1
|
Alves-Sampaio A, Del-Cerro P, Collazos-Castro JE. Composite Fibrin/Carbon Microfiber Implants for Bridging Spinal Cord Injury: A Translational Approach in Pigs. Int J Mol Sci 2023; 24:11102. [PMID: 37446280 DOI: 10.3390/ijms241311102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Biomaterials may enhance neural repair after spinal cord injury (SCI) and testing their functionality in large animals is essential to achieve successful clinical translation. This work developed a porcine contusion/compression SCI model to investigate the consequences of myelotomy and implantation of fibrin gel containing biofunctionalized carbon microfibers (MFs). Fourteen pigs were distributed in SCI, SCI/myelotomy, and SCI/myelotomy/implant groups. An automated device was used for SCI. A dorsal myelotomy was performed on the lesion site at 1 day post-injury for removing cloths and devitalized tissue. Bundles of MFs coated with a conducting polymer and cell adhesion molecules were embedded in fibrin gel and used to bridge the spinal cord cavity. Reproducible lesions of about 1 cm in length were obtained. Myelotomy and lesion debridement caused no further neural damage compared to SCI alone but had little positive effect on neural regrowth. The MFs/fibrin gel implant facilitated axonal sprouting, elongation, and alignment within the lesion. However, the implant also increased lesion volume and was ineffective in preventing fibrosis, thus precluding functional neural regeneration. Our results indicate that myelotomy and lesion debridement can be advantageously used for implanting MF-based scaffolds. However, the implants need refinement and pharmaceuticals will be necessary to limit scarring.
Collapse
Affiliation(s)
- Alexandra Alves-Sampaio
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| | - Patricia Del-Cerro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| | - Jorge E Collazos-Castro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| |
Collapse
|
2
|
Vieira S, Strymecka P, Stanaszek L, Silva-Correia J, Drela K, Fiedorowicz M, Malysz-Cymborska I, Janowski M, Reis RL, Łukomska B, Walczak P, Oliveira JM. Mn-Based Methacrylated Gellan Gum Hydrogels for MRI-Guided Cell Delivery and Imaging. Bioengineering (Basel) 2023; 10:bioengineering10040427. [PMID: 37106614 PMCID: PMC10135712 DOI: 10.3390/bioengineering10040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagnetic Mn2+ ions before its ionic crosslink with artificial cerebrospinal fluid (aCSF). The resulting formulations were stable, detectable by T1-weighted MRI scans and also injectable. Cell-laden hydrogels were prepared using the Mn/GG-MA formulations, extruded into aCSF for crosslink, and after 7 days of culture, the encapsulated human adipose-derived stem cells remained viable, as assessed by Live/Dead assay. In vivo tests, using double mutant MBPshi/shi/rag2 immunocompromised mice, showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel, visible on MRI scans. Summing up, the developed formulations are suitable for both non-invasive cell delivery techniques and image-guided neurointerventions, paving the way for new therapeutic procedures.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Paulina Strymecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joana Silva-Correia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Izabela Malysz-Cymborska
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Rui Luís Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Barbara Łukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Walczak
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +351-253510931; Fax: +351-253510909
| |
Collapse
|
3
|
Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat Med 2022; 28:1813-1822. [PMID: 36064599 PMCID: PMC9499868 DOI: 10.1038/s41591-022-01956-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves progressive motor neuron loss, leading to paralysis and death typically within 3–5 years of diagnosis. Dysfunctional astrocytes may contribute to disease and glial cell line-derived neurotrophic factor (GDNF) can be protective. Here we show that human neural progenitor cells transduced with GDNF (CNS10-NPC-GDNF) differentiated to astrocytes protected spinal motor neurons and were safe in animal models. CNS10-NPC-GDNF were transplanted unilaterally into the lumbar spinal cord of 18 ALS participants in a phase 1/2a study (NCT02943850). The primary endpoint of safety at 1 year was met, with no negative effect of the transplant on motor function in the treated leg compared with the untreated leg. Tissue analysis of 13 participants who died of disease progression showed graft survival and GDNF production. Benign neuromas near delivery sites were common incidental findings at post-mortem. This study shows that one administration of engineered neural progenitors can provide new support cells and GDNF delivery to the ALS patient spinal cord for up to 42 months post-transplantation. A phase 1/2a study shows that human neural progenitor cells modified to release the growth factor GDNF are safely transplanted into the spinal cord of patients with ALS, with cell survival and GDNF production for over 3 years.
Collapse
|
4
|
Laycock C, Kieser D, Fitz-Gerald C, Soltani S, Frampton C. A systematic review of large animal and human studies of stem cell therapeutics for acute adult traumatic spinal cord injury. JOURNAL OF ORTHOPAEDICS, TRAUMA AND REHABILITATION 2022. [DOI: 10.1177/22104917221087401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Traumatic spinal cord injury (TSCI) is a devastating condition and the search for a cure remains one of the most tenacious healthcare challenges to date. Current therapies are limited in their efficacy to restore full neurological function – resulting in lifelong disability and loss of autonomy. Whilst there remains a necessity to refine therapeutic protocols, stem cell (SC) studies have shown promise in the mending and re-establishment of the spinal cord neuroanatomy. Objectives: We conducted a systematic review of functional outcomes in stem cell therapeutics over the last three decades in large animals and humans. Methods: Medline, Embase, Cochrane and SCOPUS databases were searched for potentially pertinent articles from 1990 to 2020. Studies published in English were included if the stem cells were directly injected into the intraspinal, epidural or intrathecal compartments within two weeks of a traumatic mechanism of injury, including acute intervertebral disc prolapse. The participants were either large animals – defined as canine, porcine or non-human primate in-vivo models – or human patients. Results: Nine studies were included in this review. Statistically significant improvements in motor function and deep pain perception were seen at 8 weeks to 6 months post-SC injection compared to controls. Limitations: Functional outcomes are variably measured across studies. Almost all studies used experimentally induced trauma, which may not accurately represent the complexity of human spinal cord injury. Due to the exclusion criteria, there were no non-human primate studies included, yet these animal models are considered a closer anatomical match to humans than other large mammals. No human studies were included. Conclusions and Implications: Autologous and allogeneic stem cells have been trialled for the reconstitution of damaged and lost cells, remyelination of axons and remodelling of the pathophysiological microenvironment within the injured spinal cord, with some promising outcome data. This may translate to more successful future Phase I/II human clinical trials into the use of stem cells after TSCI in adults.
Collapse
Affiliation(s)
- Charlotte Laycock
- University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - David Kieser
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| | - Connor Fitz-Gerald
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| | - Sherry Soltani
- University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - Chris Frampton
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| |
Collapse
|
5
|
Harward SC, Southwell DG. Interneuron transplantation: a prospective surgical therapy for medically refractory epilepsy. Neurosurg Focus 2021; 48:E18. [PMID: 32234982 DOI: 10.3171/2020.2.focus19955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/04/2020] [Indexed: 11/06/2022]
Abstract
Excitatory-inhibitory imbalance is central to epilepsy pathophysiology. Current surgical therapies for epilepsy, such as brain resection, laser ablation, and neurostimulation, target epileptic networks on macroscopic scales, without directly correcting the circuit-level aberrations responsible for seizures. The transplantation of inhibitory cortical interneurons represents a novel neurobiological method for modifying recipient neural circuits in a physiologically corrective manner. Transplanted immature interneurons have been found to disperse in the recipient brain parenchyma, where they develop elaborate structural morphologies, express histochemical markers of mature interneurons, and form functional inhibitory synapses onto recipient neurons. Transplanted interneurons also augment synaptic inhibition and alter recipient neural network synchrony, two physiological processes disrupted in various epilepsies. In rodent models of epilepsy, interneuron transplantation corrects recipient seizure phenotypes and associated behavioral abnormalities. As such, interneuron transplantation may represent a novel neurobiological approach to the surgical treatment of human epilepsy. Here, the authors describe the preclinical basis for applying interneuron transplantation to human epilepsy, discuss its potential clinical applications, and consider the translational hurdles to its development as a surgical therapy.
Collapse
Affiliation(s)
| | - Derek G Southwell
- Departments of1Neurosurgery and.,2Neurology.,3Graduate Program in Neurobiology; Duke University, Durham, North Carolina
| |
Collapse
|
6
|
Texakalidis P, Tora MS, Canute S, Hardcastle N, Poth K, Donsante A, Federici T, Javidfar J, Boulis NM. Minimally Invasive Injection to the Phrenic Nerve in a Porcine Hemidiaphragmatic Paralysis Model: A Pilot Study. Neurosurgery 2020; 87:847-853. [PMID: 31625573 DOI: 10.1093/neuros/nyz473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases and spinal cord injury can affect respiratory function often through motor neuron loss innervating the diaphragm. To reinnervate this muscle, new motor neurons could be transplanted into the phrenic nerve (PN), allowing them to extend axons to the diaphragm. These neurons could then be driven by an optogenetics approach to regulate breathing. This type of approach has already been demonstrated in the peripheral nerves of mice. However, there is no established thoracoscopic approach to PN injection. Also, there is currently a lack of preclinical large animal models of diaphragmatic dysfunction in order to evaluate the efficacy of potential treatments. OBJECTIVE To evaluate the feasibility of thoracoscopic drug delivery into the PN and to assess the viability of hemidiaphragmatic paralysis in a porcine model. METHODS Two Landrace farm pigs underwent a novel procedure for thoracoscopic PN injections, including 1 nonsurvival and 1 survival surgery. Nonsurvival surgery involved bilateral PN injections and ligation. Survival surgery included a right PN injection and transection proximal to the injection site to induce hemidiaphragmatic paralysis. RESULTS PN injections were successfully performed in both procedures. The animal that underwent survival surgery recovered postoperatively with an established right hemidiaphragmatic paralysis. Over the 5-d postoperative period, the animal displayed stable vital signs and oxygenation saturation on room air with voluntary breathing. CONCLUSION Thoracoscopic targeting of the porcine PN is a feasible approach to administer therapeutic agents. A swine model of hemidiaphragmatic paralysis induced by unilateral PN ligation or transection may be potentially used to study diaphragmatic reinnervation following delivery of therapeutics.
Collapse
Affiliation(s)
- Pavlos Texakalidis
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Skyler Canute
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Nathan Hardcastle
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Kelly Poth
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Anthony Donsante
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Thais Federici
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Jeffrey Javidfar
- Division of Cardiothoracic Surgery, Department of Surgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
McGinley LM, Willsey MS, Kashlan ON, Chen KS, Hayes JM, Bergin IL, Mason SN, Stebbins AW, Kwentus JF, Pacut C, Kollmer J, Sakowski SA, Bell CB, Chestek CA, Murphy GG, Patil PG, Feldman EL. Magnetic resonance imaging of human neural stem cells in rodent and primate brain. Stem Cells Transl Med 2020; 10:83-97. [PMID: 32841522 PMCID: PMC7780819 DOI: 10.1002/sctm.20-0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell transplantation therapies are currently under investigation for central nervous system disorders. Although preclinical models show benefit, clinical translation is somewhat limited by the absence of reliable noninvasive methods to confirm targeting and monitor transplanted cells in vivo. Here, we assess a novel magnetic resonance imaging (MRI) contrast agent derived from magnetotactic bacteria, magneto‐endosymbionts (MEs), as a translatable methodology for in vivo tracking of stem cells after intracranial transplantation. We show that ME labeling provides robust MRI contrast without impairment of cell viability or other important therapeutic features. Labeled cells were visualized immediately post‐transplantation and over time by serial MRI in nonhuman primate and mouse brain. Postmortem tissue analysis confirmed on‐target grft location, and linear correlations were observed between MRI signal, cell engraftment, and tissue ME levels, suggesting that MEs may be useful for determining graft survival or rejection. Overall, these findings indicate that MEs are an effective tool for in vivo tracking and monitoring of cell transplantation therapies with potential relevance to many cellular therapy applications.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew S Willsey
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama N Kashlan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shayna N Mason
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W Stebbins
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer Kollmer
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Caleb B Bell
- Bell Biosystems, San Francisco, California, USA.,G4S Capital & Ikigai Accelerator, Santa Clara, California, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Neuroscience and Robotics Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Parag G Patil
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Kutikov AB, Moore SW, Layer RT, Podell PE, Sridhar N, Santamaria AJ, Aimetti AA, Hofstetter CP, Ulich TR, Guest JD. Method and Apparatus for the Automated Delivery of Continuous Neural Stem Cell Trails Into the Spinal Cord of Small and Large Animals. Neurosurgery 2020; 85:560-573. [PMID: 30169668 DOI: 10.1093/neuros/nyy379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Immature neurons can extend processes after transplantation in adult animals. Neuronal relays can form between injected neural stem cells (NSCs) and surviving neurons, possibly improving recovery after spinal cord injury (SCI). Cell delivery methods of single or multiple bolus injections of concentrated cell suspensions thus far tested in preclinical and clinical experiments are suboptimal for new tract formation. Nonuniform injectate dispersal is often seen due to gravitational cell settling and clumping. Multiple injections have additive risks of hemorrhage, parenchymal damage, and cellular reflux and require additional surgical exposure. The deposition of multiply delivered cells boluses may be uneven and discontinuous. OBJECTIVE To develop an injection apparatus and methodology to deliver continuous cellular trails bridging spinal cord lesions. METHODS We improved the uniformity of cellular trails by formulating NSCs in hyaluronic acid. The TrailmakerTM stereotaxic injection device was automatized to extend a shape memory needle from a single-entry point in the spinal cord longitudinal axis to "pioneer" a new trail space and then retract while depositing an hyaluronic acid-NSC suspension. We conducted testing in a collagen spinal models, and animal testing using human NSCs (hNSCs) in rats and minipigs. RESULTS Continuous surviving trails of hNSCs within rat and minipig naive spinal cords were 12 and 40 mm in length. hNSC trails were delivered across semi-acute contusion injuries in rats. Transplanted hNSCs survived and were able to differentiate into neural lineage cells and astrocytes. CONCLUSION The TrailmakerTM creates longitudinal cellular trails spanning multiple levels from a single-entry point. This may enhance the ability of therapeutics to promote functional relays after SCI.
Collapse
Affiliation(s)
| | - Simon W Moore
- InVivo Therapeutics Corporation, Cambridge, Massachusetts
| | | | | | - Nithya Sridhar
- InVivo Therapeutics Corporation, Cambridge, Massachusetts
| | | | - Alex A Aimetti
- InVivo Therapeutics Corporation, Cambridge, Massachusetts
| | | | - Thomas R Ulich
- InVivo Therapeutics Corporation, Cambridge, Massachusetts
| | - James D Guest
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida.,Department of Neurosurgery, University of Miami, Miami, Florida
| |
Collapse
|
9
|
Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs. Sci Rep 2020; 10:5291. [PMID: 32210315 PMCID: PMC7093438 DOI: 10.1038/s41598-020-62167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Prior studies have applied driver mutations targeting the RTK/RAS/PI3K and p53 pathways to induce the formation of high-grade gliomas in rodent models. In the present study, we report the production of a high-grade spinal cord glioma model in pigs using lentiviral gene transfer. METHODS Six Gottingen Minipigs received thoracolumbar (T14-L1) lateral white matter injections of a combination of lentiviral vectors, expressing platelet-derived growth factor beta (PDGF-B), constitutive HRAS, and shRNA-p53 respectively. All animals received injection of control vectors into the contralateral cord. Animals underwent baseline and endpoint magnetic resonance imaging (MRI) and were evaluated daily for clinical deficits. Hematoxylin and eosin (H&E) and immunohistochemical analysis was conducted. Data are presented using descriptive statistics including relative frequencies, mean, standard deviation, and range. RESULTS 100% of animals (n = 6/6) developed clinical motor deficits ipsilateral to the oncogenic lentiviral injections by a three-week endpoint. MRI scans at endpoint demonstrated contrast enhancing mass lesions at the site of oncogenic lentiviral injection and not at the site of control injections. Immunohistochemistry demonstrated positive staining for GFAP, Olig2, and a high Ki-67 proliferative index. Histopathologic features demonstrate consistent and reproducible growth of a high-grade glioma in all animals. CONCLUSIONS Lentiviral gene transfer represents a feasible pathway to glioma modeling in higher order species. The present model is the first lentiviral vector induced pig model of high-grade spinal cord glioma and may potentially be used in preclinical therapeutic development programs.
Collapse
|
10
|
Marsala M, Kamizato K, Tadokoro T, Navarro M, Juhas S, Juhasova J, Marsala S, Studenovska H, Proks V, Hazel T, Johe K, Kakinohana M, Driscoll S, Glenn T, Pfaff S, Ciacci J. Spinal parenchymal occupation by neural stem cells after subpial delivery in adult immunodeficient rats. Stem Cells Transl Med 2019; 9:177-188. [PMID: 31800978 PMCID: PMC6988771 DOI: 10.1002/sctm.19-0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023] Open
Abstract
Neural precursor cells (NSCs) hold great potential to treat a variety of neurodegenerative diseases and injuries to the spinal cord. However, current delivery techniques require an invasive approach in which an injection needle is advanced into the spinal parenchyma to deliver cells of interest. As such, this approach is associated with an inherent risk of spinal injury, as well as a limited delivery of cells into multiple spinal segments. Here, we characterize the use of a novel cell delivery technique that employs single bolus cell injections into the spinal subpial space. In immunodeficient rats, two subpial injections of human NSCs were performed in the cervical and lumbar spinal cord, respectively. The survival, distribution, and phenotype of transplanted cells were assessed 6-8 months after injection. Immunofluorescence staining and mRNA sequencing analysis demonstrated a near-complete occupation of the spinal cord by injected cells, in which transplanted human NSCs (hNSCs) preferentially acquired glial phenotypes, expressing oligodendrocyte (Olig2, APC) or astrocyte (GFAP) markers. In the outermost layer of the spinal cord, injected hNSCs differentiated into glia limitans-forming astrocytes and expressed human-specific superoxide dismutase and laminin. All animals showed normal neurological function for the duration of the analysis. These data show that the subpial cell delivery technique is highly effective in populating the entire spinal cord with injected NSCs, and has a potential for clinical use in cell replacement therapies for the treatment of ALS, multiple sclerosis, or spinal cord injury.
Collapse
Affiliation(s)
- Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Kota Kamizato
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Department of Anesthesia, University of Ryukyus, Okinawa, Japan
| | - Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Department of Anesthesia, University of Ryukyus, Okinawa, Japan
| | - Michael Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Proks
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tom Hazel
- Neuralstem Inc., Germantown, Maryland
| | - Karl Johe
- Neuralstem Inc., Germantown, Maryland
| | | | - Shawn Driscoll
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California
| | - Thomas Glenn
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California
| | - Samuel Pfaff
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California
| | - Joseph Ciacci
- Department of Neurosurgery, University of California, San Diego, La Jolla, California
| |
Collapse
|
11
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
12
|
Zalfa C, Rota Nodari L, Vacchi E, Gelati M, Profico D, Boido M, Binda E, De Filippis L, Copetti M, Garlatti V, Daniele P, Rosati J, De Luca A, Pinos F, Cajola L, Visioli A, Mazzini L, Vercelli A, Svelto M, Vescovi AL, Ferrari D. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death Dis 2019; 10:345. [PMID: 31024007 PMCID: PMC6484011 DOI: 10.1038/s41419-019-1582-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are emerging as a therapeutic option for incurable diseases, such as Amyotrophic Lateral Sclerosis (ALS). However, critical issues are related to their origin as well as to the need to deepen our knowledge of the therapeutic actions exerted by these cells. Here, we investigate the therapeutic potential of clinical-grade human neural stem cells (hNSCs) that have been successfully used in a recently concluded phase I clinical trial for ALS patients (NCT01640067). The hNSCs were transplanted bilaterally into the anterior horns of the lumbar spinal cord (four grafts each, segments L3–L4) of superoxide dismutase 1 G93A transgenic rats (SOD1 rats) at the symptomatic stage. Controls included untreated SOD1 rats (CTRL) and those treated with HBSS (HBSS). Motor symptoms and histological hallmarks of the disease were evaluated at three progressive time points: 15 and 40 days after transplant (DAT), and end stage. Animals were treated by transient immunosuppression (for 15 days, starting at time of transplantation). Under these conditions, hNSCs integrated extensively within the cord, differentiated into neural phenotypes and migrated rostro-caudally, up to 3.77 ± 0.63 cm from the injection site. The transplanted cells delayed decreases in body weight and deterioration of motor performance in the SOD1 rats. At 40DAT, the anterior horns at L3–L4 revealed a higher density of motoneurons and fewer activated astroglial and microglial cells. Accordingly, the overall survival of transplanted rats was significantly enhanced with no rejection of hNSCs observed. We demonstrated that the beneficial effects observed after stem cell transplantation arises from multiple events that counteract several aspects of the disease, a crucial feature for multifactorial diseases, such as ALS. The combination of therapeutic approaches that target different pathogenic mechanisms of the disorder, including pharmacology, molecular therapy and cell transplantation, will increase the chances of a clinically successful therapy for ALS.
Collapse
Affiliation(s)
- Cristina Zalfa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Laura Rota Nodari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Elena Vacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Elena Binda
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, (FG), Italy
| | - Lidia De Filippis
- Fondazione IRCCS Casa Sollievo della Sofferenza, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, (FG), Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Valentina Garlatti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Paola Daniele
- Fondazione IRCCS Casa Sollievo della Sofferenza, Molecular Genetics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Jessica Rosati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cellular Reprogramming Unit, San Giovanni Rotondo, (FG), Italy
| | - Alessandro De Luca
- Fondazione IRCCS Casa Sollievo della Sofferenza, Molecular Genetics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Francesca Pinos
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Laura Cajola
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | | | - Letizia Mazzini
- Centro Regionale Esperto SLA Azienda Ospedaliero-Universitaria "Maggiore della Carità", Novara, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy. .,Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy. .,Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy.
| |
Collapse
|
13
|
A simple, inexpensive method for subcortical stereotactic targeting in nonhuman primates. J Neurosci Methods 2018; 305:89-97. [PMID: 29768185 DOI: 10.1016/j.jneumeth.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Many current neuroscience studies in large animal models have focused on recordings from cortical structures. While sufficient for analyzing sensorimotor systems, many processes are modulated by subcortical nuclei. Large animal models, such as nonhuman primates (NHP), provide an optimal model for studying these circuits, but the ability to target subcortical structures has been hampered by lack of a straightforward approach to targeting. NEW METHOD Here we present a method of subcortical targeting in NHP that uses MRI-compatible titanium screws as fiducials. The in vivo study used a cellular marker for histologic confirmation of accuracy. RESULTS Histologic results are presented showing a cellular stem cell marker within targeted structures, with mean errors ± standard deviations (SD) of 1.40 ± 1.19 mm in the X-axis and 0.9 ± 0.97 mm in the Z-axis. The Y-axis errors ± SD ranged from 1.5 ± 0.43 to 4.2 ± 1.72 mm. COMPARISON WITH EXISTING METHODS This method is easy and inexpensive, and requires no fabrication of equipment, keeping in mind the goal of optimizing a technique for implantation or injection into multiple interconnected areas. CONCLUSION This procedure will enable primate researchers to target deep, subcortical structures more precisely in animals of varying ages and weights.
Collapse
|
14
|
Oliveira JM, Carvalho L, Silva-Correia J, Vieira S, Majchrzak M, Lukomska B, Stanaszek L, Strymecka P, Malysz-Cymborska I, Golubczyk D, Kalkowski L, Reis RL, Janowski M, Walczak P. Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. NPJ Regen Med 2018; 3:8. [PMID: 29644098 PMCID: PMC5884770 DOI: 10.1038/s41536-018-0046-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/07/2023] Open
Abstract
The prospects for cell replacement in spinal cord diseases are impeded by inefficient stem cell delivery. The deep location of the spinal cord and complex surgical access, as well as densely packed vital structures, question the feasibility of the widespread use of multiple spinal cord punctures to inject stem cells. Disorders characterized by disseminated pathology are particularly appealing for the distribution of cells globally throughout the spinal cord in a minimally invasive fashion. The intrathecal space, with access to a relatively large surface area along the spinal cord, is an attractive route for global stem cell delivery, and, indeed, is highly promising, but the success of this approach relies on the ability of cells (1) to survive in the cerebrospinal fluid (CSF), (2) to adhere to the spinal cord surface, and (3) to migrate, ultimately, into the parenchyma. Intrathecal infusion of cell suspension, however, has been insufficient and we postulate that embedding transplanted cells within hydrogel scaffolds will facilitate reaching these goals. In this review, we focus on practical considerations that render the intrathecal approach clinically viable, and then discuss the characteristics of various biomaterials that are suitable to serve as scaffolds. We also propose strategies to modulate the local microenvironment with nanoparticle carriers to improve the functionality of cellular grafts. Finally, we provide an overview of imaging modalities for in vivo monitoring and characterization of biomaterials and stem cells. This comprehensive review should serve as a guide for those planning preclinical and clinical studies on intrathecal stem cell transplantation.
Collapse
Affiliation(s)
- J. Miguel Oliveira
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães Portugal
| | - Luisa Carvalho
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| | - Joana Silva-Correia
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| | - Sílvia Vieira
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| | - Malgorzata Majchrzak
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luiza Stanaszek
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Strymecka
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Malysz-Cymborska
- 0000 0001 2149 6795grid.412607.6Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Dominika Golubczyk
- 0000 0001 2149 6795grid.412607.6Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Lukasz Kalkowski
- 0000 0001 2149 6795grid.412607.6Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Rui L. Reis
- 3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence, Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães Portugal
| | - Miroslaw Janowski
- 0000 0001 1958 0162grid.413454.3NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland ,0000 0001 2171 9311grid.21107.35Russel H, Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Piotr Walczak
- 0000 0001 2149 6795grid.412607.6Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland ,0000 0001 2171 9311grid.21107.35Russel H, Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
15
|
Lamanna JJ, Gutierrez J, Espinosa JR, Wagner J, Urquia LN, Moreton C, Victor Hurtig C, Tora M, Kirk AD, Federici T, Boulis NM. Peripheral blood detection of systemic graft-specific xeno-antibodies following transplantation of human neural progenitor cells into the porcine spinal cord. J Clin Neurosci 2017; 48:173-180. [PMID: 29089163 DOI: 10.1016/j.jocn.2017.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
Extensive pre-clinical and clinical studies have searched for therapeutic efficacy of cell-based therapeutics in diseases of the Central Nervous System (CNS) with no other viable options. Allogeneic cells represent the primary source of these therapies and immunosuppressive regimens have been empirically employed based on experience with solid organ transplantation, attempting to avoid immune mediated graft rejection. In this study, we aimed to 1) characterize the host immune response to stem cells transplanted into the CNS and 2) develop a non-invasive method for detecting immune response to transplanted cell grafts. Human neural progenitor cells were transplanted into the spinal cord of 10 Göttingen minipigs, of which 5 received no immunosuppression and 5 received Tacrolimus. Peripheral blood samples were collected longitudinally for flow cytometry cross match studies. Necropsy was performed at day 21 and spinal cord tissue analysis. We observed a transient increase in xeno-reactive antibodies was detected on post-operative day 7 and 14 in pigs that did not receive immunosuppression. This response was not detected in pigs that received Tacrolimus immunosuppression. No difference in graft survival was observed between the groups. Infiltration of numerous immune mediators including granulocytes, T lymphocytes, and activated microglia, and complement deposition were detected. In summary, a systemic immunologic response to stem cell grafts was detected for two weeks after transplantation using peripheral blood. This could be used as a non-invasive biomarker by investigators for detection of immunologic rejection. However, the absence of a detectable response in peripheral blood does not rule out a parenchymal immune response.
Collapse
Affiliation(s)
- Jason J Lamanna
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30322, USA.
| | - Juanmarco Gutierrez
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Jaclyn R Espinosa
- Department of Surgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| | - Jacob Wagner
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Lindsey N Urquia
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Cheryl Moreton
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - C Victor Hurtig
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Muhibullah Tora
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30322, USA.
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC 27710, USA.
| | - Thais Federici
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA.
| | - Nicholas M Boulis
- Department of Neurosurgery, School of Medicine, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2017; 2:23. [PMID: 29302358 PMCID: PMC5677964 DOI: 10.1038/s41536-017-0028-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions.
Collapse
Affiliation(s)
- Mahetab H. Amer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | | | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
17
|
Lamanna JJ, Gutierrez J, Urquia LN, Hurtig CV, Amador E, Grin N, Svendsen CN, Federici T, Oshinski JN, Boulis NM. Ferumoxytol Labeling of Human Neural Progenitor Cells for Diagnostic Cellular Tracking in the Porcine Spinal Cord with Magnetic Resonance Imaging. Stem Cells Transl Med 2016; 6:139-150. [PMID: 28170192 PMCID: PMC5442757 DOI: 10.5966/sctm.2015-0422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022] Open
Abstract
We report on the diagnostic capability of magnetic resonance imaging (MRI)‐based tracking of ferumoxytol‐labeled human neural progenitor cells (hNPCs) transplanted into the porcine spinal cord. hNPCs prelabeled with two doses of ferumoxytol nanoparticles (hNPC‐FLow and hNPC‐FHigh) were injected into the ventral horn of the spinal cord in healthy minipigs. Ferumoxytol‐labeled grafts were tracked in vivo up to 105 days after transplantation with MRI. Injection accuracy was assessed in vivo at day 14 and was predictive of “on” or “off” target cell graft location assessed by histology. No difference in long‐term cell survival, assessed by quantitative stereology, was observed among hNPC‐FLow, hNPC‐FHigh, or control grafts. Histological iron colocalized with MRI signal and engrafted human nuclei. Furthermore, the ferumoxytol‐labeled cells retained nanoparticles and function in vivo. This approach represents an important leap forward toward facilitating translation of cell‐tracking technologies to clinical trials by providing a method of assessing transplantation accuracy, delivered dose, and potentially cell survival. Stem Cells Translational Medicine2017;6:139–150
Collapse
Affiliation(s)
- Jason J. Lamanna
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Juanmarco Gutierrez
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Lindsey N. Urquia
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - C. Victor Hurtig
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Elman Amador
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Natalia Grin
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Thais Federici
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - John N. Oshinski
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Nicholas M. Boulis
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Nagoshi N, Nakashima H, Fehlings MG. Commentary: Preclinical Validation of Multilevel Intraparenchymal Stem Cell Therapy in the Porcine Spinal Cord. Neurosurgery 2015; 78:E309. [PMID: 26540358 DOI: 10.1227/neu.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Narihito Nagoshi
- *Department of Surgery, Division of Neurosurgery and Spinal Program, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada; ‡Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan; §Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan; ¶Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|