1
|
Sangubotla R, Gubbiyappa KS, Devarapogu R, Kim J. Modern insights of nanotheranostics in the glioblastoma: An updated review. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167653. [PMID: 39756713 DOI: 10.1016/j.bbadis.2024.167653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant subtype of glioma, originating from the glial cells that provide support to other neurons in the brain. GBM predominantly impacts the cerebral hemisphere of the brain, with minimal effects on the cerebellum, brain stem, or spinal cord. Individuals diagnosed with GBM commonly encounter a range of symptoms, starting from auditory abnormalities to seizures. Recently, cell membrane-camouflaged nanoparticles (CMCNPs) are evolving as promising theranostic agents that can carry specific biological moieties from their biological origin and effectively target GBM cells. Moreover, exosomes have gained widespread scientific attention as an effective drug delivery approach due to their excellent stability in the bloodstream, high biocompatibility, low immune response, and inherent targeting capabilities. Exosomes derived from specific cell types can transport endogenous signaling molecules that have therapeutic promise for GBM therapy. In this context, researchers are utilizing various techniques to isolate exosomes from liquid biomarkers from patients, such as serum and cerebrospinal fluid (CSF). Proper isolation of exosomes may induce the clinical diagnosis in GBM due to their commercial accessibility and real-time monitoring options. Since exosomes are unable to penetrate the blood-brain barrier (BBB), strategic theranostic methods are ideal. For this, understanding interactions between glioma-specific exosomes in the TME and biomarkers is necessary. The versatile characteristics of NPs and their capacity to cross the BBB enable them to be indispensable against GBM. In this review article, we discussed the recent theranostic applications of nanotechnology by comparing the limitations of existing nanotechnology-based approaches.
Collapse
Affiliation(s)
- Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Kumar Shiva Gubbiyappa
- GITAM School of Pharmacy, GITAM Deemed to be University, Rudraram, Patencheru, Sangareddy Dist, 502329, Telangana, India
| | - Rajakumari Devarapogu
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
2
|
Giantini-Larsen AM, Pandey A, Garton ALA, Rampichini M, Winston G, Goldberg JL, Magge R, Stieg PE, Souweidane MM, Ramakrishna R. Therapeutic manipulation and bypass of the blood-brain barrier: powerful tools in glioma treatment. Neurooncol Adv 2025; 7:vdae201. [PMID: 39877748 PMCID: PMC11773386 DOI: 10.1093/noajnl/vdae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The blood-brain barrier (BBB) remains an obstacle for delivery of chemotherapeutic agents to gliomas. High grade and recurrent gliomas continue to portend a poor prognosis. Multiple methods of bypassing or manipulating the BBB have been explored, including hyperosmolar therapy, convection-enhanced delivery (CED), laser-guided interstitial thermal therapy (LITT), and Magnetic Resonance Guided Focused Ultrasound (MRgFUS) to enhance delivery of chemotherapeutic agents to glial neoplasms. Here, we review these techniques, currently ongoing clinical trials to disrupt or bypass the BBB in gliomas, and the results of completed trials.
Collapse
Affiliation(s)
- Alexandra M Giantini-Larsen
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Abhinav Pandey
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Andrew L A Garton
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Margherita Rampichini
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Graham Winston
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Philip E Stieg
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Rohan Ramakrishna
- Corresponding Author: Rohan Ramakrishna, MD, Chief, Neurological Surgery, New York Presbyterian Brooklyn Methodist Hospital, Weill Cornell Medical Center, 525 East 68 Street, New York, NY 10065, USA ()
| |
Collapse
|
3
|
Marcigaglia S, De Plus R, Vandendriessche C, Schiltz E, Cuypers ML, Cools J, Hoffman LD, Vandenbroucke RE, Dewilde M, Haesler S. Microfluidic Interfaces for Chronic Bidirectional Access to the Brain. Adv Healthc Mater 2024; 13:e2400438. [PMID: 38885495 DOI: 10.1002/adhm.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases.
Collapse
Affiliation(s)
- Simone Marcigaglia
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Robin De Plus
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Eleonore Schiltz
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Marie-Lynn Cuypers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Jordi Cools
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Current affiliation, Thermofisher Scientific (AIG/MSD), Dilbeek, 1702, Belgium
| | - Luis D Hoffman
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Current affiliation, SWave Photonics, Leuven, 3001, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
- PharmAbs-The KU Leuven Antibody Center, KU Leuven, Leuven, 3000, Belgium
| | - Sebastian Haesler
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
4
|
Rolfe NW, Dadario NB, Canoll P, Bruce JN. A Review of Therapeutic Agents Given by Convection-Enhanced Delivery for Adult Glioblastoma. Pharmaceuticals (Basel) 2024; 17:973. [PMID: 39204078 PMCID: PMC11357193 DOI: 10.3390/ph17080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Glioblastoma remains a devastating disease with a bleak prognosis despite continued research and numerous clinical trials. Convection-enhanced delivery offers researchers and clinicians a platform to bypass the blood-brain barrier and administer drugs directly to the brain parenchyma. While not without significant technological challenges, convection-enhanced delivery theoretically allows for a wide range of therapeutic agents to be delivered to the tumoral space while preventing systemic toxicities. This article provides a comprehensive review of the antitumor agents studied in clinical trials of convection-enhanced delivery to treat adult high-grade gliomas. Agents are grouped by classes, and preclinical evidence for these agents is summarized, as is a brief description of their mechanism of action. The strengths and weaknesses of each clinical trial are also outlined. By doing so, the difficulty of untangling the efficacy of a drug from the technological challenges of convection-enhanced delivery is highlighted. Finally, this article provides a focused review of some therapeutics that might stand to benefit from future clinical trials for glioblastoma using convection-enhanced delivery.
Collapse
Affiliation(s)
- Nathaniel W. Rolfe
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Nicholas B. Dadario
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| |
Collapse
|
5
|
Cruz-Garza JG, Bhenderu LS, Taghlabi KM, Frazee KP, Guerrero JR, Hogan MK, Humes F, Rostomily RC, Horner PJ, Faraji AH. Electrokinetic convection-enhanced delivery for infusion into the brain from a hydrogel reservoir. Commun Biol 2024; 7:869. [PMID: 39020197 PMCID: PMC11255224 DOI: 10.1038/s42003-024-06404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/31/2024] [Indexed: 07/19/2024] Open
Abstract
Electrokinetic convection-enhanced delivery (ECED) utilizes an external electric field to drive the delivery of molecules and bioactive substances to local regions of the brain through electroosmosis and electrophoresis, without the need for an applied pressure. We characterize the implementation of ECED to direct a neutrally charged fluorophore (3 kDa) from a doped biocompatible acrylic acid/acrylamide hydrogel placed on the cortical surface. We compare fluorophore infusion profiles using ECED (time = 30 min, current = 50 µA) and diffusion-only control trials, for ex vivo (N = 18) and in vivo (N = 12) experiments. The linear intensity profile of infusion to the brain is significantly higher in ECED compared to control trials, both for in vivo and ex vivo. The linear distance of infusion, area of infusion, and the displacement of peak fluorescence intensity along the direction of infusion in ECED trials compared to control trials are significantly larger for in vivo trials, but not for ex vivo trials. These results demonstrate the effectiveness of ECED to direct a solute from a surface hydrogel towards inside the brain parenchyma based predominantly on the electroosmotic vector.
Collapse
Affiliation(s)
- Jesus G Cruz-Garza
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
| | - Lokeshwar S Bhenderu
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
- Texas A&M University College of Medicine, Houston, TX, USA.
| | - Khaled M Taghlabi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
| | - Kendall P Frazee
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- School of Engineering, Texas A&M, College Station, TX, USA
| | - Jaime R Guerrero
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Matthew K Hogan
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Frances Humes
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Philip J Horner
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
6
|
Mao M, Wu Y, He Q. Recent advances in targeted drug delivery for the treatment of glioblastoma. NANOSCALE 2024; 16:8689-8707. [PMID: 38606460 DOI: 10.1039/d4nr01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the highly malignant brain tumors characterized by significant morbidity and mortality. Despite the recent advancements in the treatment of GBM, major challenges persist in achieving controlled drug delivery to tumors. The management of GBM poses considerable difficulties primarily due to unresolved issues in the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB) and GBM microenvironment. These factors limit the uptake of anti-cancer drugs by the tumor, thus limiting the therapeutic options. Current breakthroughs in nanotechnology provide new prospects concerning unconventional drug delivery approaches for GBM treatment. Specifically, swimming nanorobots show great potential in active targeted delivery, owing to their autonomous propulsion and improved navigation capacities across biological barriers, which further facilitate the development of GBM-targeted strategies. This review presents an overview of technological progress in different drug administration methods for GBM. Additionally, the limitations in clinical translation and future research prospects in this field are also discussed. This review aims to provide a comprehensive guideline for researchers and offer perspectives on further development of new drug delivery therapies to combat GBM.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
7
|
Valerius AR, Webb LM, Sener U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 2024; 26:439-465. [PMID: 38546941 DOI: 10.1007/s11912-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments. RECENT FINDINGS Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies. Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.
Collapse
Affiliation(s)
| | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Narsinh KH, Perez E, Haddad AF, Young JS, Savastano L, Villanueva-Meyer JE, Winkler E, de Groot J. Strategies to Improve Drug Delivery Across the Blood-Brain Barrier for Glioblastoma. Curr Neurol Neurosci Rep 2024; 24:123-139. [PMID: 38578405 PMCID: PMC11016125 DOI: 10.1007/s11910-024-01338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma remains resistant to most conventional treatments. Despite scientific advances in the past three decades, there has been a dearth of effective new treatments. New approaches to drug delivery and clinical trial design are needed. RECENT FINDINGS We discuss how the blood-brain barrier and tumor microenvironment pose challenges for development of effective therapies for glioblastoma. Next, we discuss treatments in development that aim to overcome these barriers, including novel drug designs such as nanoparticles and antibody-drug conjugates, novel methods of drug delivery, including convection-enhanced and intra-arterial delivery, and novel methods to enhance drug penetration, such as blood-brain barrier disruption by focused ultrasound and laser interstitial thermal therapy. Lastly, we address future opportunities, positing combination therapy as the best strategy for effective treatment, neoadjuvant and window-of-opportunity approaches to simultaneously enhance therapeutic effectiveness with interrogation of on-treatment biologic endpoints, and adaptive platform and basket trials as imperative for future trial design. New approaches to GBM treatment should account for the blood-brain barrier and immunosuppression by improving drug delivery, combining treatments, and integrating novel clinical trial designs.
Collapse
Affiliation(s)
- Kazim H Narsinh
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA.
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Edgar Perez
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Alexander F Haddad
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Jacob S Young
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Luis Savastano
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ethan Winkler
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John de Groot
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Shaha S, Rodrigues D, Mitragotri S. Locoregional drug delivery for cancer therapy: Preclinical progress and clinical translation. J Control Release 2024; 367:737-767. [PMID: 38325716 DOI: 10.1016/j.jconrel.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies. With the improvement in real-time imaging technologies and tools for direct access to tumor lesions, the clinical applicability of locoregional drug delivery is becoming more prominent. Theoretically, locoregional treatments can bypass challenges faced by systemic drug delivery. Preclinically, locoregional delivery of drugs has demonstrated enhanced therapeutic efficacy with limited off-target effects while still yielding an abscopal effect. Clinically, an array of locoregional strategies is under investigation for the delivery of drugs ranging in target and size. Locoregional tumor treatment strategies can be classified into two main categories: 1) direct drug infusion via injection or implanted port and 2) extended drug elution via injected or implanted depot. The number of studies investigating locoregional drug delivery strategies for cancer treatment is rising exponentially, in both preclinical and clinical settings, with some approaches approved for clinical use. Here, we highlight key preclinical advances and the clinical relevance of such locoregional delivery strategies in the treatment of cancer. Furthermore, we critically analyze 949 clinical trials involving locoregional drug delivery and discuss emerging trends.
Collapse
Affiliation(s)
- Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Pinkiewicz M, Pinkiewicz M, Walecki J, Zaczyński A, Zawadzki M. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood-Brain Barrier Disruption. Cancers (Basel) 2024; 16:236. [PMID: 38201663 PMCID: PMC10778052 DOI: 10.3390/cancers16010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The blood-brain barrier (BBB) poses a significant challenge to drug delivery for brain tumors, with most chemotherapeutics having limited permeability into non-malignant brain tissue and only restricted access to primary and metastatic brain cancers. Consequently, due to the drug's inability to effectively penetrate the BBB, outcomes following brain chemotherapy continue to be suboptimal. Several methods to open the BBB and obtain higher drug concentrations in tumors have been proposed, with the selection of the optimal method depending on the size of the targeted tumor volume, the chosen therapeutic agent, and individual patient characteristics. Herein, we aim to comprehensively describe osmotic disruption with intra-arterial drug administration, intrathecal/intraventricular administration, laser interstitial thermal therapy, convection-enhanced delivery, and ultrasound methods, including high-intensity focused and low-intensity ultrasound as well as tumor-treating fields. We explain the scientific concept behind each method, preclinical/clinical research, advantages and disadvantages, indications, and potential avenues for improvement. Given that each method has its limitations, it is unlikely that the future of BBB disruption will rely on a single method but rather on a synergistic effect of a combined approach. Disruption of the BBB with osmotic infusion or high-intensity focused ultrasound, followed by the intra-arterial delivery of drugs, is a promising approach. Real-time monitoring of drug delivery will be necessary for optimal results.
Collapse
Affiliation(s)
- Miłosz Pinkiewicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Mateusz Pinkiewicz
- Department of Diagnostic Imaging, Mazowiecki Regional Hospital in Siedlce, 08-110 Siedlce, Poland
| | - Jerzy Walecki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Artur Zaczyński
- Department of Neurosurgery, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Michał Zawadzki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Radiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
11
|
Kreatsoulas D, Damante M, Cua S, Lonser RR. Adjuvant convection-enhanced delivery for the treatment of brain tumors. J Neurooncol 2024; 166:243-255. [PMID: 38261143 PMCID: PMC10834622 DOI: 10.1007/s11060-023-04552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Malignant gliomas are a therapeutic challenge and remain nearly uniformly fatal. While new targeted chemotherapeutic agentsagainst malignant glioma have been developed in vitro, these putative therapeutics have not been translated into successful clinical treatments. The lack of clinical effectiveness can be the result of ineffective biologic strategies, heterogeneous tumor targets and/or the result of poortherapeutic distribution to malignant glioma cells using conventional nervous system delivery modalities (intravascular, cerebrospinal fluid and/orpolymer implantation), and/or ineffective biologic strategies. METHODS The authors performed a review of the literature for the terms "convection enhanced delivery", "glioblastoma", and "glioma". Selectclinical trials were summarized based on their various biological mechanisms and technological innovation, focusing on more recently publisheddata when possible. RESULTS We describe the properties, features and landmark clinical trials associated with convection-enhanced delivery for malignant gliomas.We also discuss future trends that will be vital to CED innovation and improvement. CONCLUSION Efficacy of CED for malignant glioma to date has been mixed, but improvements in technology and therapeutic agents arepromising.
Collapse
Affiliation(s)
- Daniel Kreatsoulas
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA.
| | - Mark Damante
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| | - Santino Cua
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| | - Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
12
|
Pickering AJ, Lamson NG, Marand MH, Hwang W, Straehla JP, Hammond PT. Layer-by-Layer Polymer Functionalization Improves Nanoparticle Penetration and Glioblastoma Targeting in the Brain. ACS NANO 2023; 17:24154-24169. [PMID: 37992211 PMCID: PMC10964212 DOI: 10.1021/acsnano.3c09273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Glioblastoma is characterized by diffuse infiltration into surrounding healthy brain tissues, which makes it challenging to treat. Complete surgical resection is often impossible, and systemically delivered drugs cannot achieve adequate tumor exposure to prevent local recurrence. Convection-enhanced delivery (CED) offers a method for administering therapeutics directly into brain tumor tissue, but its impact has been limited by rapid clearance and off-target cellular uptake. Nanoparticle (NP) encapsulation presents a promising strategy for extending the retention time of locally delivered therapies while specifically targeting glioblastoma cells. However, the brain's extracellular structure poses challenges for NP distribution due to its narrow, tortuous pores and a harsh ionic environment. In this study, we investigated the impact of NP surface chemistry using layer-by-layer (LbL) assembly to design drug carriers for broad spatial distribution in brain tissue and specific glioblastoma cell targeting. We found that poly-l-glutamate and hyaluronate were effective surface chemistries for targeting glioblastoma cells in vitro. Coadsorbing either polymer with a small fraction of PEGylated polyelectrolytes improved the colloidal stability without sacrificing cancer cell selectivity. Following CED in vivo, gadolinium-functionalized LbL NPs enabled MRI visualization and exhibited a distribution volume up to three times larger than liposomes and doubled the retention half-time up to 13.5 days. Flow cytometric analysis of CED-treated murine orthotopic brain tumors indicated greater cancer cell uptake and reduced healthy cell uptake for LbL NPs compared to nonfunctionalized liposomes. The distinct cellular outcomes for different colayered LbL NPs provide opportunities to tailor this modular delivery system for various therapeutic applications.
Collapse
Affiliation(s)
- Andrew J. Pickering
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nicholas G. Lamson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael H. Marand
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Wei Hwang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Joelle P. Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Pinheiro Lopes B, O’Neill L, Bourke P, Boehm D. Combined Effect of Plasma-Activated Water and Topotecan in Glioblastoma Cells. Cancers (Basel) 2023; 15:4858. [PMID: 37835552 PMCID: PMC10571909 DOI: 10.3390/cancers15194858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The increase in cancer diagnoses and cancer deaths, severe side effects of existing treatments and resistance to traditional treatments have generated a need for new anticancer treatments. Glioblastoma multiforme (GBM) is the most common, malignant and aggressive brain cancer. Despite many innovations regarding GBM treatment, the final outcome is still very poor, making it necessary to develop new therapeutic approaches. Cold atmospheric plasma (CAP) as well as plasma-activated liquids (PAL) are being studied as new possible approaches against cancer. The anticancer activity of PAL such as "plasma-activated water" (PAW) is dependent on the reactive chemical compounds present in the solution. Possible combinatory effects with conventional therapies, such as chemotherapeutics, may expand the potential of PAL for cancer treatment. We aim to explore the therapeutic properties of a combination of PAW and topotecan (TPT), an antineoplastic agent with major cytotoxic effects during the S phase of the cell cycle, on a GBM cancer cell line (U-251mg). Combined treatments with PAW and TPT showed a reduction in the metabolic activity and cell mass, an increase in apoptotic cell death and a reduction in the long-term survival. Single applications of PAW+TPT treatments showed a cytotoxic effect in the short term and an antiproliferative effect in the long term, warranting future exploration of combining PAW with chemotherapeutic agents as new therapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Pinheiro Lopes
- School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
- Environmental Sustainability and Health Institute and School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| | - Liam O’Neill
- TheraDep Ltd., QUESTUM Innovation Centre, Limerick Institute of Technology, E91 V329 Clonmel, Ireland;
| | - Paula Bourke
- Environmental Sustainability and Health Institute and School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Daniela Boehm
- School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
- Environmental Sustainability and Health Institute and School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
14
|
Wang Y, Malik S, Suh HW, Xiao Y, Deng Y, Fan R, Huttner A, Bindra RS, Singh V, Saltzman WM, Bahal R. Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy. SCIENCE ADVANCES 2023; 9:eabq7459. [PMID: 36753549 PMCID: PMC9908025 DOI: 10.1126/sciadv.abq7459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Glioblastoma (GBM) is one of the most lethal malignancies with poor survival and high recurrence rates. Here, we aimed to simultaneously target oncomiRs 10b and 21, reported to drive GBM progression and invasiveness. We designed short (8-mer) γ-modified peptide nucleic acids (sγPNAs), targeting the seed region of oncomiRs 10b and 21. We entrapped these anti-miR sγPNAs in nanoparticles (NPs) formed from a block copolymer of poly(lactic acid) and hyperbranched polyglycerol (PLA-HPG). The surface of the NPs was functionalized with aldehydes to produce bioadhesive NPs (BNPs) with superior transfection efficiency and tropism for tumor cells. When combined with temozolomide, sγPNA BNPs administered via convection-enhanced delivery (CED) markedly increased the survival (>120 days) of two orthotopic (intracranial) mouse models of GBM. Hence, we established that BNPs loaded with anti-seed sγPNAs targeting multiple oncomiRs are a promising approach to improve the treatment of GBM, with a potential to personalize treatment based on tumor-specific oncomiRs.
Collapse
Affiliation(s)
- Yazhe Wang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Yong Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Vijender Singh
- Computational Biology Core, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
15
|
Sperring CP, Argenziano MG, Savage WM, Teasley DE, Upadhyayula PS, Winans NJ, Canoll P, Bruce JN. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma. Neurooncol Adv 2023; 5:vdad044. [PMID: 37215957 PMCID: PMC10195574 DOI: 10.1093/noajnl/vdad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Damian E Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nathan J Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
16
|
Abulikemu N, Gao X, Wang W, He Q, Wang G, Jiang T, Wang X, Cheng Y, Chen M, Li Y, Liu L, Zhao J, Li J, Jiang C, Wang Y, Han H, Wang J. Mechanism of extracellular space changes in cryptococcal brain granuloma revealed by MRI tracer. Front Neurosci 2022; 16:1034091. [PMID: 36605557 PMCID: PMC9808069 DOI: 10.3389/fnins.2022.1034091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the changes in extracellular space (ECS) in cryptococcal brain granuloma and its pathological mechanism. Materials and methods The animal model of cryptococcal brain granuloma was established by injecting 1 × 106 CFU/ml of Cryptococcus neoformans type A suspension into the caudate nucleus of Sprague-Dawley rats with stereotactic technology. The infection in the brain was observed by conventional MRI scanning on days 14, 21, and 28 of modeling. The tracer-based MRI with a gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a magnetic tracer was performed on the rats with cryptococcal granuloma and the rats in the control group. The parameters of ECS in each area of cryptococcal brain granuloma were measured. The parameters of ECS in the two groups were compared by independent sample t-test, and the changes in ECS and its mechanism were analyzed. Results Up to 28 days of modeling, the success rate of establishing the brain cryptococcal granuloma model with 1 × 106 CFU/ml Cryptococcus neoformans suspension was 60%. In the internal area of cryptococcal granuloma, the effective diffusion coefficient D* was significantly higher than that of the control group (t = 2.76, P < 0.05), and the same trend showed in the volume ratio α (t = 3.71, P < 0.05), the clearance rate constant k (t = 3.137, P < 0.05), and the tracer half-life T1/2 (t = 3.837, P < 0.05). The tortuosity λ decreased compared with the control group (t = -2.70, P < 0.05). At the edge of the cryptococcal granuloma, the D* and α decreased, while the λ increased compared with the control group (D*:t = -6.05, P < 0.05; α: t = -4.988, P < 0.05; λ: t = 6.222, P < 0.05). Conclusion The internal area of the lesion demonstrated a quicker, broader, and more extended distribution of the tracer, while the edge of the lesion exhibited a slower and narrower distribution. MRI tracer method can monitor morphological and functional changes of ECS in pathological conditions and provide a theoretical basis for the treatment via ECS.
Collapse
Affiliation(s)
- Nuerbiyemu Abulikemu
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai, China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qingyuan He
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Gang Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Imaging Center, Xi’an Gem Flower Changqing Hospital, Xi’an, China
| | - Tao Jiang
- The Animal Experimental Center, Xinjiang Medical University, Ürümqi, China
| | - Xiaodong Wang
- Department of Dermatology, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yumeng Cheng
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yanran Li
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Lulu Liu
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jingjing Zhao
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jin Li
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Chunhui Jiang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yunling Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Hongbin Han
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China,Department of Radiology, Peking University Third Hospital, Beijing, China,Hongbin Han,
| | - Jian Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai, China,*Correspondence: Jian Wang,
| |
Collapse
|
17
|
Josowitz AD, Bindra RS, Saltzman WM. Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. NANOTECHNOLOGY 2022; 34:10.1088/1361-6528/ac9683. [PMID: 36179653 PMCID: PMC9940943 DOI: 10.1088/1361-6528/ac9683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Glioblastoma (GBM), the deadliest brain cancer, presents a multitude of challenges to the development of new therapies. The standard of care has only changed marginally in the past 17 years, and few new chemotherapies have emerged to supplant or effectively combine with temozolomide. Concurrently, new technologies and techniques are being investigated to overcome the pharmacokinetic challenges associated with brain delivery, such as the blood brain barrier (BBB), tissue penetration, diffusion, and clearance in order to allow for potent agents to successful engage in tumor killing. Alternative delivery modalities such as focused ultrasound and convection enhanced delivery allow for the local disruption of the BBB, and the latter in particular has shown promise in achieving broad distribution of agents in the brain. Furthermore, the development of polymeric nanocarriers to encapsulate a variety of cargo, including small molecules, proteins, and nucleic acids, have allowed for formulations that protect and control the release of said cargo to extend its half-life. The combination of local delivery and nanocarriers presents an exciting opportunity to address the limitations of current chemotherapies for GBM toward the goal of improving safety and efficacy of treatment. However, much work remains to establish standard criteria for selection and implementation of these modalities before they can be widely implemented in the clinic. Ultimately, engineering principles and nanotechnology have opened the door to a new wave of research that may soon advance the stagnant state of GBM treatment development.
Collapse
Affiliation(s)
- Alexander D Josowitz
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, United States of America
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, United States of America
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, United States of America
- Department of Dermatology, Yale University, New Haven, CT, United States of America
| |
Collapse
|
18
|
Chronic convection-enhanced intratumoural delivery of chemotherapy for glioblastoma. Lancet Oncol 2022; 23:1347-1348. [DOI: 10.1016/s1470-2045(22)00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|
19
|
Spinazzi EF, Argenziano MG, Upadhyayula PS, Banu MA, Neira JA, Higgins DMO, Wu PB, Pereira B, Mahajan A, Humala N, Al-Dalahmah O, Zhao W, Save AV, Gill BJA, Boyett DM, Marie T, Furnari JL, Sudhakar TD, Stopka SA, Regan MS, Catania V, Good L, Zacharoulis S, Behl M, Petridis P, Jambawalikar S, Mintz A, Lignelli A, Agar NYR, Sims PA, Welch MR, Lassman AB, Iwamoto FM, D'Amico RS, Grinband J, Canoll P, Bruce JN. Chronic convection-enhanced delivery of topotecan for patients with recurrent glioblastoma: a first-in-patient, single-centre, single-arm, phase 1b trial. Lancet Oncol 2022; 23:1409-1418. [PMID: 36243020 PMCID: PMC9641975 DOI: 10.1016/s1470-2045(22)00599-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Topotecan is cytotoxic to glioma cells but is clinically ineffective because of drug delivery limitations. Systemic delivery is limited by toxicity and insufficient brain penetrance, and, to date, convection-enhanced delivery (CED) has been restricted to a single treatment of restricted duration. To address this problem, we engineered a subcutaneously implanted catheter-pump system capable of repeated, chronic (prolonged, pulsatile) CED of topotecan into the brain and tested its safety and biological effects in patients with recurrent glioblastoma. METHODS We did a single-centre, open-label, single-arm, phase 1b clinical trial at Columbia University Irving Medical Center (New York, NY, USA). Eligible patients were at least 18 years of age with solitary, histologically confirmed recurrent glioblastoma showing radiographic progression after surgery, radiotherapy, and chemotherapy, and a Karnofsky Performance Status of at least 70. Five patients had catheters stereotactically implanted into the glioma-infiltrated peritumoural brain and connected to subcutaneously implanted pumps that infused 146 μM topotecan 200 μL/h for 48 h, followed by a 5-7-day washout period before the next infusion, with four total infusions. After the fourth infusion, the pump was removed and the tumour was resected. The primary endpoint of the study was safety of the treatment regimen as defined by presence of serious adverse events. Analyses were done in all treated patients. The trial is closed, and is registered with ClinicalTrials.gov, NCT03154996. FINDINGS Between Jan 22, 2018, and July 8, 2019, chronic CED of topotecan was successfully completed safely in all five patients, and was well tolerated without substantial complications. The only grade 3 adverse event related to treatment was intraoperative supplemental motor area syndrome (one [20%] of five patients in the treatment group), and there were no grade 4 adverse events. Other serious adverse events were related to surgical resection and not the study treatment. Median follow-up was 12 months (IQR 10-17) from pump explant. Post-treatment tissue analysis showed that topotecan significantly reduced proliferating tumour cells in all five patients. INTERPRETATION In this small patient cohort, we showed that chronic CED of topotecan is a potentially safe and active therapy for recurrent glioblastoma. Our analysis provided a unique tissue-based assessment of treatment response without the need for large patient numbers. This novel delivery of topotecan overcomes limitations in delivery and treatment response assessment for patients with glioblastoma and could be applicable for other anti-glioma drugs or other CNS diseases. Further studies are warranted to determine the effect of this drug delivery approach on clinical outcomes. FUNDING US National Institutes of Health, The William Rhodes and Louise Tilzer Rhodes Center for Glioblastoma, the Michael Weiner Glioblastoma Research Into Treatment Fund, the Gary and Yael Fegel Foundation, and The Khatib Foundation.
Collapse
Affiliation(s)
- Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Justin A Neira
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Dominique M O Higgins
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akshay V Save
- Department of Neurological Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Deborah M Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Tamara Marie
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Tejaswi D Sudhakar
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Sylwia A Stopka
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vanessa Catania
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Good
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Stergios Zacharoulis
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Meenu Behl
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Petros Petridis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Lignelli
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute Boston, MA, USA
| | - Peter A Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mary R Welch
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Fabio M Iwamoto
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital, New York, NY, USA
| | - Jack Grinband
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Foo CY, Munir N, Kumaria A, Akhtar Q, Bullock CJ, Narayanan A, Fu RZ. Medical Device Advances in the Treatment of Glioblastoma. Cancers (Basel) 2022; 14:5341. [PMID: 36358762 PMCID: PMC9656148 DOI: 10.3390/cancers14215341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Cher Ying Foo
- Imperial College School of Medicine, Imperial College London, Fulham Palace Rd., London W6 8RF, UK
| | - Nimrah Munir
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Kumaria
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Qasim Akhtar
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Christopher J. Bullock
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Narayanan
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Richard Z. Fu
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael, Smith Building, Dover St., Manchester M13 9PT, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
21
|
Kim E, Van Reet J, Kim HC, Kowsari K, Yoo SS. High Incidence of Intracerebral Hemorrhaging Associated with the Application of Low-Intensity Focused Ultrasound Following Acute Cerebrovascular Injury by Intracortical Injection. Pharmaceutics 2022; 14:2120. [PMID: 36297554 PMCID: PMC9609794 DOI: 10.3390/pharmaceutics14102120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (FUS) has gained momentum as a non-/minimally-invasive modality that facilitates the delivery of various pharmaceutical agents to the brain. With the additional ability to modulate regional brain tissue excitability, FUS is anticipated to confer potential neurotherapeutic applications whereby a deeper insight of its safety is warranted. We investigated the effects of FUS applied to the rat brain (Sprague-Dawley) shortly after an intracortical injection of fluorescent interstitial solutes, a widely used convection-enhanced delivery technique that directly (i.e., bypassing the blood-brain-barrier (BBB)) introduces drugs or interstitial tracers to the brain parenchyma. Texas Red ovalbumin (OA) and fluorescein isothiocyanate-dextran (FITC-d) were used as the interstitial tracers. Rats that did not receive sonication showed an expected interstitial distribution of OA and FITC-d around the injection site, with a wider volume distribution of OA (21.8 ± 4.0 µL) compared to that of FITC-d (7.8 ± 2.7 µL). Remarkably, nearly half of the rats exposed to the FUS developed intracerebral hemorrhaging (ICH), with a significantly higher volume of bleeding compared to a minor red blood cell extravasation from the animals that were not exposed to sonication. This finding suggests that the local cerebrovascular injury inflicted by the micro-injection was further exacerbated by the application of sonication, particularly during the acute stage of injury. Smaller tracer volume distributions and weaker fluorescent intensities, compared to the unsonicated animals, were observed for the sonicated rats that did not manifest hemorrhaging, which may indicate an enhanced degree of clearance of the injected tracers. Our results call for careful safety precautions when ultrasound sonication is desired among groups under elevated risks associated with a weakened or damaged vascular integrity.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Jared Van Reet
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu 37224, Korea
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| |
Collapse
|
22
|
Synchronizing the release rates of topotecan and paclitaxel from a self-eroding crosslinked chitosan - PLGA platform. Int J Pharm 2022; 623:121945. [PMID: 35738334 DOI: 10.1016/j.ijpharm.2022.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
This study is a continuation of a previous study in which two model drugs, sodium salicylate (highly water-soluble) and indomethacin (low water-soluble) were loaded into an erodible hydrogel, made of ionically crosslinked chitosan (x-Ct). The erosion rate of the x-Ct matrix was controlled by its immersion in calcium chloride solutions (de-crosslinker) of different concentrations, leading to synchronization of the release rates of the two drugs over 2 h. In the present study, a modified platform was developed in order to (a) synchronize the release rates of the two cytotoxic drugs, topotecan (TT, highly water soluble) and paclitaxel (PTX, poorly water soluble); (b) prolong the erosion duration and the derived concomitant release of the two drugs to several days. TT was loaded into a PLGA sphere, which was co-loaded with calcium chloride (CaCl2). The sphere was then placed in an aqueous solution of chitosan (Ct) in which PTX was dispersed. A PLGA core-containing hydrogel was then produced by ionically crosslinking the Ct. The formulation screening section of the study includes a statistically designed Fractional Factorial experiment. It was comprised of the following five experimental factors: (a) the type of Ct and (b) its relative amount in the formulation, (c) the type of ionic crosslinker (citric acid or oxalic acid), (d) the concentration of the ionic crosslinker and (e) the co-loaded amounts of CaCl2 (the constitutional de-crosslinking agent). The difference factor, f1, and the similarity factor, f2, of the TT and PTX release profiles into water, were used as the experimental responses. The computerized prediction models were employed to assess the collective effects of the pre-determined experimental factors on the difference factor, f1, and the similarity factor, f2 (the response factors), by employing a fractional factorial design and multifactorial analysis, without the need to account for the exact mechanisms of the release processes involved. The final composite platform was capable of releasing TT and PTX, at similar (concomitant) rates, over a period of 7 days, a finding which suggests that the novel polymeric platform may serve as a multi-drug implant. An attractive medical application for such a device would be post-operative local treatment that could benefit from localized combination chemotherapy after the removal of malignant tissues, in the surgical treatment of breast cancer, ovarian cancer, glioma and peritoneal carcinomatosis.
Collapse
|
23
|
Shabani L, Abbasi M, Amini M, Amani AM, Vaez A. The brilliance of nanoscience over cancer therapy: Novel promising nanotechnology-based methods for eradicating glioblastoma. J Neurol Sci 2022; 440:120316. [DOI: 10.1016/j.jns.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
24
|
Aquilina K, Chakrapani A, Carr L, Kurian MA, Hargrave D. Convection-Enhanced Delivery in Children: Techniques and Applications. Adv Tech Stand Neurosurg 2022; 45:199-228. [PMID: 35976451 DOI: 10.1007/978-3-030-99166-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since its first description in 1994, convection-enhanced delivery (CED) has become a reliable method of administering drugs directly into the brain parenchyma. More predictable and effective than simple diffusion, CED bypasses the challenging boundary of the blood brain barrier, which has frustrated many attempts at delivering large molecules or polymers into the brain parenchyma. Although most of the clinical work with CED has been carried out on adults with incurable neoplasms, principally glioblastoma multiforme, an increasing number of studies have recognized its potential for paediatric applications, which now include treatment of currently incurable brain tumours such as diffuse intrinsic pontine glioma (DIPG), as well as metabolic and neurotransmitter diseases. The roadmap for the development of hardware and use of pharmacological agents in CED has been well-established, and some neurosurgical centres throughout the world have successfully undertaken clinical trials, admittedly mostly early phase, on the basis of in vitro, small animal and large animal pre-clinical foundations. However, the clinical efficacy of CED, although theoretically logical, has yet to be unequivocally demonstrated in a clinical trial; this applies particularly to neuro-oncology.This review aims to provide a broad description of the current knowledge of CED as applied to children. It reviews published studies of paediatric CED in the context of its wider history and developments and underlines the challenges related to the development of hardware, the selection of pharmacological agents, and gene therapy. It also reviews the difficulties related to the development of clinical trials involving CED and looks towards its potential disease-modifying opportunities in the future.
Collapse
Affiliation(s)
- K Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK.
| | - A Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital, London, UK
| | - L Carr
- Department of Neurology and Neurodisability, Great Ormond Street Hospital, London, UK
| | - M A Kurian
- Department of Neurology and Neurodisability, Great Ormond Street Hospital, London, UK
- Neurogenetics Group, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL-Great Ormond Street Institute of Child Health, London, UK
| | - D Hargrave
- Cancer Group, UCL-Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
25
|
Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021; 287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most frequent and malignant brain tumor. The median survival for this disease is approximately 15 months, and despite all the available treatment strategies employed, it remains an incurable disease. Preclinical and clinical research have shown that the resistance process related to DNA damage repair pathways, glioma stem cells, blood-brain barrier selectivity, and dose-limiting toxicity of systemic treatment leads to poor clinical outcomes. In this context, the advent of drug delivery systems associated with localized treatment seems to be a promising and versatile alternative to overcome the failure of the current treatment approaches. In order to bypass therapeutic tumor resistance mechanisms, more effective combinatorial therapies should be identified, such as the use of cytotoxic drugs combined with the inhibition of DNA damage response (DDR)-related targets. Additionally, critical reasoning about the delivery approach and administration route in brain tumors treatment innovation is essential. The outcomes of future experimental studies regarding the association of delivery systems, alternative treatment routes, and DDR targets are expected to lead to the development of refined therapeutic interventions. Novel therapeutic approaches could improve the life's quality of glioblastoma patients and increase their survival rate.
Collapse
Affiliation(s)
- A M Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - J G Henn
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - L Steffens Reinhardt
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - D J Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
26
|
Kang JH, Desjardins A. Convection-enhanced delivery for high-grade glioma. Neurooncol Pract 2021; 9:24-34. [DOI: 10.1093/nop/npab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Glioblastoma (GBM) is the most common adult primary malignant brain tumor and is associated with a dire prognosis. Despite multi-modality therapies of surgery, radiation, and chemotherapy, its 5-year survival rate is 6.8%. The presence of the blood-brain barrier (BBB) is one factor that has made GBM difficult to treat. Convection-enhanced delivery (CED) is a modality that bypasses the BBB, which allows the intracranial delivery of therapies that would not otherwise cross the BBB and avoids systemic toxicities. This review will summarize prior and ongoing studies and highlights practical considerations related to clinical care to aid providers caring for a high-grade glioma patient being treated with CED. Although not the main scope of this paper, this review also touches upon relevant technical considerations of using CED, an area still under much development.
Collapse
Affiliation(s)
- Jennifer H Kang
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Controlling the release rate of topotecan from PLGA spheres and increasing its cytotoxicity towards glioblastoma cells by co-loading with calcium chloride. Int J Pharm 2021; 602:120616. [PMID: 33892056 DOI: 10.1016/j.ijpharm.2021.120616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022]
Abstract
It has been suggested that local administration of topotecan (TT) could increase its efficacy in the treatment of glioblastoma. In this context, a PLGA implant model in the form of spheres with a porous core and stiff surface, loaded with TT and CaCl2 was developed. An array of formulations differing from each other by the type of PLGA used, the integrity of the surface, the concentrations of TT and CaCl2 added during the preparation, and the volume of water in the PLGA mix, was prepared, screened and explored by computerized multifactorial analysis. This analysis enabled the simultaneous identification of the most influential experimental factors on the experimental responses, which were pre-determined as the efficiency of TT loading and the TT % cumulative release at 14 days. The multifactorial analysis also revealed how the interactions among the experimental factors affect the performance of the various formulations. Thus, TT concentration and its factorial interaction with the concentration of CaCl2 added during the spheres' preparation were identified as most prominent on the loading efficiency, while the surface integrity (intact or punctured) and CaCl2 amount in the spheres were identified as most prominent on the TT % cumulative release from the spheres. TT was found to be cytotoxic towards glioblastoma U87 MG cells, an activity which was enhanced, synergistically, in the presence of CaCl2 (the relative viability was reduced from 36 to 28% with combination indices of 1.0, 0.37, 0.13 and 0.06 for EC50, EC75, EC90 and EC95, respectively). Interestingly, dividing the TT dose into 3 equal portions, replenished daily to the incubation medium, increased TT cytotoxicity. The relative viability was then reduced from 35 to 7% and in the presence of CaCl2 - from 28 to 1.9%, suggesting that a local, slow input of TT could be effective in the treatment of glioblastoma by an adjacent TT implant. The increased effect of CaCl2 on cytotoxicity was also observed when it was co-loaded into the TT spheres. In that case, the cells' viability was reduced from 72 to 27%. It is suggested that the PLGA spheres could be used for tunable local delivery of TT in post-resection adjuvant therapy of glioblastoma.
Collapse
|
28
|
Convection Enhanced Delivery in the Setting of High-Grade Gliomas. Pharmaceutics 2021; 13:pharmaceutics13040561. [PMID: 33921157 PMCID: PMC8071501 DOI: 10.3390/pharmaceutics13040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Development of effective treatments for high-grade glioma (HGG) is hampered by (1) the blood–brain barrier (BBB), (2) an infiltrative growth pattern, (3) rapid development of therapeutic resistance, and, in many cases, (4) dose-limiting toxicity due to systemic exposure. Convection-enhanced delivery (CED) has the potential to significantly limit systemic toxicity and increase therapeutic index by directly delivering homogenous drug concentrations to the site of disease. In this review, we present clinical experiences and preclinical developments of CED in the setting of high-grade gliomas.
Collapse
|
29
|
D'Amico RS, Aghi MK, Vogelbaum MA, Bruce JN. Convection-enhanced drug delivery for glioblastoma: a review. J Neurooncol 2021; 151:415-427. [PMID: 33611708 DOI: 10.1007/s11060-020-03408-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/18/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Convection-enhanced delivery (CED) is a method of targeted, local drug delivery to the central nervous system (CNS) that bypasses the blood-brain barrier (BBB) and permits the delivery of high-dose therapeutics to large volumes of interest while limiting associated systemic toxicities. Since its inception, CED has undergone considerable preclinical and clinical study as a safe method for treating glioblastoma (GBM). However, the heterogeneity of both, the surgical procedure and the mechanisms of action of the agents studied-combined with the additional costs of performing a trial evaluating CED-has limited the field's ability to adequately assess the durability of any potential anti-tumor responses. As a result, the long-term efficacy of the agents studied to date remains difficult to assess. MATERIALS AND METHODS We searched PubMed using the phrase "convection-enhanced delivery and glioblastoma". The references of significant systematic reviews were also reviewed for additional sources. Articles focusing on physiological and physical mechanisms of CED were included as well as technological CED advances. RESULTS We review the history and principles of CED, procedural advancements and characteristics, and outcomes from key clinical trials, as well as discuss the potential future of this promising technique for the treatment of GBM. CONCLUSION While the long-term efficacy of the agents studied to date remains difficult to assess, CED remains a promising technique for the treatment of GBM.
Collapse
Affiliation(s)
- Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA.
| | - Manish K Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
Abstract
Therapies for glioblastoma face several physiologic hurdles. The blood-brain barrier (BBB) and blood-brain-tumor barrier (BTB) present impediments to therapeutic delivery of drugs to the central nervous system. Strategies to disrupt or bypass the native BBB are necessary to deliver therapeutic agents. Techniques to bypass the BBB/BTB include implantable controlled-release polymer systems, intracavitary drug delivery, direct injection of viral vectors, and infusion via convection-enhanced delivery. Ideal methods and agents to accomplish the goal providing survival benefit are yet to be determined. Further development of methods to break down or bypass the BBB and BTB is necessary for patients with glioblastoma.
Collapse
|
31
|
Chatwin HV, Cruz Cruz J, Green AL. Pediatric high-grade glioma: moving toward subtype-specific multimodal therapy. FEBS J 2021; 288:6127-6141. [PMID: 33523591 DOI: 10.1111/febs.15739] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Pediatric high-grade gliomas (pHGG) comprise a deadly, heterogenous category of pediatric gliomas with a clear need for more effective treatment options. Advances in high-throughput molecular techniques have enhanced molecular understanding of these tumors, but outcomes are still poor, and treatments beyond resection and radiation have not yet been clearly established as standard of care. In this review, we first discuss the history of treatment approaches to pHGG to this point. We then review four distinct categories of pHGG, including histone 3-mutant, IDH-mutant, histone 3/IDH-wildtype, and radiation-induced pHGG. We discuss the molecular understanding of each subgroup and targeted treatment options in development. Finally, we look at the development and current status of two novel approaches to pHGG as a whole: localized convection-enhanced chemotherapy delivery and immunotherapy, including checkpoint inhibitors, vaccine therapy, and CAR-T cells. Through this review, we demonstrate the potential for rational, molecularly driven, subtype-specific therapy to be used with other novel approaches in combinations that could meaningfully improve the prognosis in pHGG.
Collapse
Affiliation(s)
- Hannah V Chatwin
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joselyn Cruz Cruz
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adam L Green
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA.,Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
32
|
Convection Enhanced Delivery of Topotecan for Gliomas: A Single-Center Experience. Pharmaceutics 2020; 13:pharmaceutics13010039. [PMID: 33396668 PMCID: PMC7823846 DOI: 10.3390/pharmaceutics13010039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
A key limitation to glioma treatment involves the blood brain barrier (BBB). Convection enhanced delivery (CED) is a technique that uses a catheter placed directly into the brain parenchyma to infuse treatments using a pressure gradient. In this manuscript, we describe the physical principles behind CED along with the common pitfalls and methods for optimizing convection. Finally, we highlight our institutional experience using topotecan CED for the treatment of malignant glioma.
Collapse
|
33
|
Nwagwu CD, Immidisetti AV, Bukanowska G, Vogelbaum MA, Carbonell AM. Convection-Enhanced Delivery of a First-in-Class Anti-β1 Integrin Antibody for the Treatment of High-Grade Glioma Utilizing Real-Time Imaging. Pharmaceutics 2020; 13:pharmaceutics13010040. [PMID: 33396712 PMCID: PMC7823464 DOI: 10.3390/pharmaceutics13010040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 01/11/2023] Open
Abstract
Introduction: OS2966 is a first-in-class, humanized and de-immunized monoclonal antibody which targets the adhesion receptor subunit, CD29/β1 integrin. CD29 expression is highly upregulated in glioblastoma and has been shown to drive tumor progression, invasion, and resistance to multiple modalities of therapy. Here, we present a novel Phase I clinical trial design addressing several factors plaguing effective treatment of high-grade gliomas (HGG). Study Design: This 2-part, ascending-dose, Phase I clinical trial will enroll patients with recurrent/progressive HGG requiring a clinically indicated resection. In Study Part 1, patients will undergo stereotactic tumor biopsy followed by placement of a purpose-built catheter which will be used for the intratumoral, convection-enhanced delivery (CED) of OS2966. Gadolinium contrast will be added to OS2966 before each infusion, enabling the real-time visualization of therapeutic distribution via MRI. Subsequently, patients will undergo their clinically indicated tumor resection followed by CED of OS2966 to the surrounding tumor-infiltrated brain. Matched pre- and post-infusion tumor specimens will be utilized for biomarker development and validation of target engagement by receptor occupancy. Dose escalation will be achieved using a unique concentration-based accelerated titration design. Discussion: The present study design leverages multiple innovations including: (1) the latest CED technology, (2) 2-part design including neoadjuvant intratumoral administration, (3) a first-in-class investigational therapeutic, and (4) concentration-based dosing. Trial registration: A U.S. Food and Drug Administration (FDA) Investigational New Drug application (IND) for the above protocol is now active.
Collapse
Affiliation(s)
| | | | | | - Michael A. Vogelbaum
- H.Lee Moffitt Cancer Center and Research Institute, Departments of Neurosurgery and Neuro-Oncology, Tampa, FL 33612, USA;
| | - Anne-Marie Carbonell
- OncoSynergy, Inc., Stamford, CT 06902, USA;
- Correspondence: ; Tel.: +1-415-299-4249
| |
Collapse
|
34
|
Karmur BS, Philteos J, Abbasian A, Zacharia BE, Lipsman N, Levin V, Grossman S, Mansouri A. Blood-Brain Barrier Disruption in Neuro-Oncology: Strategies, Failures, and Challenges to Overcome. Front Oncol 2020; 10:563840. [PMID: 33072591 PMCID: PMC7531249 DOI: 10.3389/fonc.2020.563840] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
The blood-brain barrier (BBB) presents a formidable challenge in the development of effective therapeutics in neuro-oncology. This has fueled several decades of efforts to develop strategies for disrupting the BBB, but progress has not been satisfactory. As such, numerous drug- and device-based methods are currently being investigated in humans. Through a focused assessment of completed, active, and pending clinical trials, our first aim in this review is to outline the scientific foundation, successes, and limitations of the BBBD strategies developed to date. Among 35 registered trials relevant to BBBD in neuro-oncology in the ClinicalTrials.gov database, mannitol was the most common drug-based method, followed by RMP-7 and regadenoson. MR-guided focused ultrasound was the most common device-based method, followed by MR-guided laser ablation, ultrasound, and transcranial magnetic stimulation. While most early-phase studies focusing on safety and tolerability have met stated objectives, advanced-phase studies focusing on survival differences and objective tumor response have been limited by heterogeneous populations and tumors, along with a lack of control arms. Based on shared challenges among all methods, our second objective is to discuss strategies for confirmation of BBBD, choice of systemic agent and drug design, alignment of BBBD method with real-world clinical workflow, and consideration of inadvertent toxicity associated with disrupting an evolutionarily-refined barrier. Finally, we conclude with a strategic proposal to approach future studies assessing BBBD.
Collapse
Affiliation(s)
- Brij S Karmur
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Aram Abbasian
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brad E Zacharia
- Penn State Health Neurosurgery, College of Medicine, Penn State University, Hershey, PA, United States
| | - Nir Lipsman
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Victor Levin
- Department of Neurosurgery, Medical School, University of California, San Francisco, San Francisco, CA, United States
| | - Stuart Grossman
- Department of Oncology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Alireza Mansouri
- Penn State Health Neurosurgery, College of Medicine, Penn State University, Hershey, PA, United States
| |
Collapse
|
35
|
D’Amico RS, Neira JA, Yun J, Alexiades NG, Banu M, Englander ZK, Kennedy BC, Ung TH, Rothrock RJ, Romanov A, Guo X, Zhao B, Sonabend AM, Canoll P, Bruce JN. Validation of an effective implantable pump-infusion system for chronic convection-enhanced delivery of intracerebral topotecan in a large animal model. J Neurosurg 2020; 133:614-623. [PMID: 31374547 PMCID: PMC7227320 DOI: 10.3171/2019.3.jns1963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intracerebral convection-enhanced delivery (CED) has been limited to short durations due to a reliance on externalized catheters. Preclinical studies investigating topotecan (TPT) CED for glioma have suggested that prolonged infusion improves survival. Internalized pump-catheter systems may facilitate chronic infusion. The authors describe the safety and utility of long-term TPT CED in a porcine model and correlation of drug distribution through coinfusion of gadolinium. METHODS Fully internalized CED pump-catheter systems were implanted in 12 pigs. Infusion algorithms featuring variable infusion schedules, flow rates, and concentrations of a mixture of TPT and gadolinium were characterized over increasing intervals from 4 to 32 days. Therapy distribution was measured using gadolinium signal on MRI as a surrogate. A 9-point neurobehavioral scale (NBS) was used to identify side effects. RESULTS All animals tolerated infusion without serious adverse events. The average NBS score was 8.99. The average maximum volume of distribution (Vdmax) in chronically infused animals was 11.30 mL and represented 32.73% of the ipsilateral cerebral hemispheric volume. Vdmax was achieved early during infusions and remained relatively stable despite a slight decline as the infusion reached steady state. Novel tissue TPT concentrations measured by liquid chromatography mass spectroscopy correlated with gadolinium signal intensity on MRI (p = 0.0078). CONCLUSIONS Prolonged TPT-gadolinium CED via an internalized system is safe and well tolerated and can achieve a large Vdmax, as well as maintain a stable Vd for up to 32 days. Gadolinium provides an identifiable surrogate for measuring drug distribution. Extended CED is potentially a broadly applicable and safe therapeutic option in select patients.
Collapse
Affiliation(s)
- Randy S. D’Amico
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Justin A. Neira
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Jonathan Yun
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Nikita G. Alexiades
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Matei Banu
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Zachary K. Englander
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Benjamin C. Kennedy
- Division of Neurosurgery, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy H. Ung
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Robert J. Rothrock
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Alexander Romanov
- Institute of Comparative Medicine, Columbia University Medical Center, New York, New York
| | - Xiaotao Guo
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Binsheng Zhao
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Adam M. Sonabend
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
36
|
Ebrahimi Z, Talaei S, Aghamiri S, Goradel NH, Jafarpour A, Negahdari B. Overcoming the blood-brain barrier in neurodegenerative disorders and brain tumours. IET Nanobiotechnol 2020; 14:441-448. [PMID: 32755952 PMCID: PMC8676526 DOI: 10.1049/iet-nbt.2019.0351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 07/31/2023] Open
Abstract
Drug delivery is one of the major challenges in the treatment of central nervous system disorders. The brain needs to be protected from harmful agents, which are done by the capillary network, the so-called blood-brain barrier (BBB). This protective guard also prevents the delivery of therapeutic agents to the brain and limits the effectiveness of treatment. For this reason, various strategies have been explored by scientists for overcoming the BBB from disruption of the BBB to targeted delivery of nanoparticles (NPs) and cells and immunotherapy. In this review, different promising brain drug delivery strategies including disruption of tight junctions in the BBB, enhanced transcellular transport by peptide-based delivery, local delivery strategies, NP delivery, and cell-based delivery have been fully discussed.
Collapse
Affiliation(s)
- Zahra Ebrahimi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Students' Scientific Research Center, Virology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Sasaki T, Katagi H, Goldman S, Becher OJ, Hashizume R. Convection-Enhanced Delivery of Enhancer of Zeste Homolog-2 (EZH2) Inhibitor for the Treatment of Diffuse Intrinsic Pontine Glioma. Neurosurgery 2020; 87:E680-E688. [PMID: 32674144 DOI: 10.1093/neuros/nyaa301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brain tumor and the majority of patients die within 2 yr after initial diagnosis. Factors that contribute to the dismal prognosis of these patients include the infiltrative nature and anatomic location in an eloquent area of the brain, which precludes total surgical resection, and the presence of the blood-brain barrier (BBB), which reduces the distribution of systemically administered agents. Convection-enhanced delivery (CED) is a direct infusion technique to deliver therapeutic agents into a target site in the brain and able to deliver a high concentration drug to the infusion site without systemic toxicities. OBJECTIVE To assess the efficacy of enhancer of zeste homolog-2 (EZH2) inhibitor by CED against human DIPG xenograft models. METHODS The concentration of EZH2 inhibitor (EPZ-6438) in the brainstem tumor was evaluated by liquid chromatography-mass spectrometry (LC/MS). We treated mice-bearing human DIPG xenografts with EPZ-6438 using systemic (intraperitoneal) or CED administration. Intracranial tumor growth was monitored by bioluminescence image, and the therapeutic response was evaluated by animal survival. RESULTS LC/MS analysis showed that the concentration of EPZ-6438 in the brainstem tumor was 3.74% of serum concentration after systemic administration. CED of EPZ-6438 suppressed tumor growth and significantly extended animal survival when compared to systemic administration of EPZ-6438 (P = .0475). CONCLUSION Our results indicate that CED of an EZH2 inhibitor is a promising strategy to bypass the BBB and to increase the efficacy of an EZH2 inhibitor for the treatment of DIPG.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stewart Goldman
- Division of Hematology, Oncology and Stem Cell Transplantation in the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oren J Becher
- Division of Hematology, Oncology and Stem Cell Transplantation in the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
38
|
Orozco GA, Smith JH, García JJ. Three-dimensional nonlinear finite element model to estimate backflow during flow-controlled infusions into the brain. Proc Inst Mech Eng H 2020; 234:1018-1028. [DOI: 10.1177/0954411920937220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Convection-enhanced delivery is a technique to bypass the blood–brain barrier and deliver therapeutic drugs into the brain tissue. However, animal investigations and preliminary clinical trials have reported reduced efficacy to transport the infused drug in specific zones, attributed mainly to backflow, in which an annular gap is formed outside the catheter and the fluid preferentially flows toward the surface of the brain rather than through the tissue in front of the cannula tip. In this study, a three-dimensional human brain finite element model of backflow was developed to study the influence of anatomical structures during flow-controlled infusions. Predictions of backflow length were compared under the influence of ventricular pressure and the distance between the cannula and the ventricles. Simulations with zero relative ventricle pressure displayed similar backflow length predictions for larger cannula-ventricle distances. In addition, infusions near the ventricles revealed smaller backflow length and the liquid was observed to escape to the longitudinal fissure and ventricular cavities. Simulations with larger cannula-ventricle distances and nonzero relative ventricular pressure showed an increase of fluid flow through the tissue and away from the ventricles. These results reveal the importance of considering both the subject-specific anatomical details and the nonlinear effects in models focused on analyzing current and potential treatment options associated with convection-enhanced delivery optimization for future clinical trials.
Collapse
Affiliation(s)
- Gustavo A Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Joshua H Smith
- Department of Mechanical Engineering, Lafayette College, Easton, PA, USA
| | - José J García
- Escuela de Ingeniería Civil y Geomática, Universidad del Valle, Cali, Colombia
| |
Collapse
|
39
|
Park HW, Park CG, Park M, Lee SH, Park HR, Lim J, Paek SH, Choy YB. Intrastriatal administration of coenzyme Q10 enhances neuroprotection in a Parkinson's disease rat model. Sci Rep 2020; 10:9572. [PMID: 32533070 PMCID: PMC7293316 DOI: 10.1038/s41598-020-66493-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder, and no treatment has been yet established to prevent disease progression. Coenzyme Q10, an antioxidant, has been considered a promising neuroprotective agent; however, conventional oral administration provides limited efficacy due to its very low bioavailability. In this study, we hypothesised that continuous, intrastriatal administration of a low dose of Coenzyme Q10 could effectively prevent dopaminergic neuron degeneration. To this end, a Parkinson's disease rat model induced by 6-hydroxydopamine was established, and the treatment was applied a week before the full establishment of this disease model. Behavioural tests showed a dramatically decreased number of asymmetric rotations in the intrastriatal Coenzyme Q10 group compared with the no treatment group. Rats with intrastriatal Coenzyme Q10 exposure also exhibited a larger number of dopaminergic neurons, higher expression of neurogenetic and angiogenetic factors, and less inflammation, and the effects were more prominent than those of orally administered Coenzyme Q10, although the dose of intrastriatal Coenzyme Q10 was 17,000-times lower than that of orally-administered Coenzyme Q10. Therefore, continuous, intrastriatal delivery of Coenzyme Q10, especially when combined with implantable devices for convection-enhanced delivery or deep brain stimulation, can be an effective strategy to prevent neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Hyung Woo Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Min Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hye Ran Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
40
|
Rani V, Venkatesan J, Prabhu A. Nanotherapeutics in glioma management: Advances and future perspectives. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Allen J, Wang J, Zolotarskaya OY, Sule A, Mohammad S, Arslan S, Wynne KJ, Yang H, Valerie K. PEAMOtecan, a novel chronotherapeutic polymeric drug for brain cancer. J Control Release 2020; 321:36-48. [PMID: 32027939 DOI: 10.1016/j.jconrel.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and difficult to treat form of brain cancer. In this work, we report on a novel chronotherapeutic polymeric drug, PEAMOtecan, for GBM therapy. PEAMOtecan was synthesized by conjugating camptothecin, a topoisomerase I inhibitor, to our proprietary, 'clickable' and modular polyoxetane polymer platform consisting of acetylene-functionalized 3-ethyl-3-(hydroxymethyl)oxetane (EAMO) repeat units (Patent No.: US 9,421,276) via the linker 3,3'-dithiodipropionic acid (DDPA) with a disulfide bond (SS) extended by short-chain polyethylene glycol (PEG). We show that PEAMOtecan is a highly modular polymer nanoformulation that protects covalently bound CPT until slowly being released over extended periods of time dependent on the cleavage of the disulfide and ester linkages. PEAMOtecan kills glioma cells by mitotic catastrophe with p53 mutant/knockdown cells being more sensitive than matched wild type cells potentially providing cancer-specific targeting. To establish proof-of-principle therapeutic effects, we tested PEAMOtecan as monotherapy for efficacy in a mouse orthotopic glioma model. PEAMOtecan was administered by one-time, convection-enhanced delivery (CED) intra-tumorally to achieve superior distribution and extended drug release over time. In addition, the near-infrared (NIR) dye Cy5.5 was coupled to the polymer providing live-animal imaging capability to track tissue distribution and clearance of the injected polymer over time. We show that PEAMOtecan significantly improves the survival of mice harboring intra-cranial tumors (p = .0074 compared to untreated group). Altogether, these results support further development and testing of our nanoconjugate platform.
Collapse
Affiliation(s)
- Jasmine Allen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Juan Wang
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Olga Yu Zolotarskaya
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Amrita Sule
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Sajjad Mohammad
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Shukaib Arslan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America.
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America.
| |
Collapse
|
42
|
Królicki L, Kunikowska J, Bruchertseifer F, Koziara H, Królicki B, Jakuciński M, Pawlak D, Rola R, Morgenstern A, Rosiak E, Merlo A. 225Ac- and 213Bi-Substance P Analogues for Glioma Therapy. Semin Nucl Med 2020; 50:141-151. [DOI: 10.1053/j.semnuclmed.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Beccaria K, Canney M, Bouchoux G, Desseaux C, Grill J, Heimberger AB, Carpentier A. Ultrasound-induced blood-brain barrier disruption for the treatment of gliomas and other primary CNS tumors. Cancer Lett 2020; 479:13-22. [PMID: 32112904 DOI: 10.1016/j.canlet.2020.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
The treatment of primary brain tumors, especially malignant gliomas, remains challenging. The failure of most treatments for this disease is partially explained by the blood-brain barrier (BBB), which prevents circulating molecules from entering the brain parenchyma. Ultrasound-induced BBB disruption (US-BBBD) has recently emerged as a promising strategy to improve the delivery of therapeutic agents to brain tumors. A large body of preclinical studies has demonstrated that the association of low-intensity pulsed ultrasound with intravenous microbubbles can transiently open the BBB in a localized manner. The safety of this technique has been assessed in numerous preclinical studies in both small and large animal models. A large panel of therapeutic agents have been delivered to the brain in preclinical models, demonstrating both tumor control and increased survival. This technique has recently entered clinical trials with encouraging preliminary data. In this review, we describe the mechanisms and histological effects of US-BBBD and summarize the preclinical studies published to date. We furthermore provide an overview of the current clinical development and future potential of this promising technology.
Collapse
Affiliation(s)
- Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Paris 5 University, Paris, France.
| | - Michael Canney
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Guillaume Bouchoux
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Carole Desseaux
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Jacques Grill
- Department of Pediatric Oncology, Gustave-Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France; UMR8203 "Vectorologie et Thérapeutiques Anticancéreuses," CNRS, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne Université, UPMC Univ Paris 06, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
44
|
Shetty AK, Zanirati G. The Interstitial System of the Brain in Health and Disease. Aging Dis 2020; 11:200-211. [PMID: 32010493 PMCID: PMC6961771 DOI: 10.14336/ad.2020.0103] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
The brain interstitial fluid (ISF) and the cerebrospinal fluid (CSF) cushion and support the brain cells. The ISF occupies the brain interstitial system (ISS), whereas the CSF fills the brain ventricles and the subarachnoid space. The brain ISS is an asymmetrical, tortuous, and exceptionally confined space between neural cells and the brain microvasculature. Recently, with a newly developed in vivo measuring technique, a series of discoveries have been made in the brain ISS and the drainage of ISF. The goal of this review is to confer recent advances in our understanding of the brain ISS, including its structure, function, and the various processes mediating or disrupting ISF drainage in physiological and pathological conditions. The brain ISF in the deep brain regions has recently been demonstrated to drain in a compartmentalized ISS instead of a highly connected system, together with the drainage of ISF into the cerebrospinal fluid (CSF) at the surface of the cerebral cortex and the transportation from CSF into cervical lymph nodes. Besides, accumulation of tau in the brain ISS in conditions such as Alzheimer’s disease and its link to the sleep-wake cycle and sleep deprivation, clearance of ISF in a deep sleep via increased CSF flow, novel approaches to remove beta-amyloid from the brain ISS, and obstruction to the ISF drainage in neurological conditions are deliberated. Moreover, the role of ISS in the passage of extracellular vesicles (EVs) released from neural cells and the rapid targeting of therapeutic EVs into neural cells in the entire brain following an intranasal administration, and the promise and limitations of ISS based drug delivery approaches are discussed
Collapse
Affiliation(s)
- Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX 77843, USA
| | - Gabriele Zanirati
- 2Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Skaga E, Kulesskiy E, Brynjulvsen M, Sandberg CJ, Potdar S, Langmoen IA, Laakso A, Gaál-Paavola E, Perola M, Wennerberg K, Vik-Mo EO. Feasibility study of using high-throughput drug sensitivity testing to target recurrent glioblastoma stem cells for individualized treatment. Clin Transl Med 2019; 8:33. [PMID: 31889236 PMCID: PMC6937360 DOI: 10.1186/s40169-019-0253-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the well described heterogeneity in glioblastoma (GBM), treatment is standardized, and clinical trials investigate treatment effects at population level. Genomics-driven oncology for stratified treatments allow clinical decision making in only a small minority of screened patients. Addressing tumor heterogeneity, we aimed to establish a clinical translational protocol in recurrent GBM (recGBM) utilizing autologous glioblastoma stem cell (GSC) cultures and automated high-throughput drug sensitivity and resistance testing (DSRT) for individualized treatment within the time available for clinical application. RESULTS From ten patients undergoing surgery for recGBM, we established individual cell cultures and characterized the GSCs by functional assays. 7/10 GSC cultures could be serially expanded. The individual GSCs displayed intertumoral differences in their proliferative capacity, expression of stem cell markers and variation in their in vitro and in vivo morphology. We defined a time frame of 10 weeks from surgery to complete the entire pre-clinical work-up; establish individualized GSC cultures, evaluate drug sensitivity patterns of 525 anticancer drugs, and identify options for individualized treatment. Within the time frame for clinical translation 5/7 cultures reached sufficient cell yield for complete drug screening. The DSRT revealed significant intertumoral heterogeneity to anticancer drugs (p < 0.0001). Using curated reference databases of drug sensitivity in GBM and healthy bone marrow cells, we identified individualized treatment options in all patients. Individualized treatment options could be selected from FDA-approved drugs from a variety of different drug classes in all cases. CONCLUSIONS In recGBM, GSC cultures could successfully be established in the majority of patients. The individual cultures displayed intertumoral heterogeneity in their in vitro and in vivo behavior. Within a time frame for clinical application, we could perform DSRT in 50% of recGBM patients. The DSRT revealed a remarkable intertumoral heterogeneity in sensitivity to anticancer drugs in recGBM that could allow tailored therapeutic options for functional precision medicine.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway.
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Marit Brynjulvsen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Iver A Langmoen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Emília Gaál-Paavola
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Markus Perola
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| |
Collapse
|
46
|
Stine CA, Munson JM. Convection-Enhanced Delivery: Connection to and Impact of Interstitial Fluid Flow. Front Oncol 2019; 9:966. [PMID: 31632905 PMCID: PMC6783516 DOI: 10.3389/fonc.2019.00966] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Convection-enhanced delivery (CED) is a method used to increase transport of therapeutics in and around brain tumors. CED works through locally applying a pressure differential to drive fluid flow throughout the tumor, such that convective forces dominate over diffusive transport. This allows therapies to bypass the blood brain barrier that would otherwise be too large or solely rely on passive diffusion. However, this also drives fluid flow out through the tumor bulk into surrounding brain parenchyma, which results in increased interstitial fluid (IF) flow, or fluid flow within extracellular spaces in the tissue. IF flow has been associated with altered transport of molecules, extracellular matrix rearrangement, and triggering of cellular motility through a number of mechanisms. Thus, the results of a simple method to increase drug delivery may have unintended consequences on tissue morphology. Clinically, prediction of dispersal of agents via CED is important to catheter design, placement, and implementation to optimize contact of tumor cells with therapeutic agent. Prediction software can aid in this problem, yet we wonder if there is a better way to predict therapeutic distribution based simply on IF flow pathways as determined from pre-intervention imaging. Overall, CED based therapy has seen limited success and we posit that integration and appreciation of altered IF flow may enhance outcomes. Thus, in this manuscript we both review the current state of the art in CED and IF flow mechanistic understanding and relate these two elements to each other in a clinical context.
Collapse
Affiliation(s)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
47
|
Shi M, Sanche L. Convection-Enhanced Delivery in Malignant Gliomas: A Review of Toxicity and Efficacy. JOURNAL OF ONCOLOGY 2019; 2019:9342796. [PMID: 31428153 PMCID: PMC6679879 DOI: 10.1155/2019/9342796] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/06/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Malignant gliomas are undifferentiated or anaplastic gliomas. They remain incurable with a multitude of modalities, including surgery, radiation, chemotherapy, and alternating electric field therapy. Convection-enhanced delivery (CED) is a local treatment that can bypass the blood-brain barrier and increase the tumor uptake of therapeutic agents, while decreasing exposure to healthy tissues. Considering the multiple choices of drugs with different antitumor mechanisms, the supra-additive effect of concomitant radiation and chemotherapy, CED appears as a promising modality for the treatment of brain tumors. In this review, the CED-related toxicities are summarized and classified into immediate, early, and late side effects based on the time of onset, and local and systemic toxicities based on the location of toxicity. The efficacies of CED of various therapeutic agents including targeted antitumor agents, chemotherapeutic agents, radioisotopes, and immunomodulators are covered. The phase III trial PRECISE compares CED of IL13-PE38QQR, an interleukin-13 conjugated to Pseudomonas aeruginosa exotoxin A, to Gliadel® Wafer, a polymer loaded with carmustine. However, in this case, CED had no significant median survival improvement (11.3 months vs. 10 months) in patients with recurrent glioblastomas. In phase II studies, CED of recombinant poliovirus (PVSRIPO) had an overall survival of 21% vs. 14% for the control group at 24 months, and 21% vs. 4% at 36 months. CED of Tf-diphtheria toxin had a response rate of 35% in recurrent malignant gliomas patients. On the other hand, the TGF-β2 inhibitor Trabedersen, HSV-1-tk ganciclovir, and radioisotope 131I-chTNT-1/B mAb had a limited response rate. With this treatment, patients who received CED of the chemotherapeutic agent paclitaxel and immunomodulator, oligodeoxynucleotides containing CpG motifs (CpG-ODN), experienced intolerable toxicity. Toward the end of this article, an ideal CED treatment procedure is proposed and the methods for quality assurance of the CED procedure are discussed.
Collapse
Affiliation(s)
- Minghan Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
48
|
Therapeutic Targeting of Stat3 Using Lipopolyplex Nanoparticle-Formulated siRNA in a Syngeneic Orthotopic Mouse Glioma Model. Cancers (Basel) 2019; 11:cancers11030333. [PMID: 30857197 PMCID: PMC6468565 DOI: 10.3390/cancers11030333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), WHO grade IV, is the most aggressive primary brain tumor in adults. The median survival time using standard therapy is only 12–15 months with a 5-year survival rate of around 5%. Thus, new and effective treatment modalities are of significant importance. Signal transducer and activator of transcription 3 (Stat3) is a key signaling protein driving major hallmarks of cancer and represents a promising target for the development of targeted glioblastoma therapies. Here we present data showing that the therapeutic application of siRNAs, formulated in nanoscale lipopolyplexes (LPP) based on polyethylenimine (PEI) and the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), represents a promising new approach to target Stat3 in glioma. We demonstrate that the LPP-mediated delivery of siRNA mediates efficient knockdown of Stat3, suppresses Stat3 activity and limits cell growth in murine (Tu2449) and human (U87, Mz18) glioma cells in vitro. In a therapeutic setting, intracranial application of the siRNA-containing LPP leads to knockdown of STAT3 target gene expression, decreased tumor growth and significantly prolonged survival in Tu2449 glioma-bearing mice compared to negative control-treated animals. This is a proof-of-concept study introducing PEI-based lipopolyplexes as an efficient strategy for therapeutically targeting oncoproteins with otherwise limited druggability.
Collapse
|
49
|
Vogelbaum MA, Brewer C, Barnett GH, Mohammadi AM, Peereboom DM, Ahluwalia MS, Gao S. First-in-human evaluation of the Cleveland Multiport Catheter for convection-enhanced delivery of topotecan in recurrent high-grade glioma: results of pilot trial 1. J Neurosurg 2019; 130:476-485. [PMID: 29652233 DOI: 10.3171/2017.10.jns171845] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Progress in management of high-grade gliomas (HGGs) has been hampered by poor access of potential therapeutics to the CNS. The Cleveland Multiport Catheter (CMC), which deploys 4 independent delivery microcatheters, was developed to be a reliable, high-volume delivery device for delivery of therapeutic agents to the brain and other solid organs. The authors undertook this first-in-human clinical trial effort to evaluate the delivery characteristics of the CMC in patients with HGGs. METHODS A series of pilot studies were launched after approval of a sponsor-investigator IND (investigational new drug) application to evaluate the delivery of topotecan and gadolinium-DTPA (Gd-DTPA) via the CMC in patients with recurrent HGG. The first pilot trial evaluated delivery into enhancing tumor and nonenhancing, tumor-infiltrated brain. Two catheters were placed with the use of a conventional frameless stereotactic technique following a biopsy to confirm tumor recurrence, and drug infusion was performed both intraoperatively and postoperatively for a total of 96 hours with the same rate for all microcatheters. Delivery was assessed by intermittent MRI. RESULTS Three patients were enrolled in the first pilot study. MRI demonstrated delivery from all 6 catheters (24 microcatheters). The volume of distribution (Vd) of Gd-DTPA was heavily dependent upon CMC location (enhancing vs nonenhancing) with an approximately 10-fold difference in Vd observed (p = 0.005). There were no hemorrhages related to catheter placement or removal, and all 3 patients completed the protocol-defined treatment. CONCLUSIONS The CMC is capable of providing backflow-resistant drug delivery to the brain and brain tumors. The volume of distribution is heavily dependent upon the integrity of the blood-brain barrier. Assessment of delivery is essential for development of loco-regionally applied therapeutics in the CNS.Clinical trial registration no.: NCT02278510 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Michael A Vogelbaum
- 1Brain Tumor and Neuro-Oncology Center and
- Departments of2Neurosurgery and
- 3Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | | | - Gene H Barnett
- 1Brain Tumor and Neuro-Oncology Center and
- Departments of2Neurosurgery and
| | | | | | | | - Shenqiang Gao
- 3Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
50
|
Halle B, Mongelard K, Poulsen FR. Convection-enhanced Drug Delivery for Glioblastoma: A Systematic Review Focused on Methodological Differences in the Use of the Convection-enhanced Delivery Method. Asian J Neurosurg 2019; 14:5-14. [PMID: 30937002 PMCID: PMC6417332 DOI: 10.4103/ajns.ajns_302_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is a leading cause of brain cancer-related death. The blood–brain barrier (BBB) prevents the transport of most systemic delivered molecules to the brain. This constitutes a major problem in the therapy of brain tumors. In the last decade, numerous different drug-delivery approaches have been developed to overcome the BBB. The objective of this study is to provide an overview of the methodological aspects used in all preclinical and clinical studies published from 2011 to 2016 where convection-enhanced delivery (CED) was used for drug delivery in the treatment of GBM. A systematic review of English articles published in the past 5 years was undertaken using PubMed and Embase. The search terms (brain tumor [MeSH Terms]) AND (CED OR convection enhanced delivery) were used in PubMed and a similar search was carried out in Embase using their “multi-field search.” All studies using CED on an intracranial GBM model were included. The search resulted in 151 hits after duplicates were removed. In total, 30 studies were included in the review. Of these, two publications studied the technical aspects of the CED method. Furthermore, only one study was a clinical study. The research field is focused on preclinical drug development trials and less emphasis is placed on the CED technique itself. However, it is important that future studies focus on establishing optimal protocols for the use of CED in rodents as well as for big brain models to be able to use the CED method in patients with GBM.
Collapse
Affiliation(s)
- Bo Halle
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kristian Mongelard
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|