1
|
Matsui M, Kajikuri J, Kito H, Elboray EE, Suzuki T, Ohya S. Downregulation of IL-8 and IL-10 by LRRC8A Inhibition through the NOX2-Nrf2-CEBPB Transcriptional Axis in THP-1-Derived M 2 Macrophages. Int J Mol Sci 2024; 25:9612. [PMID: 39273558 PMCID: PMC11395230 DOI: 10.3390/ijms25179612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
M2-polarized, tumor-associated macrophages (TAMs) produce pro-tumorigenic and angiogenic mediators, such as interleukin-8 (IL-8) and IL-10. Leucine-rich repeat-containing protein 8 members (LRRC8s) form volume-regulated anion channels and play an important role in macrophage functions by regulating cytokine and chemokine production. We herein examined the role of LRRC8A in IL-8 and IL-10 expression in THP-1-differentiated M2-like macrophages (M2-MACs), which are a useful tool for investigating TAMs. In M2-MACs, the pharmacological inhibition of LRRC8A led to hyperpolarizing responses after a transient depolarization phase, followed by a slight elevation in the intracellular concentration of Ca2+. Both the small interfering RNA-mediated and pharmacological inhibition of LRRC8A repressed the transcriptional expression of IL-8 and IL-10, resulting in a significant reduction in their secretion. The inhibition of LRRC8A decreased the nuclear translocation of phosphorylated nuclear factor-erythroid 2-related factor 2 (Nrf2), while the activation of Nrf2 reversed the LRRC8A inhibition-induced transcriptional repression of IL-8 and IL-10 in M2-MACs. We identified the CCAAT/enhancer-binding protein isoform B, CEBPB, as a downstream target of Nrf2 signaling in M2-MACs. Moreover, among several upstream candidates, the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) suppressed the Nrf2-CEBPB transcriptional axis in M2-MACs. Collectively, the present results indicate that the inhibition of LRRC8A repressed IL-8 and IL-10 transcription in M2-MACs through the NOX2-Nrf2-CEBPB axis and suggest that LRRC8A inhibitors suppress the IL-10-mediated evasion of tumor immune surveillance and IL-8-mediated metastasis and neovascularization in TAMs.
Collapse
Affiliation(s)
- Miki Matsui
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Elghareeb E. Elboray
- Department of Complex Molecular Chemistry, SANKEN, Osaka University, Osaka 560-0043, Japan; (E.E.E.); (T.S.)
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Takayoshi Suzuki
- Department of Complex Molecular Chemistry, SANKEN, Osaka University, Osaka 560-0043, Japan; (E.E.E.); (T.S.)
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| |
Collapse
|
2
|
Qiu R, Zhong Y, Li Q, Li Y, Fan H. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Front Cell Dev Biol 2021; 9:693215. [PMID: 34211978 PMCID: PMC8239469 DOI: 10.3389/fcell.2021.693215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023] Open
Abstract
During metabolic reprogramming, glioma cells and their initiating cells efficiently utilized carbohydrates, lipids and amino acids in the hypoxic lesions, which not only ensured sufficient energy for rapid growth and improved the migration to normal brain tissues, but also altered the role of immune cells in tumor microenvironment. Glioma cells secreted interferential metabolites or depriving nutrients to injure the tumor recognition, phagocytosis and lysis of glioma-associated microglia/macrophages (GAMs), cytotoxic T lymphocytes, natural killer cells and dendritic cells, promoted the expansion and infiltration of immunosuppressive regulatory T cells and myeloid-derived suppressor cells, and conferred immune silencing phenotypes on GAMs and dendritic cells. The overexpressed metabolic enzymes also increased the secretion of chemokines to attract neutrophils, regulatory T cells, GAMs, and dendritic cells, while weakening the recruitment of cytotoxic T lymphocytes and natural killer cells, which activated anti-inflammatory and tolerant mechanisms and hindered anti-tumor responses. Therefore, brain-targeted metabolic therapy may improve glioma immunity. This review will clarify the metabolic properties of glioma cells and their interactions with tumor microenvironment immunity, and discuss the application strategies of metabolic therapy in glioma immune silence and escape.
Collapse
Affiliation(s)
- Runze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qingquan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Koper-Lenkiewicz OM, Kamińska J, Reszeć J, Dymicka-Piekarska V, Ostrowska H, Karpińska M, Matowicka-Karna J, Tylicka M. Elevated plasma 20S proteasome chymotrypsin-like activity is correlated with IL-8 levels and associated with an increased risk of death in glial brain tumor patients. PLoS One 2020; 15:e0238406. [PMID: 32886667 PMCID: PMC7473512 DOI: 10.1371/journal.pone.0238406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/15/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION In cancer treatment an attempt has been made to pharmacologically regulate the proteasome functions, thus the aim was to test whether 20S proteasome chymotrypsin-like (ChT-L) activity has a role in glial brain tumors. Furthermore, we analyzed the correlation between proteasome activity and IL-8, CCL2, NF-κB1 and NF-κB2 concentrations, which impact on brain tumors has already been indicated. METHODS Plasma 20S proteasome ChT-L activity was assayed using the fluorogenic peptide substrate Suc-Leu-Leu-Val-Tyr-AMC in the presence of SDS. IL-8, CCL2, NF-κB1 and NF-κB2 concentration was analyzed with the use of ELISA method. Immunohistochemistry for IDH1-R132H was done on 5-microns-thick formalin-fixed, paraffin-embedded tumor sections with the use of antibody specific for the mutant IDH1-R132H protein. Labelled streptavidin biotin kit was used as a detection system. RESULTS Brain tumor patients had statistically higher 20S proteasome ChT-L activity (0.649 U/mg) compared to non-tumoral individuals (0.430 U/mg). IDH1 wild-type patients had statistically higher 20S proteasome ChT-L activity (1.025 U/mg) compared to IDH1 mutants (0.549 U/mg). 20S proteasome ChT-L activity in brain tumor patients who died as the consequence of a tumor (0.649) in the following 2 years was statistically higher compared to brain tumor patients who lived (0.430 U/mg). In brain tumor patients the 20S proteasome ChT-L activity positively correlated with IL-8 concentration. CONCLUSIONS Elevated 20S proteasome ChT-L activity was related to the increased risk of death in glial brain tumor patients. A positive correlation between 20S proteasome ChT-L activity and IL-8 concentration may indicate the molecular mechanisms regulating glial tumor biology. Thus research on proteasomes may be important and should be carried out to verify if this protein complexes may represent a potential therapeutic target to limit brain tumor invasion.
Collapse
Affiliation(s)
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | | | - Halina Ostrowska
- Department of Biology, Medical University of Białystok, Białystok, Poland
| | - Maria Karpińska
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
4
|
Effects of the Highly COX-2-Selective Analgesic NSAID Etoricoxib on Human Periodontal Ligament Fibroblasts during Compressive Orthodontic Mechanical Strain. Mediators Inflamm 2019; 2019:2514956. [PMID: 30983880 PMCID: PMC6431464 DOI: 10.1155/2019/2514956] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/21/2018] [Accepted: 01/13/2019] [Indexed: 12/18/2022] Open
Abstract
Human periodontal ligament (hPDL) fibroblasts play a major role during periodontitis and orthodontic tooth movement, mediating periodontal inflammation, osteoclastogenesis, and collagen synthesis. The highly COX-2-selective NSAID etoricoxib has a favorable systemic side effect profile and high analgesic efficacy, particularly for orthodontic pain. In this in vitro study, we investigated possible side effects of two clinically relevant etoricoxib concentrations on the expression pattern of mechanically strained hPDL fibroblasts and associated osteoclastogenesis in a model of simulated orthodontic compressive strain occurring during orthodontic tooth movement. hPDL fibroblasts were incubated for 72 h under physiological conditions with etoricoxib at 0 μM, 3.29 μM, and 5.49 μM, corresponding to clinically normal and subtoxic dosages, with and without mechanical strain by compression (2 g/cm2) for the final 48 h, simulating conditions during orthodontic tooth movement in compressive areas of the periodontal ligament. We then determined gene and/or protein expression of COX-2, IL-6, PG-E2, RANK-L, OPG, ALPL, VEGF-A, P4HA1, COL1A2, and FN1 via RT-qPCR, ELISA, and Western blot analyses as well as apoptosis, necrosis, cell viability, and cytotoxicity via FACS, MTT, and LDH assays. In addition, hPDL fibroblast-mediated osteoclastogenesis was assessed by TRAP staining in coculture with RAW267.4 cells for another 72 h. Gene and protein expression of all evaluated factors was significantly induced by the mechanical compressive strain applied. Etoricoxib at 3.29 μM and 5.49 μM significantly inhibited PG-E2 synthesis, but not COX-2 and IL-6 gene expression nor RANK-L-/OPG-mediated osteoclastogenesis or angiogenesis (VEGF-A). Extracellular matrix remodeling (COL1A2, FN1) and bone anabolism (ALPL), by contrast, were significantly stimulated particularly at 5.49 μM. In general, no adverse etoricoxib effects on hPDL fibroblasts regarding apoptosis, necrosis, cell viability, or cytotoxicity were detected. Clinically dosed etoricoxib, that is, a highly selective COX-2 inhibition, did not have substantial effects on hPDL fibroblast-mediated periodontal inflammation, extracellular matrix remodeling, RANK-L/OPG expression, and osteoclastogenesis during simulated orthodontic compressive strain.
Collapse
|
5
|
Kirschneck C, Meier M, Bauer K, Proff P, Fanghänel J. Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue. Cell Tissue Res 2017; 368:61-78. [PMID: 28044198 DOI: 10.1007/s00441-016-2553-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/29/2016] [Indexed: 01/16/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) are used to alleviate pain sensations during orthodontic therapy but are also assumed to interfere with associated pseudo-inflammatory reactions. In particular, the effects of partially selective COX-2 inhibition over the constitutively expressed COX-1 (11:1) on periodontal cells and tissue, as induced by the NSAID meloxicam, remain unclear. We investigate possible adverse side-effects and potentially useful beneficial effects during orthodontic therapy and examine underlying cellular and tissue reactions. We randomly assigned 63 male Fischer344 rats to three consecutive experiments of 21 animals each (cone-beam computed tomography; histology/serology; reverse-transcription quantitative real-time polymerase chain reaction) in three experimental groups (n = 7; control; orthodontic tooth movement [OTM] of the first/second upper left molars [NiTi coil spring, 0.25 N]; OTM with a daily oral meloxicam dose of 3 mg/kg). In vitro, we stimulated human periodontal ligament fibroblasts (hPDL) with orthodontic pressure (2 g/cm2) with/without meloxicam (10 μM). In vivo, meloxicam significantly reduced serum C-reactive protein concentration, tooth movement velocity, orthodontically induced dentine root resorption (OIRR), osteoclast activity and the relative expression of inflammatory/osteoclast marker genes within the dental-periodontal tissue, while presenting good gastric tolerance. In vitro, we observed a corresponding significant decrease of prostaglandin E2/interleukin-6/RANKL(-OPG) expression and of hPDL-mediated osteoclastogenesis. By inhibiting prostaglandin synthesis, meloxicam seems to downregulate hPDL-mediated inflammation, RANKL-induced osteoclastogenesis and, consequently, tooth movement velocity by about 50%, thus limiting its suitability for analgesia during orthodontic therapy. However, its protective effects regarding OIRR and good tolerance profile suggest future prophylactic application, which merits its further investigation.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Matthias Meier
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Kathrin Bauer
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Jochen Fanghänel
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.,Anatomical Institute, Ernst-Moritz-Arndt University, Greifswald, Germany
| |
Collapse
|
6
|
Venza M, Visalli M, Beninati C, Catalano T, Biondo C, Teti D, Venza I. Involvement of epimutations in meningioma. Brain Tumor Pathol 2015; 32:163-8. [PMID: 25930103 DOI: 10.1007/s10014-015-0221-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 01/20/2023]
Abstract
Epimutations are heritable and reversible cell markers, which can influence cell function going beyond the effects of DNA mutations. They result from multiple and coordinated mechanisms able to modulate gene expression. Regarding the significance of epigenetics in meningioma, few and somehow contradictory results are available, although promising information has been obtained. Here we highlight the most recent advances about the impact of DNA methylation, histone modifications, and microRNA regulation on meningioma development as well as the interplay between genetic and epigenetic alterations. Data indicate that epigenetics can help to identify novel candidate genes for the management and treatment of meningioma.
Collapse
Affiliation(s)
- Mario Venza
- Department of Experimental Specialized Medical and Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Epigenetic regulation of p14ARF and p16INK4A expression in cutaneous and uveal melanoma. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:247-56. [PMID: 25497382 DOI: 10.1016/j.bbagrm.2014.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022]
Abstract
Inactivation of p14ARF and p16INK4A by epigenetic changes in cutaneous and uveal melanoma has been here investigated. Compared with melanocytes, p14ARF mRNA reduction and p16INK4A inactivation were frequently noticed. No association between p14ARF promoter methylation and mRNA levels was found, whereas aberrant p16INK4A methylation was associated with gene silencing (p<0.001). Comparative analysis within melanomas of different Breslow's thicknesses showed that drastic reductions in p14ARF and p16INK4A expression appeared at the level of thin/intermediate and intermediate/thick transitions. The effects of 5-aza-2'-deoxycytidine (5-aza-dC) and suberanilohydroxamic acid (SAHA) on in vivo binding of DNA methyltransferases (DNMTs) and acetyl histone H3/H4 to p14ARF and p16INK4A promoters were tested together with the impact of ectopic expression of p14ARF and p16INK4A on cell proliferation, migration, and invasion. SAHA treatment induced H3 and H4 hyperacetylation at the p14ARF promoter followed by increased p14ARF expression, whereas exposure to 5-aza-dC decreased the recruitment of DNMT1 and DNMT3b at the p16INK4A promoter and reactivated p16INK4A. Studies on promoter-associated di-methyl histone H3 (Lys4) levels ruled out an involvement of this epigenetic trait on p14ARF and p16INK4A expression. The enforced expression of p14ARF or p16INK4A and, even more so, their co-expression, significantly reduced cell proliferation, migration and invasion. Our data pinpoint: i) a frequent impairment of p14ARF and p16INK4A gene expression by epigenetic modifications in melanoma; ii) histone hypoacetylation as the dominant mechanism of p14ARF silencing; and iii) 5' CpG promoter methylation as the major mechanism of p16INK4A gene inactivation. Collectively, our data suggest that selected epi-drugs may be useful in melanoma treatment.
Collapse
|
8
|
NOD2 triggers PGE2 synthesis leading to IL-8 activation in Staphylococcus aureus-infected human conjunctival epithelial cells. Biochem Biophys Res Commun 2013; 440:551-7. [PMID: 24099766 DOI: 10.1016/j.bbrc.2013.09.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/19/2013] [Indexed: 01/28/2023]
Abstract
We previously showed that Staphylococcus aureus and Pseudomonas aeruginosa stimulate IL-8 expression in human conjunctival epithelial cells through different signal transduction pathways. As in some cell types both the bacteria may induce the release of prostaglandin E2 (PGE2) and PGE2 may affect the expression of IL-8, we aimed at investigating whether in human conjunctival cells infected with S. aureus or P. aeruginosa the activation of IL-8 transcription was mediated by PGE2 and which were the underlying molecular mechanisms. We found that S. aureus, but not P. aeruginosa, triggered IL-8 activation by increasing COX-2 expression and PGE2 levels in a time-dependent manner. Overexpression of nucleotide-binding oligomerization domain-2 (NOD2) resulted to be essential in the enhancement of IL-8 induced by S. aureus. It dramatically activated c-jun NH2-terminal kinase (JNK) pathway which in turn led to COX2 upregulation and ultimately to IL-8 transcription. The full understanding of the S. aureus-induced biochemical processes in human conjunctival epithelium will bring new insight to the knowledge of the molecular mechanisms involved in conjunctiva bacterial infections and develop novel treatment aiming at phlogosis modulation.
Collapse
|
9
|
Venza I, Visalli M, Fortunato C, Ruggeri M, Ratone S, Caffo M, Caruso G, Alafaci C, Tomasello F, Teti D, Venza M. PGE2 induces interleukin-8 derepression in human astrocytoma through coordinated DNA demethylation and histone hyperacetylation. Epigenetics 2012; 7:1315-30. [PMID: 23051921 PMCID: PMC3499332 DOI: 10.4161/epi.22446] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have recently reported that in astrocytoma cells the expression of interleukin-8 (IL-8) is upregulated by prostaglandin E2 (PGE2). Unfortunately, the exact mechanism by which this happens has not been clarified yet. Here, we have investigated whether IL-8 activation by PGE2 involves changes in DNA methylation and/or histone modifications in 46 astrocytoma specimens, two astrocytoma cell lines and normal astrocytic cells. The DNA methylation status of the IL-8 promoter was analyzed by bisulphite sequencing and by methylation DNA immunoprecipitation analysis. The involvement of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), as well as histone acetylation levels, was assayed by chromatin immunoprecipitation. IL-8 expression at promoter, mRNA and protein level was explored by transfection, real-time PCR and enzyme immunoassay experiments in cells untreated or treated with PGE2, 5-aza-2'-deoxycytidine (5-aza-dC) and HDAC inhibitors, alone or in combination. EMSA was performed with crude cell extracts or recombinant protein. We observed that PGE2 induced IL-8 activation through: (1) demethylation of the single CpG site 5 located at position -83 within the binding region for CEBP-β in the IL-8 promoter; (2) C/EBP-β and p300 co-activator recruitment; (3) H3 acetylation enhancement and (4) reduction in DNMT1, DNMT3a, HDAC2 and HDAC3 association to CpG site 5 region. Treatment with 5-aza-dC or HDAC inhibitors of class I HDACs strengthened either basal or PGE2-mediated IL-8 expression. These findings have elucidated an orchestrated mechanism triggered by PGE2 whereby concurrent association of site-specific demethylation and histone H3 hyperacetylation resulted in derepression of IL-8 gene expression in human astrocytoma.
Collapse
Affiliation(s)
- Isabella Venza
- Department of Surgical Specialities, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kast RE, Lefranc F, Karpel-Massler G, Halatsch ME. Why dapsone stops seizures and may stop neutrophils' delivery of VEGF to glioblastoma. Br J Neurosurg 2012; 26:813-7. [PMID: 22551309 DOI: 10.3109/02688697.2012.674577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lopez-Gomez et al. recently published remarkable but mechanistically unexplained empirical evidence that the old antibiotic dapsone has antiepileptic activity. We addressed the question "Why should a sulfone antibiotic reduce seizures?". We report here our conclusions based on data from past studies that seizures are associated with elevated interleukin-8 (IL-8) and that dapsone inhibits IL-8 release and function in several different clinical and experimental contexts. Diverse CNS insults cause an increase in CNS IL-8. Thus, the pro-inflammatory environment generated by increase IL-8 leads to a lower seizure threshold. Together this evidence indicates dapsone exerts anti-seizure activity by diminishing IL-8 signalling. Since IL-8 is clearly upregulated in glioblastoma and contributes to the florid angiogenesis of that disease, and since interference with IL-8 function has been shown to inhibit glioblastoma invasion and growth in several experimental models, and dapsone has been repeatedly been shown to clinically inhibit IL-8 function when used to treat human neutrophilic dermatoses, we believe that dapsone thereby reduces seizures by countering IL-8 function and may similarly retard glioblastoma growth by such anti-IL-8 function.
Collapse
Affiliation(s)
- R E Kast
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA.
| | | | | | | |
Collapse
|