1
|
Single-cell sequencing reveals that endothelial cells, EndMT cells and mural cells contribute to the pathogenesis of cavernous malformations. Exp Mol Med 2023; 55:628-642. [PMID: 36914857 PMCID: PMC10073145 DOI: 10.1038/s12276-023-00962-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 01/01/2023] [Indexed: 03/14/2023] Open
Abstract
Cavernous malformations (CMs) invading the central nervous system occur in ~0.16-0.4% of the general population, often resulting in hemorrhages and focal neurological deficits. Further understanding of disease mechanisms and therapeutic strategies requires a deeper knowledge of CMs in humans. Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on unselected viable cells from twelve human CM samples and three control samples. A total of 112,670 high-quality cells were clustered into 11 major cell types, which shared a number of common features in CMs harboring different genetic mutations. A new EC subpopulation marked with PLVAP was uniquely identified in lesions. The cellular ligand‒receptor network revealed that the PLVAP-positive EC subcluster was the strongest contributor to the ANGPT and VEGF signaling pathways in all cell types. The PI3K/AKT/mTOR pathway was strongly activated in the PLVAP-positive subcluster even in non-PIK3CA mutation carriers. Moreover, endothelial-to-mesenchymal transition (EndMT) cells were identified for the first time in CMs at the single-cell level, which was accompanied by strong immune activation. The transcription factor SPI1 was predicted to be a novel key driver of EndMT, which was confirmed by in vitro and in vivo studies. A specific fibroblast-like phenotype was more prevalent in lesion smooth muscle cells, hinting at the role of vessel reconstructions and repairs in CMs, and we also confirmed that TWIST1 could induce SMC phenotypic switching in vitro and in vivo. Our results provide novel insights into the pathomechanism decryption and further precise therapy of CMs.
Collapse
|
2
|
Nobiletti N, Liu J, Glading AJ. KRIT1-mediated regulation of neutrophil adhesion and motility. FEBS J 2023; 290:1078-1095. [PMID: 36107440 PMCID: PMC9957810 DOI: 10.1111/febs.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
Loss of Krev interaction-trapped-1 (KRIT1) expression leads to the development of cerebral cavernous malformations (CCM), a disease in which abnormal blood vessel formation compromises the structure and function of the blood-brain barrier. The role of KRIT1 in regulating endothelial function is well-established. However, several studies have suggested that KRIT1 could also play a role in regulating nonendothelial cell types and, in particular, immune cells. In this study, we generated a mouse model with neutrophil-specific deletion of KRIT1 in order to investigate the effect of KRIT1 deficiency on neutrophil function. Neutrophils isolated from adult Ly6Gtm2621(cre)Arte Krit1flox/flox mice had a reduced ability to attach and spread on the extracellular matrix protein fibronectin and exhibited a subsequent increase in migration. However, adhesion to and migration on ICAM-1 was unchanged. In addition, we used a monomeric, fluorescently-labelled fragment of fibronectin to show that integrin activation is reduced in the absence of KRIT1 expression, though β1 integrin expression appears unchanged. Finally, neutrophil migration in response to lipopolysaccharide-induced inflammation in the lung was decreased, as shown by reduced cell number and myeloperoxidase activity in lavage samples from Krit1PMNKO mice. Altogether, we show that KRIT1 regulates neutrophil adhesion and migration, likely through regulation of integrin activation, which can lead to altered inflammatory responses in vivo.
Collapse
Affiliation(s)
- Nicholas Nobiletti
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Jing Liu
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Angela J. Glading
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| |
Collapse
|
3
|
Sati L, Soygur B, Goksu E, Bassorgun CI, McGrath J. CTCFL expression is associated with cerebral vascular abnormalities. Tissue Cell 2021; 72:101528. [PMID: 33756271 DOI: 10.1016/j.tice.2021.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/06/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
CTCFL is expressed in testis, oocytes and embryonic stem cells, and is aberrantly expressed in malignant cells, and is classified as a cancer-testis gene. We have previously shown by using a tetracycline-inducible Ctcfl transgene that inappropriate expression of Ctcfl negatively impacts fetal development and causes early postnatal lethality in the mouse. The affected pups displayed severe vascular abnormalities and localized hemorrhages in the brain evocative of cerebral cavernous malformations (CCM) and arteriovenous malformations (AVM) in humans. Thus, we aim to analyze; a) the presence of CCM-related proteins CCM1/KRIT1, CCM2/malcavernin and CCM3/PDCD10 in Ctcfl transgenic animals and, b) whether there is CTCFL expression in human CCM and AVM tissues. Ctcfl transgenic animals exhibited increased CD31 expression in vascular areas of the dermis and periadnexal regions but no difference was observed for vWF and α-SMA expressions. CCM-related proteins CCM1/KRIT1, CCM2/malcavernin and CCM3/PDCD10 were aberrantly expressed in coronal sections of the head in transgenic animals. We also observed CTCFL expression in human CCMs and AVMs. The induced expression of CTCFL resulting in vascular brain malformations in mice combined with the presence of CTCFL in human vascular malformations provide new insights into the role of this gene in vascular development in humans.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey; Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ethem Goksu
- Department of Neurosurgery, Akdeniz University School of Medicine, Antalya, Turkey
| | | | - James McGrath
- Departments of Genetics and Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM, Mustafa DA. Periostin Is Expressed by Pericytes and Is Crucial for Angiogenesis in Glioma. J Neuropathol Exp Neurol 2021; 79:863-872. [PMID: 32647861 DOI: 10.1093/jnen/nlaa067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
The expression of the matricellular protein periostin has been associated with glioma progression. In previous work we found an association of periostin with glioma angiogenesis. Here, we screen gliomas for POSTN expression and identify the cells that express periostin in human gliomas. In addition, we study the role of periostin in an in vitro model for angiogenesis. The expression of periostin was investigated by RT-PCR and by immunohistochemistry. In addition, we used double labeling and in situ RNA techniques to identify the expressing cells. To investigate the function of periostin, we silenced POSTN in a 3D in vitro angiogenesis model. Periostin expression was elevated in pilocytic astrocytoma and glioblastoma, but not in grade II/III astrocytomas and oligodendrogliomas. The expression of periostin colocalized with PDGFRβ+ cells, but not with OLIG2+/SOX2+ glioma stem cells. Silencing of periostin in pericytes in coculture experiments resulted in attenuation of the numbers and the length of the vessels formation and in a decrease in endothelial junction formation. We conclude that pericytes are the main source of periostin in human gliomas and that periostin plays an essential role in the growth and branching of blood vessels. Therefore, periostin should be explored as a novel target for developing anti-angiogenic therapy for glioma.
Collapse
Affiliation(s)
- Karin Huizer
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Changbin Zhu
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ihsan Chirifi
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Krist
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Denise Zorgman
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel van der Weiden
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasper Dumas
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline Cheng
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Transcriptome analysis provides new molecular signatures in sporadic Cerebral Cavernous Malformation endothelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165956. [PMID: 32877751 DOI: 10.1016/j.bbadis.2020.165956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023]
Abstract
Cerebral cavernous malformations (CCM) are lesions affecting brain capillaries that appear with a mulberry-like morphology. This shape results from the enlarged and tangled microvessels having defective endothelial cell junctions, few surrounding pericytes and dense extracellular collagen-rich matrix. Three genes KRIT1, CCM2 and PDCD10 are linked to disease onset. However, a variable percentage of patients harbour no mutations at these loci, encouraging hypothesis of further genetic factors involved in CCM pathogenesis. Here we present data obtained by transcriptome analysis on endothelial cells isolated by CCM specimens, with the aim to identify dysregulated pathways involved in lesion onset. Lesions belonged to two patients carried neither germline nor somatic mutations at the three CCM genes. By comparison with Human brain microvascular endothelial cells (HBMECs) expression profile, we identified 1325 differentially expressed genes (Bonferroni pValue <0.05) common for the two samples. Functional enrichment analysis clustered these genes in 80 terms related to neuroinflammation, extra-cellular matrix remodelling, cell junction impairment, reactive oxygen species metabolism. In addition, CCM genes expression values resulted slightly altered in only one of the two CCM endothelial cell samples when compared to HBMECs, suggesting as further genetic factors can contribute to CCM development. Following expression analysis, we suggests that the molecular shift from canonical to non-canonical Wnt pathway might be a key event in CCM pathogenesis. Moreover, our results provide novel potential genetic targets to investigate for the development of more selective therapies.
Collapse
|
6
|
Generation of CCM Phenotype by a Human Microvascular Endothelial Model. Methods Mol Biol 2020. [PMID: 32524549 DOI: 10.1007/978-1-0716-0640-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cerebral cavernous malformations (CCMs) is a disorder of endothelial cells predominantly localized in the brain. Although a complete inactivation of each CCM protein has been found in the affected endothelium of diseased patients and a necessary and additional role of microenvironment has been demonstrated to determine in vivo the occurrence of vascular lesions, a microvascular endothelial model based on knockdown of a CCM gene represents today a convenient method to study some of critical signaling events regulating pathogenesis of CCM. For these reasons, in our laboratory we developed a microvascular cerebral endothelial model of Krit1 deficiency performing silencing experiments of CCM1 gene (Krit1) with siRNA procedure.
Collapse
|
7
|
McKerracher L, Shenkar R, Abbinanti M, Cao Y, Peiper A, Liao JK, Lightle R, Moore T, Hobson N, Gallione C, Ruschel J, Koskimäki J, Girard R, Rosen K, Marchuk DA, Awad IA. A Brain-Targeted Orally Available ROCK2 Inhibitor Benefits Mild and Aggressive Cavernous Angioma Disease. Transl Stroke Res 2019; 11:365-376. [PMID: 31446620 DOI: 10.1007/s12975-019-00725-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/01/2022]
Abstract
Cavernous angioma (CA) is a vascular pathology caused by loss of function in one of the 3 CA genes (CCM1, CCM2, and CCM3) that result in rho kinase (ROCK) activation. We investigated a novel ROCK2 selective inhibitor for the ability to reduce brain lesion formation, growth, and maturation. We used genetic methods to explore the use of a ROCK2-selective kinase inhibitor to reduce growth and hemorrhage of CAs. The role of ROCK2 in CA was investigated by crossing Rock1 or Rock2 hemizygous mice with Ccm1 or Ccm3 hemizygous mice, and we found reduced lesions in the Rock2 hemizygous mice. A ROCK2-selective inhibitor, BA-1049 was used to investigate efficacy in reducing CA lesions after oral administration to Ccm1+/- and Ccm3+/- mice that were bred into a mutator background. After assessing the dose range effective to target brain endothelial cells in an ischemic brain model, Ccm1+/- and Ccm3+/- transgenic mice were treated for 3 (Ccm3+/-) or 4 months (Ccm1+/-), concurrently, randomized to receive one of three doses of BA-1049 in drinking water, or placebo. Lesion volumes were assessed by micro-computed tomography. BA-1049 reduced activation of ROCK2 in Ccm3+/-Trp53-/- lesions. Ccm1+/-Msh2-/- (n=68) and Ccm3+/-Trp53-/- (n=71) mice treated with BA-1049 or placebo showed a significant dose-dependent reduction in lesion volume after treatment with BA-1049, and a reduction in hemorrhage (iron deposition) near lesions at all doses. These translational studies show that BA-1049 is a promising therapeutic agent for the treatment of CA, a disease with no current treatment except surgical removal of the brain lesions.
Collapse
Affiliation(s)
- Lisa McKerracher
- BioAxone BioSciences Inc., Cambridge, MA, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | | | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Amy Peiper
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Carol Gallione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | | | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Shi Y, Song Y, Liu P, Li P. YKL-40 can promote angiogenesis in sporadic cerebral cavernous malformation (CCM). J Clin Neurosci 2019; 64:220-226. [PMID: 30948312 DOI: 10.1016/j.jocn.2019.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
The factors affecting the formation of sporadic CCMs remain unclear. A cDNA microarray was used to identify characteristic gene expression patterns in sporadic CCMs. Transcription level of YKL-40 was confirmed by reverse transcription-polymerase chain reaction (RT-PCR). The location and expression were revealed by immunochemistry, immunofluorescence staining and level of YKL-40 was quantified by Western blotting. Alterations to endothelial function following the up or down regulation of gene expression was assessed by Transwell assays, cell counting kit-8 assays and capillary-like tube formation assays in human brain microvascular endothelial cells (HBMECs) in vitro. We generated a murine model by stereotaxically injecting HBMECs with expressing amounts of YKL-40 into the brain. cDNA microarray and RT-PCR results revealed that the transcription level of YKL-40 was ≥140-fold higher in sporadic CCMs in healthy controls. Histological staining revealed excessive YKL-40 expression in the CCM endothelium. Western blotting results analysis showed that YKL-40 protein expression was significantly higher in CCM endothelium (P < 0.05). YKL-40 over-expressing HBMECs showed increased cell proliferation, migration and tube formation ability compared with the control group, whereas downregulating of YKL-40 inhibited the proliferation, migration of HBMECs and capillary-like tube formation (P < 0.05). In animals, increased of YKL-40 was associated with abnormal vascular lesions that were similar to CCMs. YKL-40 is over-expressed in the CCM endothelium and acts as an angiogenic factor that promotes the pathogenesis of sporadic CCMs. YKL-40 may therefore represent a potential therapeutic target in the treatment of sporadic CCM.
Collapse
Affiliation(s)
- Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai 200040, PR China.
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Rd. No.2, Shanghai 200025, PR China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai 200040, PR China.
| | - Peiliang Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai 200040, PR China.
| |
Collapse
|
9
|
Wang K, Zhou HJ, Wang M. CCM3 and cerebral cavernous malformation disease. Stroke Vasc Neurol 2019; 4:67-70. [PMID: 31338212 PMCID: PMC6613868 DOI: 10.1136/svn-2018-000195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 01/24/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions characterised by enlarged and irregular structure of small blood vessels in the brain, which can result in increased risk of stroke, focal neurological defects and seizures. Three different genes, CCM1/Krev/Rap1 Interacting Trapped 1, CCM2/MGC4607 and CCM3/PDCD10, are associated with the CCMs’ progression, and mutations in one of three CCM genes cause CCM disease. These three CCM proteins have similar function in maintaining the normal structure of small blood vessels. However, CCM3 mutation results in a more severe form of the disease which may suggest that CCM3 has unique biological function in the vasculature. The current review focuses on the signalling pathways mediated by CCM3 in regulating endothelial cell junction, proliferation, migration and permeability. These findings may offer potential therapeutic strategies for the treatment of CCMs.
Collapse
Affiliation(s)
- Kang Wang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Min Wang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Scimone C, Donato L, Marino S, Alafaci C, D’Angelo R, Sidoti A. Vis-à-vis: a focus on genetic features of cerebral cavernous malformations and brain arteriovenous malformations pathogenesis. Neurol Sci 2018; 40:243-251. [DOI: 10.1007/s10072-018-3674-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/01/2018] [Indexed: 01/07/2023]
|
11
|
Abstract
Cerebral cavernous malformations (CCM) are manifested by microvascular lesions characterized by leaky endothelial cells with minimal intervening parenchyma predominantly in the central nervous system predisposed to hemorrhagic stroke, resulting in focal neurological defects. Till date, three proteins are implicated in this condition: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). These multi-domain proteins form a protein complex via CCM2 that function as a docking site for the CCM signaling complex, which modulates many signaling pathways. Defects in the formation of this signaling complex have been shown to affect a wide range of cellular processes including cell-cell contact stability, vascular angiogenesis, oxidative damage protection and multiple biogenic events. In this review we provide an update on recent advances in structure and function of these CCM proteins, especially focusing on the signaling cascades involved in CCM pathogenesis and the resultant CCM cellular phenotypes in the past decade.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
12
|
Girard R, Zeineddine HA, Koskimäki J, Fam MD, Cao Y, Shi C, Moore T, Lightle R, Stadnik A, Chaudagar K, Polster S, Shenkar R, Duggan R, Leclerc D, Whitehead KJ, Li DY, Awad IA. Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res 2018; 122:1716-1721. [PMID: 29720384 DOI: 10.1161/circresaha.118.312680] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE The clinical course of cerebral cavernous malformations is highly unpredictable, with few cross-sectional studies correlating proinflammatory genotypes and plasma biomarkers with prior disease severity. OBJECTIVE We hypothesize that a panel of 24 candidate plasma biomarkers, with a reported role in the physiopathology of cerebral cavernous malformations, may predict subsequent clinically relevant disease activity. METHODS AND RESULTS Plasma biomarkers were assessed in nonfasting peripheral venous blood collected from consecutive cerebral cavernous malformation subjects followed for 1 year after initial sample collection. A first cohort (N=49) was used to define the best model of biomarker level combinations to predict a subsequent symptomatic lesional hemorrhagic expansion within a year after the blood sample. We generated the receiver operating characteristic curves and area under the curve for each biomarker individually and each weighted linear combination of relevant biomarkers. The best model to predict lesional activity was selected as that minimizing the Akaike information criterion. In this cohort, 11 subjects experienced symptomatic lesional hemorrhagic expansion (5 bleeds and 10 lesional growths) within a year after the blood draw. Subjects had lower soluble CD14 (cluster of differentiation 14; P=0.05), IL (interleukin)-6 (P=0.04), and VEGF (vascular endothelial growth factor; P=0.0003) levels along with higher plasma levels of IL-1β (P=0.008) and soluble ROBO4 (roundabout guidance receptor 4; P=0.03). Among the 31 weighted linear combinations of these 5 biomarkers, the best model (with the lowest Akaike information criterion value, 25.3) was the weighted linear combination including soluble CD14, IL-1β, VEGF, and soluble ROBO4, predicting a symptomatic hemorrhagic expansion with a sensitivity of 86% and specificity of 88% (area under the curve, 0.90; P<0.0001). We then validated our best model in the second sequential independent cohort (N=28). CONCLUSIONS This is the first study reporting a predictive association between plasma biomarkers and subsequent cerebral cavernous malformation disease clinical activity. This may be applied in clinical prognostication and stratification of cases in clinical trials.
Collapse
Affiliation(s)
- Romuald Girard
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Hussein A Zeineddine
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Janne Koskimäki
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Maged D Fam
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Ying Cao
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Changbin Shi
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Thomas Moore
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Rhonda Lightle
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Agnieszka Stadnik
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Kiranj Chaudagar
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Sean Polster
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Robert Shenkar
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Ryan Duggan
- Cytometry and Antibody Technology, Biological Sciences Division, Office of Shared Research Facilities, University of Chicago, IL (R.D., D.L.)
| | - David Leclerc
- Cytometry and Antibody Technology, Biological Sciences Division, Office of Shared Research Facilities, University of Chicago, IL (R.D., D.L.)
| | - Kevin J Whitehead
- Division of Cardiology, Department of Medicine (K.J.W., D.Y.L.), University of Utah School of Medicine, Salt Lake City
| | - Dean Y Li
- Division of Cardiology, Department of Medicine (K.J.W., D.Y.L.), University of Utah School of Medicine, Salt Lake City
| | - Issam A Awad
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| |
Collapse
|
13
|
Girard R, Zeineddine HA, Fam MD, Mayampurath A, Cao Y, Shi C, Shenkar R, Polster SP, Jesselson M, Duggan R, Mikati AG, Christoforidis G, Andrade J, Whitehead KJ, Li DY, Awad IA. Plasma Biomarkers of Inflammation Reflect Seizures and Hemorrhagic Activity of Cerebral Cavernous Malformations. Transl Stroke Res 2017; 9:34-43. [PMID: 28819935 DOI: 10.1007/s12975-017-0561-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
The clinical course of cerebral cavernous malformations (CCMs) is highly variable. Based on recent discoveries implicating angiogenic and inflammatory mechanisms, we hypothesized that serum biomarkers might reflect chronic or acute disease activity. This single-site prospective observational cohort study included 85 CCM patients, in whom 24 a priori chosen plasma biomarkers were quantified and analyzed in relation to established clinical and imaging parameters of disease categorization and severity. We subsequently validated the positive correlations in longitudinal follow-up of 49 subjects. Plasma levels of matrix metalloproteinase-2 and intercellular adhesion molecule 1 were significantly higher (P = 0.02 and P = 0.04, respectively, FDR corrected), and matrix metalloproteinase-9 was lower (P = 0.04, FDR corrected) in patients with seizure activity at any time in the past. Vascular endothelial growth factor and endoglin (both P = 0.04, FDR corrected) plasma levels were lower in patients who had suffered a symptomatic bleed in the prior 3 months. The hierarchical clustering analysis revealed a cluster of four plasma inflammatory cytokines (interleukin 2, interferon gamma, tumor necrosis factor alpha, and interleukin 1 beta) separating patients into what we designated "high" and "low" inflammatory states. The "high" inflammatory state was associated with seizure activity (P = 0.02) and more than one hemorrhagic event during a patient's lifetime (P = 0.04) and with a higher rate of new hemorrhage, lesion growth, or new lesion formation (P < 0.05) during prospective follow-up. Peripheral plasma biomarkers reflect seizure and recent hemorrhagic activity in CCM patients. In addition, four clustered inflammatory biomarkers correlate with cumulative disease aggressiveness and predict future clinical activity.
Collapse
Affiliation(s)
- Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Maged D Fam
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Anoop Mayampurath
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Changbin Shi
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Michael Jesselson
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Ryan Duggan
- Flow Cytometry Facility, The University of Chicago, Chicago, IL, USA
| | - Abdul-Ghani Mikati
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Gregory Christoforidis
- Section Neuroradiology, Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Kevin J Whitehead
- Division of Cardiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dean Y Li
- Division of Cardiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
14
|
Brinjikji W, Iyer VN, Yamaki V, Lanzino G, Cloft HJ, Thielen KR, Swanson KL, Wood CP. Neurovascular Manifestations of Hereditary Hemorrhagic Telangiectasia: A Consecutive Series of 376 Patients during 15 Years. AJNR Am J Neuroradiol 2016; 37:1479-86. [PMID: 27012295 DOI: 10.3174/ajnr.a4762] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/28/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Hereditary hemorrhagic telangiectasia is associated with a wide range of neurovascular abnormalities. The aim of this study was to characterize the spectrum of cerebrovascular lesions, including brain arteriovenous malformations, in patients with hereditary hemorrhagic telangiectasia and to study associations between brain arteriovenous malformations and demographic variables, genetic mutations, and the presence of AVMs in other organs. MATERIALS AND METHODS Consecutive patients with definite hereditary hemorrhagic telangiectasia who underwent brain MR imaging/MRA, CTA, or DSA at our institution from 2001 to 2015 were included. All studies were re-evaluated by 2 senior neuroradiologists for the presence, characteristics, location, and number of brain arteriovenous malformations, intracranial aneurysms, and nonshunting lesions. Brain arteriovenous malformations were categorized as high-flow pial fistulas, nidus-type brain AVMs, and capillary vascular malformations and were assigned a Spetzler-Martin score. We examined the association between baseline clinical and genetic mutational status and the presence/multiplicity of brain arteriovenous malformations. RESULTS Three hundred seventy-six patients with definite hereditary hemorrhagic telangiectasia were included. One hundred ten brain arteriovenous malformations were noted in 48 patients (12.8%), with multiple brain arteriovenous malformations in 26 patients. These included 51 nidal brain arteriovenous malformations (46.4%), 58 capillary vascular malformations (52.7%), and 1 pial arteriovenous fistula (0.9%). Five patients (10.4%) with single nidal brain arteriovenous malformation presented with hemorrhage. Of brain arteriovenous malformations, 88.9% (88/99) had a Spetzler-Martin score of ≤2. Patients with brain arteriovenous malformations were more likely to be female (75.0% versus 57.6%, P = .01) and have a family history of hereditary hemorrhagic telangiectasia (95.8% versus 84.8%, P = .04). The prevalence of brain arteriovenous malformation was 19.7% in endoglin (ENG) mutations and 12.5% in activin receptor-like kinase (1ACVRL1) mutations. CONCLUSIONS Our study of 376 patients with hereditary hemorrhagic telangiectasia demonstrated a high prevalence of brain arteriovenous malformations. Nidal brain arteriovenous malformations and capillary vascular malformations occurred in roughly equal numbers.
Collapse
Affiliation(s)
- W Brinjikji
- From the Departments of Radiology (W.B., H.J.C., K.R.T., C.P.W.)
| | - V N Iyer
- Pulmonary and Critical Care Medicine (V.N.I., V.Y.)
| | - V Yamaki
- Pulmonary and Critical Care Medicine (V.N.I., V.Y.)
| | - G Lanzino
- Neurosurgery (G.L.), Mayo Clinic, Rochester, Minnesota
| | - H J Cloft
- From the Departments of Radiology (W.B., H.J.C., K.R.T., C.P.W.)
| | - K R Thielen
- From the Departments of Radiology (W.B., H.J.C., K.R.T., C.P.W.)
| | - K L Swanson
- Department of Pulmonary and Critical Care Medicine (K.L.S.), Mayo Clinic, Scottsdale, Arizona
| | - C P Wood
- From the Departments of Radiology (W.B., H.J.C., K.R.T., C.P.W.)
| |
Collapse
|
15
|
PHACE syndrome is associated with intracranial cavernous malformations. Childs Nerv Syst 2016; 32:1463-9. [PMID: 27125518 DOI: 10.1007/s00381-016-3097-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/18/2016] [Indexed: 10/25/2022]
Abstract
INTRODUCTION PHACE syndrome is a neurocutaneous disorder involving large facial hemangiomas in association with posterior fossa abnormalities, cerebral arterial anomalies, cardiac defects, and eye abnormalities. A recent consensus statement has delineated criteria necessary for the diagnosis of PHACE syndrome. Extracutaneous manifestations of PHACE syndrome predominately affect the cerebrovascular system. To date, there are no reports of cerebral cavernous malformations (CCMs) in children with PHACE syndrome. METHODS We reviewed the charts of children admitted to the Children''s Hospital of Pittsburgh who met criteria for PHACE syndrome, and evaluated neuroimaging for cerebrovascular abnormalities, including the finding of CCMs. RESULTS Six children met criteria for PHACE syndrome at our institution over a 10-year period. All children were female. All children had cerebrovascular abnormalities sufficient to meet major criteria for diagnosis. Four children (66.7 %) were found incidentally to have CCMs; all lesions measured less than 5 mm at the time of diagnosis and were asymptomatic. CONCLUSION At present, CCMs are not listed among the diagnostic criteria for PHACE syndrome, and they have not previously been reported in association with PHACE syndrome. Hypoxic injury in utero may be the common denominator in the pathogenesis of many of the abnormalities already accepted in the criteria for PHACE syndrome and the formation of CCMs. In the setting of PHACE syndrome, we encourage clinicians to evaluate children for CCMs, which are readily apparent on the already-recommended screening MRIs.
Collapse
|
16
|
PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev 2014; 38:229-36; discussion 236-7. [DOI: 10.1007/s10143-014-0597-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/08/2014] [Accepted: 11/01/2014] [Indexed: 01/09/2023]
|
17
|
Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci 2014; 127:701-7. [PMID: 24481819 DOI: 10.1242/jcs.138388] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding.
Collapse
Affiliation(s)
- Kyle M Draheim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | |
Collapse
|
18
|
Rosenow F, Alonso-Vanegas MA, Baumgartner C, Blümcke I, Carreño M, Gizewski ER, Hamer HM, Knake S, Kahane P, Lüders HO, Mathern GW, Menzler K, Miller J, Otsuki T, Özkara C, Pitkänen A, Roper SN, Sakamoto AC, Sure U, Walker MC, Steinhoff BJ. Cavernoma-related epilepsy: Review and recommendations for management-Report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2013; 54:2025-35. [DOI: 10.1111/epi.12402] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Felix Rosenow
- Department of Neurology; Epilepsy Center Hessen; University Hospital and Philipps-University Marburg; Marburg Germany
| | - Mario A. Alonso-Vanegas
- ABC Neurological Center & National Institute of Neurology and Neurosurgery; México City Mexico
| | - Christoph Baumgartner
- Second Neurological Department; Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; General Hospital Hietzing with Neurological Center Rosenhügel; Vienna Austria
| | - Ingmar Blümcke
- Department of Neuropathology; University Hospitals Erlangen; Friedrich-Alexander University Erlangen-Nuremberg; Erlangen Germany
| | - Maria Carreño
- Neurology Service; Epilepsy Unit; Hospital Clinic of Barcelona; Barcelona Spain
| | - Elke R. Gizewski
- Department of Radiology; University Clinic for Neuroradiology; Medical University Innsbruck; Innsbruck Austria
| | - Hajo M. Hamer
- Department of Neurology; Epilepsy Center Erlangen; University Hospitals Erlangen; Friedrich-Alexander University Erlangen-Nuremberg; Erlangen Germany
| | - Susanne Knake
- Department of Neurology; Epilepsy Center Hessen; University Hospital and Philipps-University Marburg; Marburg Germany
| | - Philippe Kahane
- Department of Neurology and GIN INSERM U836-UJF-CEA; University Hospital of Grenoble; Grenoble France
| | - Hans O. Lüders
- Department of Neurosurgery; Epilepsy Center; University Hospitals Case Medical Center/Case Western Reserve University; Cleveland Ohio U.S.A
| | - Gary W. Mathern
- Departments of Neurosurgery and Psychiatry & BioBehavioral Medicine; David Geffen School of Medicine; Mattel Children's Hospital; University of California; Los Angeles California U.S.A
| | - Katja Menzler
- Department of Neurology; Epilepsy Center Hessen; University Hospital and Philipps-University Marburg; Marburg Germany
| | - Jonathan Miller
- Department of Neurosurgery; University Hospitals Case Medical Center/Case Western Reserve University; Cleveland Ohio U.S.A
| | - Taisuke Otsuki
- Epilepsy Center; National Center of Neurology and Psychiatry; Tokyo Japan
| | - Cigdem Özkara
- Cerrahpasa Medical Faculty; Istanbul University; Istanbul Turkey
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland (UEF); Kuopio Finland
- Department of Neurology; Kuopio University Hospital; Kuopio Finland
| | - Steven N. Roper
- Department of Neurosurgery; University of Florida; Gainesville Florida U.S.A
| | - Americo C. Sakamoto
- Department of Neurosciences and Behavioral Science; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo Brazil
| | - Ulrich Sure
- Department of Neurosurgery; University Hospital Essen; University of Duisburg-Essen; Essen Germany
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; London United Kingdom
| | | | | |
Collapse
|
19
|
You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U, Zhu Y. Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 2013; 17:407-18. [PMID: 23388056 PMCID: PMC3823022 DOI: 10.1111/jcmm.12022] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/28/2012] [Indexed: 12/17/2022] Open
Abstract
CCM3, a product of the cerebral cavernous malformation 3 or programmed cell death 10 gene (CCM3/PDCD10), is broadly expressed throughout development in both vertebrates and invertebrates. Increasing evidence indicates a crucial role of CCM3 in vascular development and in regulation of angiogenesis and apoptosis. Furthermore, loss of CCM3 causes inherited (familial) cerebral cavernous malformation (CCM), a common brain vascular anomaly involving aberrant angiogenesis. This study focused on signalling pathways underlying the angiogenic functions of CCM3. Silencing CCM3 by siRNA stimulated endothelial proliferation, migration and sprouting accompanied by significant downregulation of the core components of Notch signalling including DLL4, Notch4, HEY2 and HES1 and by activation of VEGF and Erk pathways. Treatment with recombinant DLL4 (rhDLL4) restored DLL4 expression and reversed CCM3-silence-mediated impairment of Notch signalling and reduced the ratio of VEGF-R2 to VEGF-R1 expression. Importantly, restoration of DLL4-Notch signalling entirely rescued the hyper-angiogenic phenotype induced by CCM3 silence. A concomitant loss of CCM3 and the core components of DLL4-Notch signalling were also demonstrated in CCM3-deficient endothelial cells derived from human CCM lesions (CCMEC) and in a CCM3 germline mutation carrier. This study defined DLL4 as a key downstream target of CCM3 in endothelial cells. CCM3/DLL4-Notch pathway serves as an important signalling for endothelial angiogenesis and is potentially implicated in the pathomechanism of human CCMs.
Collapse
Affiliation(s)
- Chao You
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Fidalgo M, Guerrero A, Fraile M, Iglesias C, Pombo CM, Zalvide J. Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress. J Biol Chem 2012; 287:11556-65. [PMID: 22291017 DOI: 10.1074/jbc.m111.320259] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations, we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from accidental cell death induced by oxidative stress. We also present evidence that ERM phosphorylation is performed by the GCKIII kinase Mst4, which is activated and relocated to the cell periphery after oxidative stress. The cellular levels of Mst4 and its activation after oxidative stress depend on the presence of CCM3, as absence of the latter impairs the phosphorylation of ERM proteins and enhances death of cells exposed to reactive oxygen species. These findings shed new light on the response of cells to oxidative stress and identify an important pathophysiological situation in which ERM proteins and their phosphorylation play a significant role.
Collapse
Affiliation(s)
- Miguel Fidalgo
- Department of Physiology and Centro Singular de Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|