photodiagnosis Photodyn Ther 2019; 27:354-361. [PMID: 31102691 DOI: 10.1016/j.pdpdt.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intraoperative semiquantitative classification of different visible 5-aminolevulinic acid (5-ALA) fluorescence levels by the neurosurgeon is subjective. Recently, handheld spectroscopic probes were introduced enabling quantitative analysis of 5-ALA induced fluorescence intensity (FI). The aim of this ex-vivo study was to correlate the FI in gliomas of different grades with histopathology, proliferation and microvasular density (MVD). PATIENTS AND METHODS Patients with suspected World Health Organization (WHO) grade II-IV gliomas were included and tissue samples from different visible fluorescence levels (strong, vague or none) were intraoperatively collected. After resection, the FI of each sample was investigated ex-vivo by a handheld spectroscopic probe. The FI values were correlated with visible fluorescence, histopathology (WHO grade, quality of tissue, histopathological parameters of anaplasia), proliferation (MIB-1) and MVD. RESULTS Altogether, 143 tumor samples with strong (n = 61), vague (n = 21) and no fluorescence (n = 61) were collected in 68 patients. We found significantly different median FI values between all three visible fluorescence levels. Moreover, the median FI value was significantly higher in WHO grade III/IV samples and compact tumor tissue compared to WHO grade II samples and infiltrated tumor tissue. Further, significant differences in median FI values were observed in specific histopathological parameters of anaplasia (mitotic rate, cell density, nuclear pleomorphism and microvascular proliferation) in multivariable analysis. Finally, a significant correlation between the proliferation rate and FI, but not between MVD and FI was noted. CONCLUSION Our data indicate that handheld spectroscopic probes are capable of visualizing intratumoral glioma heterogeneity by objective assessment of fluorescence and may thus optimize future glioma surgery.
Collapse
Affiliation(s)
- Mauricio Martínez-Moreno
- Department of Neurosurgery, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Julia Furtner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Walter Berger
- Institute of Cancer Research, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Engelbert Knosp
- Department of Neurosurgery, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| | - Stefan Wolfsberger
- Department of Neurosurgery, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria; Institute of Cancer Research, Medical University of Vienna Waehringer Guertel 18 - 20, 1090 Vienna, Austria.
| |
Collapse
|
21
|
Alston L, Mahieu-Williame L, Hebert M, Kantapareddy P, Meyronet D, Rousseau D, Guyotat J, Montcel B. Spectral complexity of 5-ALA induced PpIX fluorescence in guided surgery: a clinical study towards the discrimination of healthy tissue and margin boundaries in high and low grade gliomas. BIOMEDICAL OPTICS EXPRESS 2019; 10:2478-2492. [PMID: 31149380 PMCID: PMC6524587 DOI: 10.1364/boe.10.002478] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/09/2019] [Accepted: 03/21/2019] [Indexed: 05/06/2023]
Abstract
Gliomas are diffuse and hard to cure brain tumors. A major reason for their aggressive behavior is their property to infiltrate the brain. The gross appearance of the infiltrative component is comparable to normal brain, constituting an obstacle to extended surgical resection. 5-ALA induced PpIX fluorescence measurements enable gains in sensitivity to detect infiltrated cells, but still lack sensitivity to get accurate discrimination between the tumor margin and healthy tissue. In this fluorescence spectroscopic study, we assume that two states of PpIX contribute to total fluorescence to get better discrimination of healthy tissues against tumor margins. We reveal that fluorescence in low-density margins of high-grade gliomas or in low-grade gliomas is mainly influenced by the second state of PpIX centered at 620 nm. We thus conclude that consideration of the contributions of both states to total fluorescence can help to improve fluorescence-guided resection of gliomas by discriminating healthy tissues from tumor margins.
Collapse
Affiliation(s)
- L. Alston
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - L. Mahieu-Williame
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - M. Hebert
- Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School, Lab. Hubert Curien UMR5516, F-42023, St Etienne, France
| | - P. Kantapareddy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
| | - D. Meyronet
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
- Department of Cancer Cell Plasticity, Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France, Université Claude Bernard Lyon 1, Lyon, France
| | - D. Rousseau
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - J. Guyotat
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
| | - B. Montcel
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| |
Collapse
|
22
|
Akimoto J, Fukami S, Ichikawa M, Mohamed A, Kohno M. Intraoperative Photodiagnosis for Malignant Glioma Using Photosensitizer Talaporfin Sodium. Front Surg 2019; 6:12. [PMID: 30949484 PMCID: PMC6438081 DOI: 10.3389/fsurg.2019.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to demonstrate the clinical feasibility of intraoperative photodiagnosis (PD) of malignant brain tumor using talaporfin sodium (TPS), which is an agent used in photodynamic therapy (PDT) for cancers. Methods: Forty-seven patients diagnosed with malignant gliomas by preoperative imaging (42 patients with gliomas and 5 patients with other brain tumors) received an intravenous injection of TPS at 40 mg/m2 24 h before resection. During surgery, these patients were irradiated with diode laser light at 664 nm, and tumor fluorescence was observed. The fluorescence intensity was visually rated on a 3-point rating scale [strong fluorescence, weak fluorescence and no fluorescence]. TPS concentrations in 124 samples from 47 cases were measured by HPLC (High performance liquid chromatography). Results: The fluorescence intensity was confirmed to be weak in all patients with Grade II gliomas and strong in almost all patients with Grade III or IV gliomas, reflecting the histological grade of malignancy. In patients with non-glioma brain tumors except for 1 patient with a metastatic brain tumor, the fluorescence intensity was strong. The mean TPS concentration in tissues was 1.62 μg/g for strong fluorescence areas, 0.67 μg/g for weak fluorescence areas and 0.19 μg/g for no fluorescence areas. Conclusions: Establishment of an appropriate fluorescence observation system enabled fluorescence-guided resection of malignant brain tumors using TPS, and the fluorescence intensity of tumors correlated with the TPS concentrations in tissues. These results suggest that TPS is a useful photosensitizer for both intraoperative fluorescence diagnosis and photodynamic therapy.
Collapse
Affiliation(s)
- Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan.,Department of Neurosurgery, Kohsei Chuo General Hospital, Tokyo, Japan
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Megumi Ichikawa
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Awad Mohamed
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan.,Department of Neurosurgery, Sohag University, Sohag, Egypt
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Bright spot analysis for photodynamic diagnosis of brain tumors using confocal microscopy. Photodiagnosis Photodyn Ther 2019; 25:463-471. [PMID: 30738224 DOI: 10.1016/j.pdpdt.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND In a previous study of photodynamic tumor diagnosis using 5-aminolevulinic acid (5-ALA), the authors proposed using fluorescence intensity and bright spot analyses under confocal microscopy for the precise discrimination of tumorous brain tissue (such as glioblastoma, GBM) from normal tissue. However, it remains unclear if bright spot analysis can discriminate infiltrating tumor in the boundary zone and whether this method is suitable for GBM with no 5-ALA fluorescence or for other tumor types. METHODS Brain tumor tissue resected from 5-ALA-treated patients was sectioned to evaluate bright spots under confocal microscopy with a 544.5 - 619.5 nm band-pass filter, which eliminated the fluorescence induced by 5-ALA. Border regions and adjacent normal tissues were observed for differences in bright spot distribution. Histopathology was also conducted by hematoxylin and eosin (H&E) staining of serial slices from the same samples to confirm the locations of tumorous, infiltrating, and normal regions. Bright spot areas were then calculated for the same regions evaluated by histopathology. This method was applied for GBM with and without 5-ALA-induced fluorescence as well as for lower-grade gliomas and other brain tumor types. RESULTS The bright spot area was substantially smaller in the GBM body than in normal brain tissues. Bright spot area was also smaller in infiltrating tumors than in normal tissue at the margin. The same bright spot pattern was observed in tumorous tissues with no 5-ALA-induced fluorescence and in non-GBM tumors. The bright spot fluorescence is suggested to arise from lipofuscin based on emission spectra (mainly within 544.5 - 619.5 nm) and optimum excitation wavelength (about 405 nm). CONCLUSIONS Bright spot analysis is useful for discriminating infiltrating tumor from bordering normal tissue as an alternative or complement to photodynamic diagnosis with 5-ALA. This method is also potentially useful for tumors with no 5-ALA-derived red fluorescence and other nervous system tumors.
Collapse
|
24
|
Jia Y, Wang X, Hu D, Wang P, Liu Q, Zhang X, Jiang J, Liu X, Sheng Z, Liu B, Zheng H. Phototheranostics: Active Targeting of Orthotopic Glioma Using Biomimetic Proteolipid Nanoparticles. ACS NANO 2019; 13:386-398. [PMID: 30576599 DOI: 10.1021/acsnano.8b06556] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Advances in phototheranostics revolutionized glioma intraoperative fluorescence imaging and phototherapy. However, the lack of desired active targeting agents for crossing the blood-brain barrier (BBB) significantly compromises the theranostic efficacy. In this study, biomimetic proteolipid nanoparticles (NPs) with U.S. Food and Drug Administration (FDA)-approved indocyanine green (ICG) were constructed to allow fluorescence imaging, tumor margin detection, and phototherapy of orthotopic glioma in mice. By embedding glioma cell membrane proteins into NPs, the obtained biomimetic ICG-loaded liposome (BLIPO-ICG) NPs could cross BBB and actively reach glioma at the early stage thanks to their specific binding to glioma cells due to their excellent homotypic targeting and immune escaping characteristics. High accumulation in the brain tumor with a signal to background ratio of 8.4 was obtained at 12 h post-injection. At this time point, the glioma and its margin were clearly visualized by near-infrared fluorescence imaging. Under the imaging guidance, the glioma tissue could be completely removed as a proof of concept. In addition, after NIR laser irradiation (1 W/cm2, 5 min), the photothermal effect exerted by BLIPO-ICG NPs efficiently suppressed glioma cell proliferation with a 94.2% tumor growth inhibition. No photothermal damages of normal brain tissue and treatment-induced side effects were observed. These results suggest that the biomimetic proteolipid NP is a promising phototheranostic nanoplatform for brain-tumor-specific imaging and therapy.
Collapse
Affiliation(s)
- Yali Jia
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an 710119 , China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an 710119 , China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an 710119 , China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an 710119 , China
| | - Xuanjun Zhang
- Faculty of Health Sciences , University of Macau , Taipa , Macau SAR , China
| | - Jingying Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| |
Collapse
|
25
|
Chen D, Li X, Zhu X, Wu L, Ma S, Yan J, Yan D. Diffusion Tensor Imaging with Fluorescein Sodium Staining in the Resection of High-Grade Gliomas in Functional Brain Areas. World Neurosurg 2019; 124:e595-e603. [PMID: 30639485 DOI: 10.1016/j.wneu.2018.12.160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the feasibility and clinical value of magnetic resonance diffusion tensor imaging (DTI) with fluorescein sodium staining (FLS) in the resection of high-grade glioma (HGG) in functional brain areas. METHODS Retrospective cohort study design. The data of 95 patients who underwent surgery at the First Affiliated Hospital of Zhengzhou University for HGG in functional brain areas from October 2014 to December 2017 were investigated. In the observation group, 49 patients underwent DTI preoperatively and received FLS for the removal of tumor during the operation. In the control group, 46 patients received the routine method. All patients were subjected to enhanced magnetic resonance imaging to assess the extent of tumor resection within 72 hours after operation. The changes in muscle strength and Karnofsky Performance Status Scale (KPS) scores were evaluated 1 month after surgery. RESULTS The extent of resection was significantly higher in the observation group than in the control group (83.7% vs. 45.7%, respectively; P < 0.001). The rate of muscle strength reduction after surgery was remarkably lower in the observation group than in the control group (20.4% vs. 47.8%, respectively; P = 0.005). KPS scores were higher in the observation group than in the control group (73.5% vs. 47.8%, respectively; P = 0.029). In the observation group, the sensitivity of FLS in identifying tumor tissue was 91.7% (44/48), with a specificity of 90.0% (45/50). CONCLUSIONS The application of DTI with FLS can facilitate the maximum resection of HGG in functional brain areas with minimum loss of fiber tracts, reduce the disability rate, and improve quality of postoperative life compared with traditional glioma surgery.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Siqi Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yan
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Wei L, Roberts DW, Sanai N, Liu JTC. Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol 2018; 141:495-505. [PMID: 30554344 DOI: 10.1007/s11060-018-03077-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/10/2018] [Indexed: 01/27/2023]
Abstract
INTRODUCTION 5-ALA-based fluorescence-guided surgery has been shown to be a safe and effective method to improve intraoperative visualization and resection of malignant gliomas. However, it remains ineffective in guiding the resection of lower-grade, non-enhancing, and deep-seated tumors, mainly because these tumors do not produce detectable fluorescence with conventional visualization technologies, namely, wide-field (WF) surgical microscopy. METHODS We describe some of the main factors that limit the sensitivity and accuracy of conventional WF surgical microscopy, and then provide a survey of commercial and research prototypes being developed to address these challenges, along with their principles, advantages and disadvantages, as well as the current status of clinical translation for each technology. We also provide a neurosurgical perspective on how these visualization technologies might best be implemented for guiding glioma surgeries in the future. RESULTS Detection of PpIX expression in low-grade gliomas and at the infiltrative margins of all gliomas has been achieved with high-sensitivity probe-based visualization techniques. Deep-tissue PpIX imaging of up to 5 mm has also been achieved using red-light illumination techniques. Spectroscopic approaches have enabled more accurate quantification of PpIX expression. CONCLUSION Advancements in visualization technologies have extended the sensitivity and accuracy of conventional WF surgical microscopy. These technologies will continue to be refined to further improve the extent of resection in glioma patients using 5-ALA-induced fluorescence.
Collapse
Affiliation(s)
- Linpeng Wei
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - David W Roberts
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Nader Sanai
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
27
|
Luo Z, An R, Ye D. Recent Advances in the Development of Optical Imaging Probes for γ-Glutamyltranspeptidase. Chembiochem 2018; 20:474-487. [PMID: 30062708 DOI: 10.1002/cbic.201800370] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 12/11/2022]
Abstract
γ-Glutamyltranspeptidase (GGT) is a cell-membrane-bound protease that participates in cellular glutathione and cysteine homeostasis, which are closely related to many physiological and pathological processes. The accurate measurement of GGT activity is useful for the early diagnosis of diseases. In the past few years, many efforts have been made to build optical imaging probes for the detection of GGT activity both in vitro and in vivo. In this Minireview, recent advances in the development of various optical imaging probes for GGT, including activatable fluorescence probes, ratiometric fluorescence probes, and activatable bioluminescence probes, are summarized. This review starts from the instruction of the GGT enzyme and its biological functions, followed by a discussion of activatable fluorescence probes that show off-on fluorescence in response to GGT. GGT-activatable two-photon fluorescence imaging probes with improved imaging depth and spatial resolution are also discussed. Ratiometric fluorescence probes capable of accurately reporting on GGT levels through a self-calibration mechanism are discussed, followed by describing GGT-activatable bioluminescence probes that can offer a high signal-to-background ratio to detect GGT in living mice. Finally, current challenges and further perspectives for the development of molecular imaging probes for GGT are addressed.
Collapse
Affiliation(s)
- Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
28
|
Belykh E, Cavallo C, Gandhi S, Zhao X, Veljanoski D, Izady Yazdanabadi M, Martirosyan NL, Byvaltsev VA, Eschbacher J, Preul MC, Nakaji P. Utilization of intraoperative confocal laser endomicroscopy in brain tumor surgery. J Neurosurg Sci 2018; 62:704-717. [PMID: 30160080 DOI: 10.23736/s0390-5616.18.04553-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Precise identification of tumor margins is of the utmost importance in neuro-oncology. Confocal microscopy is capable of rapid imaging of fresh tissues at cellular resolution and has been miniaturized into handheld probe-based systems suitable for use in the operating room. We aimed to perform a literature review to provide an update on the current status of confocal laser endomicroscopy (CLE) technology for brain tumor surgery. Aside from benchtop confocal microscopes used in ex vivo fashion, there are four CLE systems that have been investigated for potential application in the workflow of brain tumor surgery. Preclinical studies on animal tumor models and clinical studies on human brain tumors have assessed in vivo and ex vivo imaging approaches, suggesting that confocal microscopy holds promise for rapid identification of the characteristic (diagnostic) histological features of tumor and normal brain tissues. However, there are few studies assessing diagnostic accuracy sufficient to provide a definitive determination of the clinical and economical value of CLE in brain tumor surgery. Intraoperative real-time, high-resolution tissue imaging has significant clinical potential in the field of neuro-oncology. CLE is an emerging imaging technology that shows promise for improving brain tumor surgery workflow in in vivo and ex vivo studies. Future clinical studies are necessary to demonstrate clinical and economic benefit of CLE.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sirin Gandhi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Xiaochun Zhao
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Damjan Veljanoski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Jennifer Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA -
| |
Collapse
|
29
|
Optical Characterization of Neurosurgical Operating Microscopes: Quantitative Fluorescence and Assessment of PpIX Photobleaching. Sci Rep 2018; 8:12543. [PMID: 30135440 PMCID: PMC6105612 DOI: 10.1038/s41598-018-30247-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
Protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (5-ALA) is increasingly used as a fluorescent marker for fluorescence-guided resection of malignant gliomas. Understanding how the properties of the excitation light source and PpIX fluorescence interact with the surgical microscope is critical for effective use of the fluorescence-guided tumor resection technique. In this study, we performed a detailed assessment of the intensity of the emitted blue light and white light and the light beam profile of clinical grade operating microscopes used for PpIX visualization. These measurements revealed both recognized fluorescence photobleaching limitations and unrecognized limitations that may alter quantitative observations of PpIX fluorescence obtained with the operating microscope with potential impact on research and clinical uses. We also evaluated the optical properties of a photostable fluorescent standard with an excitation-emission profile similar to PpIX. In addition, we measured the time-dependent dynamics of 5-ALA-induced PpIX fluorescence in an animal glioma model. Finally, we developed a ratiometric method for quantification of the PpIX fluorescence that uses the photostable fluorescent standard to normalize PpIX fluorescence intensity. This method increases accuracy and allows reproducible and direct comparability of the measurements from multiple samples.
Collapse
|
30
|
Raghavendra AJ, Gregory WE, Slonecki TJ, Dong Y, Persaud I, Brown JM, Bruce TF, Podila R. Three-photon imaging using defect-induced photoluminescence in biocompatible ZnO nanoparticles. Int J Nanomedicine 2018; 13:4283-4290. [PMID: 30087560 PMCID: PMC6061205 DOI: 10.2147/ijn.s165201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Although optical spectroscopy promises improved lateral resolution for cancer imaging, its clinical use is seriously impeded by background fluorescence and photon attenuation even in the so-called two-photon absorption (2PA) imaging modality. An efficient strategy to meet the clinical cancer imaging needs, beyond what two-photon absorption (2PA) offers, is to use longer excitation wavelengths through three-photon absorption (3PA). A variety of fluorescent dyes and nanoparticles (NPs) have been used in 3PA imaging. However, their nonlinear 3PA coefficient is often low necessitating high excitation powers, which cause overheating, photodamage, and photo-induced toxicity. Doped wide band gap semiconductors such as Mn:ZnS NPs have previously been used for 3PA but suffer from poor 3PA coefficients. Methods Here, we prepared ZnO NPs with intrinsic defects with high 3PA coefficients using a polyol method. We functionalized them with peptides for selective uptake by glioblastoma U87MG cells and used breast cancer MCF-7 cells as control for 3PA studies. Uptake was measured using inductively coupled plasma-mass spectrometry. Biocompatibility studies were performed using reactive oxygen species and cell viability assays. Results We demonstrate that ZnO NPs, which have a band gap of 3.37 eV with an order of magnitude higher 3PA coefficients, can facilitate the use of longer excitation wavelengths 950–1,100 nm for bioimaging. We used the presence intrinsic defects (such as O interstitials and Zn vacancies) in ZnO NPs to induce electronic states within the band gap that can support strong visible luminescence 550–620 nm without the need for extrinsic doping. The peptide functionalization of ZnO NPs showed selective uptake by U87MG cells unlike MCF-7 cells without the integrin receptors. Furthermore, all ZnO NPs were found to be biocompatible for 3PA imaging. Conclusion We show that defect-induced luminescence 550–620 nm in ZnO NPs (20 nm) due to 3PA at longer excitation (975 nm) can be used for 3PA imaging of U87MG glioblastoma cells with lower background noise.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Laboratory of Nano-Biophysics, Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA,
| | - Wren E Gregory
- Laboratory of Nano-Biophysics, Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA,
| | - Tyler J Slonecki
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, USA
| | - Yongchang Dong
- Laboratory of Nano-Biophysics, Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA,
| | - Indushekhar Persaud
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Terri F Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, USA
| | - Ramakrishna Podila
- Laboratory of Nano-Biophysics, Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA, .,Clemson University School of Health Research and COMSET, Clemson University, Clemson, SC, USA,
| |
Collapse
|
31
|
The Impact of Compressed Femtosecond Laser Pulse Durations on Neuronal Tissue Used for Two-Photon Excitation Through an Endoscope. Sci Rep 2018; 8:11124. [PMID: 30042504 PMCID: PMC6057889 DOI: 10.1038/s41598-018-29404-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/11/2018] [Indexed: 11/09/2022] Open
Abstract
Accurate intraoperative tumour margin assessment is a major challenge in neurooncology, where sparse tumours beyond the bulk tumour are left undetected under conventional resection. Non-linear optical imaging can diagnose tissue at the sub-micron level and provide functional label-free histopathology in vivo. For this reason, a non-linear endomicroscope is being developed to characterize brain tissue intraoperatively based on multiple endogenous optical contrasts such as spectrally- and temporally-resolved fluorescence. To produce highly sensitive optical signatures that are specific to a given tissue type, short femtosecond pulsed lasers are required for efficient two-photon excitation. Yet, the potential of causing bio-damage has not been studied on neuronal tissue. Therefore, as a prerequisite to clinically testing the non-linear endomicroscope in vivo, the effect of short laser pulse durations (40-340 fs) on ex vivo brain tissue was investigated by monitoring the intensity, the spectral, and the lifetime properties of endogenous fluorophores under 800 and 890 nm two-photon excitation using a bi-modal non-linear endoscope. These properties were also validated by imaging samples on a benchtop multiphoton microscope. Our results show that under a constant mean laser power, excitation pulses as short as 40 fs do not negatively alter the biochemical/ biophysical properties of tissue even for prolonged irradiation.
Collapse
|
32
|
Izadyyazdanabadi M, Belykh E, Mooney MA, Eschbacher JM, Nakaji P, Yang Y, Preul MC. Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning. Front Oncol 2018; 8:240. [PMID: 30035099 PMCID: PMC6043805 DOI: 10.3389/fonc.2018.00240] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. CLE images can be distorted by motion artifacts, fluorescence signals out of detector dynamic range, or may be obscured by red blood cells, and thus interpreted as nondiagnostic (ND). However, just a single CLE image with a detectable pathognomonic histological tissue signature can suffice for intraoperative diagnosis. Dealing with the abundance of images from CLE is not unlike sifting through a myriad of genes, proteins, or other structural or metabolic markers to find something of commonality or uniqueness in cancer that might indicate a potential treatment scheme or target. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/ND, glioma/nonglioma, tumor/injury/normal categories, and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow, and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.
Collapse
Affiliation(s)
- Mohammadhassan Izadyyazdanabadi
- Active Perception Group, School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States.,Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Michael A Mooney
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Jennifer M Eschbacher
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Peter Nakaji
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Yezhou Yang
- Active Perception Group, School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Mark C Preul
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
33
|
Lewis DY, Mair R, Wright A, Allinson K, Lyons SK, Booth T, Jones J, Bielik R, Soloviev D, Brindle KM. [ 18F]fluoroethyltyrosine-induced Cerenkov Luminescence Improves Image-Guided Surgical Resection of Glioma. Theranostics 2018; 8:3991-4002. [PMID: 30083276 PMCID: PMC6071532 DOI: 10.7150/thno.23709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/26/2018] [Indexed: 01/27/2023] Open
Abstract
The extent of surgical resection is significantly correlated with outcome in glioma; however, current intraoperative navigational tools are useful only in a subset of patients. We show here that a new optical intraoperative technique, Cerenkov luminescence imaging (CLI) following intravenous injection of O‑(2-[18F]fluoroethyl)-L-tyrosine (FET), can be used to accurately delineate glioma margins, performing better than the current standard of fluorescence imaging with 5-aminolevulinic acid (5-ALA). Methods: Rats implanted orthotopically with U87, F98 and C6 glioblastoma cells were injected with FET and 5-aminolevulinic acid (5-ALA). Positive and negative tumor regions on histopathology were compared with CL and fluorescence images. The capability of FET CLI and 5-ALA fluorescence imaging to detect tumor was assessed using receptor operator characteristic curves and optimal thresholds (CLIOptROC and 5-ALAOptROC) separating tumor from healthy brain tissue were determined. These thresholds were used to guide prospective tumor resections, where the presence of tumor cells in the resected material and in the remaining brain were assessed by Ki-67 staining. Results: FET CLI signal was correlated with signal in preoperative PET images (y = 1.06x - 0.01; p < 0.0001) and with expression of the amino acid transporter SLC7A5 (LAT1). FET CLI (AUC = 97%) discriminated between glioblastoma and normal brain in human and rat orthografts more accurately than 5-ALA fluorescence (AUC = 91%), with a sensitivity >92% and specificity >91%, and resulted in a more complete tumor resection. Conclusion: FET CLI can be used to accurately delineate glioblastoma tumor margins, performing better than the current standard of fluorescence imaging following 5-ALA administration, and is therefore a promising technique for clinical translation.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Current address: Cancer Research UK - Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | - Richard Mair
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alan Wright
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Scott K. Lyons
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Tom Booth
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Julia Jones
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Robert Bielik
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Current address: Cancer Research UK - Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Ji Z, Ai P, Shao C, Wang T, Yan C, Ye L, Gu W. Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma. ACS Biomater Sci Eng 2018; 4:2089-2094. [PMID: 33435031 DOI: 10.1021/acsbiomaterials.7b01008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brain gliomas are life-threatening diseases with low survival rates. Early detection and accurate intraoperative location of brain gliomas is vital to improving the prognosis. Herein, we synthesized manganese (Mn)-doped carbon dots (CDs) as magnetic resonance (MR)/optical dual-modal imaging nanoprobes by a one-pot green microwave-assisted route. These ultra-small-sized Mn-doped CDs possess distinct excitation-dependent photoluminescent emissions, high r1 relaxivity, and low cytotoxicity. The in vivo MR imaging and ex vivo optical imaging of mouse brain with tiny glioma demonstrate that the Mn-doped CDs could lead to an enhanced MR T1 contrast effect in the tiny brain glioma region, disclosing the great promise of these Mn-doped CDs as MR/optical dual-modal imaging nanoprobes for detection and intraoperative location of tiny brain gliomas.
Collapse
Affiliation(s)
| | - Penghui Ai
- Department of Stroke Center, People's Hospital of Puyang, No. 252 Shengli Middle Street, Puyang, Henan 457000, P. R. China
| | - Chen Shao
- Department of Pharmacy, Xuanwu Hospitial of Capital Medical University, No. 45 Changchun Street, Beijing 100053, P.R. China
| | - Tingjian Wang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, No. 50 Xiangshanyikesong, Beijing 100093, P. R. China
| | - Changxiang Yan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, No. 50 Xiangshanyikesong, Beijing 100093, P. R. China
| | | | | |
Collapse
|
35
|
Belykh E, Miller EJ, Hu D, Martirosyan NL, Woolf EC, Scheck AC, Byvaltsev VA, Nakaji P, Nelson LY, Seibel EJ, Preul MC. Scanning Fiber Endoscope Improves Detection of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence at the Boundary of Infiltrative Glioma. World Neurosurg 2018; 113:e51-e69. [PMID: 29408716 PMCID: PMC5924630 DOI: 10.1016/j.wneu.2018.01.151] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Fluorescence-guided surgery with protoporphyrin IX (PpIX) as a photodiagnostic marker is gaining acceptance for resection of malignant gliomas. Current wide-field imaging technologies do not have sufficient sensitivity to detect low PpIX concentrations. We evaluated a scanning fiber endoscope (SFE) for detection of PpIX fluorescence in gliomas and compared it to an operating microscope (OPMI) equipped with a fluorescence module and to a benchtop confocal laser scanning microscope (CLSM). METHODS 5-Aminolevulinic acid-induced PpIX fluorescence was assessed in GL261-Luc2 cells in vitro and in vivo after implantation in mouse brains, at an invading glioma growth stage, simulating residual tumor. Intraoperative fluorescence of high and low PpIX concentrations in normal brain and tumor regions with SFE, OPMI, CLSM, and histopathology were compared. RESULTS SFE imaging of PpIX correlated to CLSM at the cellular level. PpIX accumulated in normal brain cells but significantly less than in glioma cells. SFE was more sensitive to accumulated PpIX in fluorescent brain areas than OPMI (P < 0.01) and dramatically increased imaging time (>6×) before tumor-to-background contrast was diminished because of photobleaching. CONCLUSIONS SFE provides new endoscopic capabilities to view PpIX-fluorescing tumor regions at cellular resolution. SFE may allow accurate imaging of 5-aminolevulinic acid labeling of gliomas and other tumor types when current detection techniques have failed to provide reliable visualization. SFE was significantly more sensitive than OPMI to low PpIX concentrations, which is relevant to identifying the leading edge or metastasizing cells of malignant glioma or to treating low-grade gliomas. This new application has the potential to benefit surgical outcomes.
Collapse
MESH Headings
- Administration, Oral
- Aminolevulinic Acid/administration & dosage
- Aminolevulinic Acid/pharmacokinetics
- Animals
- Biotransformation
- Brain Neoplasms/chemistry
- Brain Neoplasms/diagnostic imaging
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Female
- Fiber Optic Technology/instrumentation
- Fluorescent Dyes/analysis
- Genes, Reporter
- Glioma/chemistry
- Glioma/diagnostic imaging
- Glioma/pathology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Neuroendoscopes
- Neuroendoscopy/instrumentation
- Neuroendoscopy/methods
- Photobleaching
- Photosensitizing Agents/analysis
- Protoporphyrins/analysis
- Protoporphyrins/biosynthesis
- Single-Cell Analysis
- Surgery, Computer-Assisted/instrumentation
- Surgery, Computer-Assisted/methods
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Danying Hu
- Biorobotics Laboratory, Department of Electrical Engineering, University of Washington, Seattle, Washington, USA
| | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Eric C Woolf
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Adrienne C Scheck
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Leonard Y Nelson
- Human Photonics Laboratory, Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Eric J Seibel
- Human Photonics Laboratory, Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
36
|
Yoshioka E, Chelakkot VS, Licursi M, Rutihinda SG, Som J, Derwish L, King JJ, Pongnopparat T, Mearow K, Larijani M, Dorward AM, Hirasawa K. Enhancement of Cancer-Specific Protoporphyrin IX Fluorescence by Targeting Oncogenic Ras/MEK Pathway. Am J Cancer Res 2018; 8:2134-2146. [PMID: 29721068 PMCID: PMC5928876 DOI: 10.7150/thno.22641] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Protoporphyrin IX (PpIX) is an endogenous fluorescent molecule that selectively accumulates in cancer cells treated with the heme precursor 5-aminolevulinic acid (5-ALA). This cancer-specific accumulation of PpIX is used to distinguish tumor from normal tissues in fluorescence-guided surgery (FGS) and to destroy cancer cells by photodynamic therapy (PDT). In this study, we demonstrate that oncogenic Ras/mitogen-activated protein kinase kinase (MEK) pathway can modulate PpIX accumulation in cancer cells. Methods: To identify Ras downstream elements involved in PpIX accumulation, chemical inhibitors were used. To demonstrate the increase of PpIX accumulation by MEK inhibition, different human normal and cancer cell lines, BALB/c mice bearing mammary 4T1 tumors and athymic nude mice bearing human tumors were used. To identify the mechanisms of PpIX regulation by MEK, biochemical and molecular biological experiments were conducted. Results: Inhibition of one of the Ras downstream elements, MEK, promoted PpIX accumulation in cancer cells treated with 5-ALA, while inhibitors against other Ras downstream elements did not. Increased PpIX accumulation with MEK inhibition was observed in different types of human cancer cell lines, but not in normal cell lines. We identified two independent cellular mechanisms that underlie this effect in cancer cells. MEK inhibition reduced PpIX efflux from cancer cells by decreasing the expression level of ATP binding cassette subfamily B member 1 (ABCB1) transporter. In addition, the activity of ferrochelatase (FECH), the enzyme responsible for converting PpIX to heme, was reduced by MEK inhibition. Finally, we found that in vivo treatment with MEK inhibitors increased PpIX accumulation (2.2- to 2.4-fold) within mammary 4T1 tumors in BALB/c mice injected with 5-ALA without any change in normal organs. Similar results were also observed in a human tumor xenograft model. Conclusion: Our study demonstrates that inhibition of oncogenic Ras/MEK significantly enhances PpIX accumulation in vitro and in vivo in a cancer-specific manner. Thus, suppressing the Ras/MEK pathway may be a viable strategy to selectively intensify PpIX fluorescence in cancer cells and improve its clinical applications in FGS.
Collapse
|
37
|
Elagin VV, Shakhova MA, Sirotkina MA, Shakhov AV, Pavlova NP, Snopova LB, Bredikhin VI, Kamensky VA. Can "Indirect" Contact Laser Surgery be Used for Fluorescence-Image Guided Tumor Resections? Preliminary Results. Technol Cancer Res Treat 2018; 17:1533033818805715. [PMID: 30343643 PMCID: PMC6198398 DOI: 10.1177/1533033818805715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ensuring the complete removal of tumor tissue is the main challenge during resection operations. Recently, a technique of “indirect” contact laser surgery has been developed. In this study we assess the possibility of using such surgery for fluorescence image-guided tumor resection. Mouse colon adenocarcinoma CT-26 cells stably expressing the fluorescent protein mKate-2 was used as the tumor model. Resections of the tumor nodes were performed with either a scalpel blade, a laser scalpel with a bare tip, or a laser scalpel with a strongly absorbing coating on the fiber tip. Tumor-positive resection margins were detected using an IVIS Spectrum fluorescence imaging system. After tumor resection with the scalpel blade over half of the animals needed one additional resection to remove residual tumor cells. Animals in this group showed tumor recurrence within 7 days. Fluorescence imaging of the tumor bed, performed after resection to assess the presence of tumor cell clusters, was sufficiently effective only with a bloodless resection. The laser scalpels both with the bare tip and with the strongly absorbing coating on the tip provided such bloodless tumor resection in contact mode. Fewer animals required additional resections when the bare tipped scalpel was used and this also resulted in a reduction in tumor recurrence. After resections were carried out with the laser scalpel with the strongly absorbing coating on the tip, fluorescence was detected in the operative field and this led to undertaking additional resections, although subsequent investigation suggested that this was “false” fluorescence, resulting from the effects of the scalpel rather than the presence of residual tumor cells. The method of laser resection with a strongly absorbing coating on the tip therefore did not appear to demonstrate definite advantages over laser resection with a bare tip when removing tumors.
Collapse
Affiliation(s)
- Vadim V Elagin
- 1 Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation.,2 Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russian Federation
| | - Maria A Shakhova
- 1 Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Marina A Sirotkina
- 1 Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Andrey V Shakhov
- 1 Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Nadezhda P Pavlova
- 1 Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Ludmila B Snopova
- 1 Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Vladimir I Bredikhin
- 2 Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russian Federation
| | - Vladislav A Kamensky
- 2 Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russian Federation
| |
Collapse
|
38
|
Pavlov V, Meyronet D, Meyer-Bisch V, Armoiry X, Pikul B, Dumot C, Beuriat PA, Signorelli F, Guyotat J. Intraoperative Probe-Based Confocal Laser Endomicroscopy in Surgery and Stereotactic Biopsy of Low-Grade and High-Grade Gliomas: A Feasibility Study in Humans. Neurosurgery 2017; 79:604-12. [PMID: 27643918 DOI: 10.1227/neu.0000000000001365] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The management of gliomas is based on precise histologic diagnosis. The tumor tissue can be obtained during open surgery or via stereotactic biopsy. Intraoperative tissue imaging could substantially improve biopsy precision and, ultimately, the extent of resection. OBJECTIVE To show the feasibility of intraoperative in vivo probe-based confocal laser endomicroscopy (pCLE) in surgery and biopsy of gliomas. METHODS In our prospective observational study, 9 adult patients were enrolled between September 2014 and January 2015. Two contrast agents were used: 5-aminolevulinic acid (3 cases) or intravenous fluorescein (6 cases). Intraoperative imaging was performed with the Cellvizio system (Mauna Kea Technologies, Paris). A 0.85-mm probe was used for stereotactic procedures, with the biopsy needle modified to have a distal opening. During open brain surgery, a 2.36-mm probe was used. Each series corresponds to a separate histologic fragment. RESULTS The diagnoses of the lesions were glioblastoma (4 cases), low-grade glioma (2), grade III oligoastrocytoma (2), and lymphoma (1). Autofluorescence of neurons in cortex was observed. Cellvizio images enabled differentiation of healthy "normal" tissue from pathological tissue in open surgery and stereotactic biopsy using fluorescein. 5-Aminolevulinic acid confocal patterns were difficult to establish. No intraoperative complications related to pCLE or to use of either contrast agent were observed. CONCLUSION We report the initial feasibility and safety of intraoperative pCLE during primary brain tumor resection and stereotactic biopsy procedures. Pending further investigation, pCLE of brain tissue could be utilized for intraoperative surgical guidance, improvement in brain biopsy yield, and optimization of glioma resection via analysis of tumor margins. ABBREVIATIONS 5-ALA, 5-aminolevulinic acidpCLE, probe-based confocal laser endomicroscopyPpIX, protoporphyrin IX.
Collapse
Affiliation(s)
- Vladislav Pavlov
- *Department of Neurosurgery, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France;‡Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon, Lyon, France;§Innovation and Clinical Research Unit, Hospices Civils de Lyon, Lyon, France;¶Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cordova JS, Gurbani SS, Holder CA, Olson JJ, Schreibmann E, Shi R, Guo Y, Shu HKG, Shim H, Hadjipanayis CG. Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Mol Imaging Biol 2017; 18:454-62. [PMID: 26463215 DOI: 10.1007/s11307-015-0900-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Glioblastoma (GBM) neurosurgical resection relies on contrast-enhanced MRI-based neuronavigation. However, it is well-known that infiltrating tumor extends beyond contrast enhancement. Fluorescence-guided surgery (FGS) using 5-aminolevulinic acid (5-ALA) was evaluated to improve extent of resection (EOR) of GBMs. Preoperative morphological tumor metrics were also assessed. PROCEDURES Thirty patients from a phase II trial evaluating 5-ALA FGS in newly diagnosed GBM were assessed. Tumors were segmented preoperatively to assess morphological features as well as postoperatively to evaluate EOR and residual tumor volume (RTV). RESULTS Median EOR and RTV were 94.3 % and 0.821 cm(3), respectively. Preoperative surface area to volume ratio and RTV were significantly associated with overall survival, even when controlling for the known survival confounders. CONCLUSIONS This study supports claims that 5-ALA FGS is helpful at decreasing tumor burden and prolonging survival in GBM. Moreover, morphological indices are shown to impact both resection and patient survival.
Collapse
Affiliation(s)
- J Scott Cordova
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Saumya S Gurbani
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Chad A Holder
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Eduard Schreibmann
- Department of Radiation Oncology, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Ran Shi
- Department of Biostatistics, Emory University School of Public Health, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Ying Guo
- Department of Biostatistics, Emory University School of Public Health, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Hui-Kuo G Shu
- Department of Radiation Oncology, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Costas G Hadjipanayis
- Department of Neurosurgery, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA. .,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 10 Union Square, 5th Floor, Suite 5E, New York, NY, 10003, USA.
| |
Collapse
|
40
|
Quang TT, Kim HY, Bao FS, Papay FA, Edwards WB, Liu Y. Fluorescence Imaging Topography Scanning System for intraoperative multimodal imaging. PLoS One 2017; 12:e0174928. [PMID: 28437441 PMCID: PMC5402944 DOI: 10.1371/journal.pone.0174928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/18/2017] [Indexed: 02/05/2023] Open
Abstract
Fluorescence imaging is a powerful technique with diverse applications in intraoperative settings. Visualization of three dimensional (3D) structures and depth assessment of lesions, however, are oftentimes limited in planar fluorescence imaging systems. In this study, a novel Fluorescence Imaging Topography Scanning (FITS) system has been developed, which offers color reflectance imaging, fluorescence imaging and surface topography scanning capabilities. The system is compact and portable, and thus suitable for deployment in the operating room without disturbing the surgical flow. For system performance, parameters including near infrared fluorescence detection limit, contrast transfer functions and topography depth resolution were characterized. The developed system was tested in chicken tissues ex vivo with simulated tumors for intraoperative imaging. We subsequently conducted in vivo multimodal imaging of sentinel lymph nodes in mice using FITS and PET/CT. The PET/CT/optical multimodal images were co-registered and conveniently presented to users to guide surgeries. Our results show that the developed system can facilitate multimodal intraoperative imaging.
Collapse
Affiliation(s)
- Tri T. Quang
- Department of Biomedical Engineering, the University of Akron, Akron, Ohio, United States of America
| | - Hye-Yeong Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Forrest Sheng Bao
- Department of Electrical and Computer Engineering, the University of Akron, Akron, Ohio, United States of America
| | - Francis A. Papay
- Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - W. Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (YL); (WBE)
| | - Yang Liu
- Department of Biomedical Engineering, the University of Akron, Akron, Ohio, United States of America
- * E-mail: (YL); (WBE)
| |
Collapse
|
41
|
Wei L, Chen Y, Yin C, Borwege S, Sanai N, Liu JTC. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:46005. [PMID: 28418534 PMCID: PMC5390779 DOI: 10.1117/1.jbo.22.4.046005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/27/2017] [Indexed: 05/02/2023]
Abstract
Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.
Collapse
Affiliation(s)
- Linpeng Wei
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Ye Chen
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Chengbo Yin
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Sabine Borwege
- Barrow Neurological Institute, St. Joseph’s Hospital, Phoenix, Arizona, United States
| | - Nader Sanai
- Barrow Neurological Institute, St. Joseph’s Hospital, Phoenix, Arizona, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- Address all correspondence to: Jonathan T. C. Liu, E-mail:
| |
Collapse
|
42
|
Pogue BW, Paulsen KD, Samkoe KS, Elliott JT, Hasan T, Strong TV, Draney DR, Feldwisch J. Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention. Med Phys 2017; 43:3143-3156. [PMID: 27277060 DOI: 10.1118/1.4951732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Surgery, Dartmouth College, Hanover, New Hampshire 03755
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Department of Surgery, Dartmouth College, Hanover, New Hampshire 03755; and Department of Diagnostic Radiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Surgery, Dartmouth College, Hanover, New Hampshire 03755
| | - Jonathan T Elliott
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 and Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Theresa V Strong
- Vector Production Facility, Division of Hematology Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | |
Collapse
|
43
|
Galli R, Uckermann O, Temme A, Leipnitz E, Meinhardt M, Koch E, Schackert G, Steiner G, Kirsch M. Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. JOURNAL OF BIOPHOTONICS 2017; 10:404-414. [PMID: 27854107 DOI: 10.1002/jbio.201500323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/10/2016] [Accepted: 02/21/2016] [Indexed: 05/20/2023]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging technique for identification of brain tumors. However, tumor identification by CARS microscopy on bulk samples and in vivo has been so far verified retrospectively on histological sections, which only provide a gross reference for the interpretation of CARS images without matching at cellular level. Therefore, fluorescent labels were exploited for direct assessment of the interpretation of CARS images of solid and infiltrative tumors. Glioblastoma cells expressing green fluorescent protein (GFP) were used for induction of tumors in mice (n = 7). The neoplastic nature of cells imaged by CARS microscopy was unequivocally verified by addressing two-photon fluorescence of GFP on fresh brain slices and in vivo. In fresh unfixed biopsies of human glioblastoma (n = 10), the fluorescence of 5-aminolevulinic acid-induced protoporphyrin IX was used for identification of tumorous tissue. Distinctive morphological features of glioblastoma cells, i.e. larger nuclei, evident nuclear membrane and nucleolus, were identified in the CARS images of both mouse and human brain tumors. This approach demonstrates that the chemical contrast provided by CARS allows the localization of infiltrating tumor cells in fresh tissue and that the cell morphology in CARS images is useful for tumor recognition. Experimental glioblastoma expressing green fluorescent protein.
Collapse
Affiliation(s)
- Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Achim Temme
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Elke Leipnitz
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Matthias Meinhardt
- Neuropathology, Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Faculty of Physics, dept. of General Physics and Spectroscopy, Vilnius University, Sauletekio av. 9 bl. 3, 10222, Vilnius, Lithuania
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| |
Collapse
|
44
|
Senders JT, Muskens IS, Schnoor R, Karhade AV, Cote DJ, Smith TR, Broekman MLD. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir (Wien) 2017; 159:151-167. [PMID: 27878374 PMCID: PMC5177668 DOI: 10.1007/s00701-016-3028-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Fluorescence-guided surgery (FGS) is a technique used to enhance visualization of tumor margins in order to increase the extent of tumor resection in glioma surgery. In this paper, we systematically review all clinically tested fluorescent agents for application in FGS for glioma and all preclinically tested agents with the potential for FGS for glioma. METHODS We searched the PubMed and Embase databases for all potentially relevant studies through March 2016. We assessed fluorescent agents by the following outcomes: rate of gross total resection (GTR), overall and progression-free survival, sensitivity and specificity in discriminating tumor and healthy brain tissue, tumor-to-normal ratio of fluorescent signal, and incidence of adverse events. RESULTS The search strategy resulted in 2155 articles that were screened by titles and abstracts. After full-text screening, 105 articles fulfilled the inclusion criteria evaluating the following fluorescent agents: 5-aminolevulinic acid (5-ALA) (44 studies, including three randomized control trials), fluorescein (11), indocyanine green (five), hypericin (two), 5-aminofluorescein-human serum albumin (one), endogenous fluorophores (nine) and fluorescent agents in a pre-clinical testing phase (30). Three meta-analyses were also identified. CONCLUSIONS 5-ALA is the only fluorescent agent that has been tested in a randomized controlled trial and results in an improvement of GTR and progression-free survival in high-grade gliomas. Observational cohort studies and case series suggest similar outcomes for FGS using fluorescein. Molecular targeting agents (e.g., fluorophore/nanoparticle labeled with anti-EGFR antibodies) are still in the pre-clinical phase, but offer promising results and may be valuable future alternatives.
Collapse
Affiliation(s)
- Joeky T Senders
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ivo S Muskens
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Rosalie Schnoor
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Aditya V Karhade
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - David J Cote
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - Timothy R Smith
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Yoneyama T, Watanabe T, Kagawa H, Hayashi Y, Nakada M. Fluorescence intensity and bright spot analyses using a confocal microscope for photodynamic diagnosis of brain tumors. Photodiagnosis Photodyn Ther 2016; 17:13-21. [PMID: 27840177 DOI: 10.1016/j.pdpdt.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/20/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND In photodynamic diagnosis using 5-aminolevulinic acid (5-ALA), discrimination between the tumor and normal tissue is very important for a precise resection. However, it is difficult to distinguish between infiltrating tumor and normal regions in the boundary area. In this study, fluorescent intensity and bright spot analyses using a confocal microscope is proposed for the precise discrimination between infiltrating tumor and normal regions. METHODS From the 5-ALA-resected brain tumor tissue, the red fluorescent and marginal regions were sliced for observation under a confocal microscope. Hematoxylin and eosin (H&E) staining were performed on serial slices of the same tissue. According to the pathological inspection of the H&E slides, the tumor and infiltrating and normal regions on confocal microscopy images were investigated. From the fluorescent intensity of the image pixels, a histogram of pixel number with the same fluorescent intensity was obtained. The fluorescent bright spot sizes and total number were compared between the marginal and normal regions. RESULTS The fluorescence intensity distribution and average intensity in the tumor were different from those in the normal region. The probability of a difference from the dark enhanced the difference between the tumor and the normal region. The bright spot size and number in the infiltrating tumor were different from those in the normal region. CONCLUSIONS Fluorescence intensity analysis is useful to distinguish a tumor region, and a bright spot analysis is useful to distinguish between infiltrating tumor and normal regions. These methods will be important for the precise resection or photodynamic therapy of brain tumors.
Collapse
Affiliation(s)
- Takeshi Yoneyama
- School of Mechanical Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Tetsuyo Watanabe
- School of Mechanical Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroyuki Kagawa
- School of Mechanical Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yutaka Hayashi
- Department of Neurosurgery Graduate School of Medical Science, Kanazawa University Takara-machi, Kanazawa 920-8641, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery Graduate School of Medical Science, Kanazawa University Takara-machi, Kanazawa 920-8641, Japan
| |
Collapse
|
46
|
Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016; 3:55. [PMID: 27800481 PMCID: PMC5066076 DOI: 10.3389/fsurg.2016.00055] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Fluorescence-guided surgery is one of the rapidly emerging methods of surgical "theranostics." In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. METHODS Review of the literature. RESULTS A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. CONCLUSION We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Eric J. Miller
- University of Arizona College of Medicine – Phoenix, Phoenix, AZ, USA
| | - Jennifer M. Eschbacher
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Liudmila A. Bardonova
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark C. Preul
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
47
|
Clark PA, Al-Ahmad AJ, Qian T, Zhang RR, Wilson HK, Weichert JP, Palecek SP, Kuo JS, Shusta EV. Analysis of Cancer-Targeting Alkylphosphocholine Analogue Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model. Mol Pharm 2016; 13:3341-9. [PMID: 27421304 DOI: 10.1021/acs.molpharmaceut.6b00441] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cancer-targeting alkylphosphocholine (APC) analogues are being clinically developed for diagnostic imaging, intraoperative visualization, and therapeutic applications. These APC analogues derived from chemically synthesized phospholipid ethers were identified and optimized for cancer-targeting specificity using extensive structure-activity studies. While they strongly label human brain cancers associated with disrupted blood-brain barriers (BBB), APC permeability across intact BBB remains unknown. Three of our APC analogues, CLR1404 (PET radiotracer), CLR1501 (green fluorescence), and CLR1502 (near-infrared fluorescence), were tested for permeability across a BBB model composed of human induced pluripotent stem cell-derived brain microvascular endothelial cells (iPSC-derived BMECs). This in vitro BBB system has reproducibly consistent high barrier integrity marked by high transendothelial electrical resistance (TEER > 1500 Ω-cm(2)) and functional expression of drug efflux transporters. The radioiodinated and fluorescent APC analogues demonstrated fairly low permeability across the iPSC-BMEC (35 ± 5.7 (CLR1404), 54 ± 3.2 (CLR1501), and 26 ± 4.9 (CLR1502) × 10(-5) cm/min) compared with BBB-impermeable sucrose (13 ± 2.5) and BBB-permeable diazepam (170 ± 29). Only the fluorescent APC analogues (CLR1501, CLR1502) underwent BCRP and MRP polarized drug efflux transport in the brain-to-blood direction of the BBB model, and this efflux can be specifically blocked with pharmacological inhibition. None of the tested APC analogues appeared to undergo substantial P-gp transport. Limited permeability of the APC analogues across an intact BBB into normal brain likely contributes to the high tumor to background ratios observed in initial human trials. Moreover, addition of fluorescent moieties to APCs resulted in greater BMEC efflux via MRP and BCRP, and may affect fluorescence-guided applications. Overall, the characterization of APC analogue permeability across human BBB is significant for advancing future brain tumor-targeted applications of these agents.
Collapse
Affiliation(s)
| | - Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center-School of Pharmacy , Amarillo, Texas 79106, United States
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Craig SEL, Wright J, Sloan AE, Brady-Kalnay SM. Fluorescent-Guided Surgical Resection of Glioma with Targeted Molecular Imaging Agents: A Literature Review. World Neurosurg 2016; 90:154-163. [PMID: 26915698 PMCID: PMC4915969 DOI: 10.1016/j.wneu.2016.02.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
The median life expectancy after a diagnosis of glioblastoma is 15 months. Although chemotherapeutics may someday cure glioblastoma by killing the highly dispersive malignant cells, the most important contribution that clinicians can currently offer to improve survival is by maximizing the extent of resection and providing concurrent chemo-radiation, which has become standard. Strides have been made in this area with the advent and implementation of methods of improved intraoperative tumor visualization. One of these techniques, optical fluorescent imaging with targeted molecular imaging agents, allows the surgeon to view fluorescently labeled tumor tissue during surgery with the use of special microscopy, thereby highlighting where to resect and indicating when tumor-free margins have been obtained. This advantage is especially important at the difficult-to-observe margins where tumor cells infiltrate normal tissue. Targeted fluorescent agents also may be valuable for identifying tumor versus nontumor tissue. In this review, we briefly summarize nontargeted fluorescent tumor imaging agents before discussing several novel targeted fluorescent agents being developed for glioma imaging in the context of fluorescent-guided surgery or live molecular navigation. Many of these agents are currently undergoing preclinical testing. As the agents become available, however, it is necessary to understand the strengths and weaknesses of each.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - James Wright
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Brain Tumor and Neuro-Oncology Center, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Susann M Brady-Kalnay
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
49
|
Huang R, Harmsen S, Samii JM, Karabeber H, Pitter KL, Holland EC, Kircher MF. High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe. Theranostics 2016; 6:1075-84. [PMID: 27279902 PMCID: PMC4893636 DOI: 10.7150/thno.13842] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/02/2016] [Indexed: 11/23/2022] Open
Abstract
The dismal prognosis of patients with malignant brain tumors such as glioblastoma multiforme (GBM) is attributed mostly to their diffuse growth pattern and early microscopic tumor spread to distant regions of the brain. Because the microscopic tumor foci cannot be visualized with current imaging modalities, it remains impossible to direct treatments optimally. Here we explored the ability of integrin-targeted surface-enhanced resonance Raman spectroscopy (SERRS) nanoparticles to depict the true tumor extent in a GBM mouse model that closely mimics the pathology in humans. The recently developed SERRS-nanoparticles have a sensitivity of detection in the femtomolar range. An RGD-peptide-conjugated version for integrin-targeting (RGD-SERRS) was compared directly to its non-targeted RAD-SERRS control in the same mice via Raman multiplexing. Pre-blocking with RGD peptide before injection of RGD-SERRS nanoparticles was used to verify the specificity of integrin-targeting. In contrast to the current belief that the enhanced permeability and retention (EPR) effect results in a baseline uptake of nanoparticles regardless of their surface chemistry, integrin-targeting was shown to be highly specific, with markedly lower accumulation after pre-blocking. While the non-targeted SERRS particles enabled delineation of the main tumor, the RGD-SERRS nanoparticles afforded a major improvement in visualization of the true extent and the diffuse margins of the main tumor. This included the detection of unexpected tumor areas distant to the main tumor, tracks of migrating cells of 2-3 cells in diameter, and even isolated distant tumor cell clusters of less than 5 cells. This Raman spectroscopy-based nanoparticle-imaging technology holds promise to allow high precision visualization of the true extent of malignant brain tumors.
Collapse
|
50
|
Dimitriadis N, Grychtol B, Maertins L, Behr T, Themelis G, Deliolanis NC. Simultaneous real-time multicomponent fluorescence and reflectance imaging method for fluorescence-guided surgery. OPTICS LETTERS 2016; 41:1173-1176. [PMID: 26977662 DOI: 10.1364/ol.41.001173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fluorescence-guided surgical procedures are employed in an increasing number of applications such as tumor delineation, blood perfusion, and sentinel lymph node detection. A new generation of fluorescent probes is expected to increase the number of applications and improve efficiency. Yet, there are no available imaging methods to take full advantage of the forthcoming targeting technologies. We present a novel concept for imaging multiple agents for fluorescence-guided surgery. The system operates without any moving parts and can resolve images of three different fluorochromes while simultaneously recording conventional reflectance images.
Collapse
|