1
|
Prabhu RS, Akinyelu T, Vaslow ZK, Matsui JK, Haghighi N, Dan T, Mishra MV, Murphy ES, Boyles S, Perlow HK, Palmer JD, Udovicich C, Patel TR, Wardak Z, Woodworth GF, Ksendzovsky A, Yang K, Chao ST, Asher AL, Burri SH. Single-Fraction Versus Fractionated Preoperative Radiosurgery for Resected Brain Metastases: A PROPS-BM International Multicenter Cohort Study. Int J Radiat Oncol Biol Phys 2024; 118:650-661. [PMID: 37717787 DOI: 10.1016/j.ijrobp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Preoperative stereotactic radiosurgery (SRS) is a feasible alternative to postoperative SRS for resected brain metastases (BM). Most reported studies of preoperative SRS used single-fraction SRS (SF-SRS). The goal of this study was to compare outcomes and toxicity of preoperative SF-SRS with multifraction (3-5 fractions) SRS (MF-SRS) in a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). METHODS AND MATERIALS Patients with BM from solid cancers, of which at least 1 lesion was treated with preoperative SRS followed by planned resection, were included from 8 institutions. SRS to synchronous intact BM was allowed. Exclusion criteria included prior or planned whole brain radiation therapy. Intracranial outcomes were estimated using cumulative incidence with competing risk of death. Propensity score matched (PSM) analyses were performed. RESULTS The study cohort included 404 patients with 416 resected index lesions, of which SF-SRS and MF-SRS were used for 317 (78.5%) and 87 patients (21.5%), respectively. Median dose was 15 Gy in 1 fraction for SF-SRS and 24 Gy in 3 fractions for MF-SRS. Univariable analysis demonstrated that SF-SRS was associated with higher cavity local recurrence (LR) compared with MF-SRS (2-year: 16.3% vs 2.9%; P = .004), which was also demonstrated in multivariable analysis. PSM yielded 81 matched pairs (n = 162). PSM analysis also demonstrated significantly higher rate of cavity LR with SF-SRS (2-year: 19.8% vs 3.3%; P = .003). There was no difference in adverse radiation effect, meningeal disease, or overall survival between cohorts in either analysis. CONCLUSIONS Preoperative MF-SRS was associated with significantly reduced risk of cavity LR in both the unmatched and PSM analyses. There was no difference in adverse radiation effect, meningeal disease, or overall survival based on fractionation. MF-SRS may be a preferred option for neoadjuvant radiation therapy of resected BMs. Additional confirmatory studies are needed. A phase 3 randomized trial of single-fraction preoperative versus postoperative SRS (NRG-BN012) is ongoing (NCT05438212).
Collapse
Affiliation(s)
- Roshan S Prabhu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina.
| | - Tobi Akinyelu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Zachary K Vaslow
- Department of Radiation Oncology, Cone Health Cancer Center, Greensboro, North Carolina
| | - Jennifer K Matsui
- Department of Radiation Oncology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Neda Haghighi
- Department of Radiation Oncology, Peter McCallum Cancer Centre, Melbourne Victoria, Australia; Department of Radiation Oncology, Icon Cancer Centre, Epworth Centre, Richmond Victoria, Australia
| | - Tu Dan
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark V Mishra
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Erin S Murphy
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Susan Boyles
- Department of Radiation Oncology, Cone Health Cancer Center, Greensboro, North Carolina
| | - Haley K Perlow
- Department of Radiation Oncology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Cristian Udovicich
- Department of Radiation Oncology, Peter McCallum Cancer Centre, Melbourne Victoria, Australia
| | - Toral R Patel
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zabi Wardak
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Graeme F Woodworth
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Alexander Ksendzovsky
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Samuel T Chao
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Anthony L Asher
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | - Stuart H Burri
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina
| |
Collapse
|
2
|
Dharnipragada R, Dusenbery K, Ferreira C, Sharma M, Chen CC. Preoperative Versus Postoperative Radiosurgery of Brain Metastases: A Meta-Analysis. World Neurosurg 2024; 182:35-41. [PMID: 37918565 DOI: 10.1016/j.wneu.2023.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE While postoperative resection cavity radiosurgery (post-SRS) is an accepted treatment paradigm for brain metastasis (BM) patients who undergo surgical resection, there is emerging interest in preoperative radiosurgery (pre-SRS) followed by surgical resection as an alternative treatment paradigm. Here, we performed a meta-analysis of the available literature on this matter. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a search of all studies evaluating pre-SRS and post-SRS was completed. Local recurrence (LR), overall survival (OS), radiation necrosis (RN), and leptomeningeal disease (LMD) were evaluated from the available data. Moderator analysis and pooled effect sizes were performed using a proportional meta-analysis with R using the metafor package. Statistics are presented as mean [95% confidence interval]. RESULTS We identified 6 pre-SRS and 33 post-SRS studies with comparable tumor volume (4.5-17.6 cm3). There were significant differences in the pooled estimates of LR and LMD, favoring pre-SRS over post-SRS. Pooled aggregate for LR was 11.0% [4.9-13.7] and 17.5% [15.1-19.9] for pre- and post-SRS studies (P = 0.014). Similarly, pooled estimates of LMD favored pre-SRS, 4.4% [2.6-6.2], relative to post-SRS, 12.3% [8.9-15.7] (P = 0.019). In contrast, no significant differences were found in terms of RN and OS. Pooled estimates for RN were 6.4% [3.1-9.6] and 8.9% [6.3-11.6] for pre- and post-SRS studies (P = 0.393), respectively. Pooled estimates for OS were 60.2% [55.8-64.6] and 60.5% [56.9-64.0] for pre- and post-SRS studies (P = 0.974). CONCLUSIONS This meta-analysis supports further exploration of pre-SRS as a strategy for the treatment of BM.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA.
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Mayur Sharma
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Ostapenko MY, Lukshin VA, Usachev DY, Golanov AV, Vetlova ER, Durgaryan AA, Kobyakov NG. [Comparative analysis of combined treatment methods for patients with single brain lesions]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:13-21. [PMID: 39169577 DOI: 10.17116/neiro20248804113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Primary brain metastases are common in oncology. Preoperative stereotactic radiosurgery followed by surgical resection is a perspective approach. OBJECTIVE To evaluate own experience of preoperative radiosurgery followed by surgical resection (RS+S) of metastasis regarding local control, leptomeningeal progression, surgical and radiation-induced complications; to compare treatment outcomes with surgical resection and subsequent radiotherapy (S+SRT). MATERIAL AND METHODS. A Retrospective study included 66 patients with solitary brain metastasis. Two groups of patients were distinguished: group 1 (n=34) - postoperative irradiation, group 2 (n=32) - preoperative irradiation. The median age was 49.5 years (range 36-75). RESULTS Local 3-, 6- and 12-month control among patients with postoperative irradiation was 88.2%, 79.4% and 42.9%, in the group of preoperative irradiation - 100%, 93.3% and 66.7%, respectively (p=0.021). Leptomeningeal progression developed in 11 patients (8 and 3 ones, respectively). The one-year survival rate was 73.5% and 84.4%, respectively (p=0.33). Long-term surgical and radiation-induced complications occurred in 12 (18.2%) patients. CONCLUSION Preoperative radiosurgery with subsequent resection provides higher local control and lower incidence of leptomeningeal progression in patients with single brain metastases.
Collapse
Affiliation(s)
| | - V A Lukshin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - D Yu Usachev
- Burdenko Neurosurgical Center, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E R Vetlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - N G Kobyakov
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
4
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
5
|
Prabhu RS, Akinyelu T, Vaslow ZK, Matsui JK, Haghighi N, Dan T, Mishra MV, Murphy ES, Boyles S, Perlow HK, Palmer JD, Udovicich C, Patel TR, Wardak Z, Woodworth GF, Ksendzovsky A, Yang K, Chao ST, Asher AL, Burri SH. Risk Factors for Progression and Toxic Effects After Preoperative Stereotactic Radiosurgery for Patients With Resected Brain Metastases. JAMA Oncol 2023; 9:1066-1073. [PMID: 37289451 PMCID: PMC10251241 DOI: 10.1001/jamaoncol.2023.1629] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/09/2023]
Abstract
Importance Preoperative stereotactic radiosurgery (SRS) has been demonstrated as a feasible alternative to postoperative SRS for resectable brain metastases (BMs) with potential benefits in adverse radiation effects (AREs) and meningeal disease (MD). However, mature large-cohort multicenter data are lacking. Objective To evaluate preoperative SRS outcomes and prognostic factors from a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). Design, Setting, and Participants This multicenter cohort study included patients with BMs from solid cancers, of which at least 1 lesion received preoperative SRS and a planned resection, from 8 institutions. Radiosurgery to synchronous intact BMs was allowed. Exclusion criteria included prior or planned whole-brain radiotherapy and no cranial imaging follow-up. Patients were treated between 2005 and 2021, with most treated between 2017 and 2021. Exposures Preoperative SRS to a median dose to 15 Gy in 1 fraction or 24 Gy in 3 fractions delivered at a median (IQR) of 2 (1-4) days before resection. Main Outcomes and Measures The primary end points were cavity local recurrence (LR), MD, ARE, overall survival (OS), and multivariable analysis of prognostic factors associated with these outcomes. Results The study cohort included 404 patients (214 women [53%]; median [IQR] age, 60.6 [54.0-69.6] years) with 416 resected index lesions. The 2-year cavity LR rate was 13.7%. Systemic disease status, extent of resection, SRS fractionation, type of surgery (piecemeal vs en bloc), and primary tumor type were associated with cavity LR risk. The 2-year MD rate was 5.8%, with extent of resection, primary tumor type, and posterior fossa location being associated with MD risk. The 2-year any-grade ARE rate was 7.4%, with target margin expansion greater than 1 mm and melanoma primary being associated with ARE risk. Median OS was 17.2 months (95% CI, 14.1-21.3 months), with systemic disease status, extent of resection, and primary tumor type being the strongest prognostic factors associated with OS. Conclusions and Relevance In this cohort study, the rates of cavity LR, ARE, and MD after preoperative SRS were found to be notably low. Several tumor and treatment factors were identified that are associated with risk of cavity LR, ARE, MD, and OS after treatment with preoperative SRS. A phase 3 randomized clinical trial of preoperative vs postoperative SRS (NRG BN012) has began enrolling (NCT05438212).
Collapse
Affiliation(s)
- Roshan S. Prabhu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
- Southeast Radiation Oncology Group, Charlotte, North Carolina
| | - Tobi Akinyelu
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | | | | | - Neda Haghighi
- Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Icon Cancer Centre, Epworth Centre, Richmond, Victoria, Australia
| | - Tu Dan
- University of Texas Southwestern Medical Center, Dallas
| | | | - Erin S. Murphy
- Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Susan Boyles
- Cone Health Cancer Center, Greensboro, North Carolina
| | | | | | | | | | - Zabi Wardak
- University of Texas Southwestern Medical Center, Dallas
| | | | | | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Samuel T. Chao
- Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Anthony L. Asher
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | - Stuart H. Burri
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
- Southeast Radiation Oncology Group, Charlotte, North Carolina
| |
Collapse
|
6
|
Diehl CD, Giordano FA, Grosu AL, Ille S, Kahl KH, Onken J, Rieken S, Sarria GR, Shiban E, Wagner A, Beck J, Brehmer S, Ganslandt O, Hamed M, Meyer B, Münter M, Raabe A, Rohde V, Schaller K, Schilling D, Schneider M, Sperk E, Thomé C, Vajkoczy P, Vatter H, Combs SE. Opportunities and Alternatives of Modern Radiation Oncology and Surgery for the Management of Resectable Brain Metastases. Cancers (Basel) 2023; 15:3670. [PMID: 37509330 PMCID: PMC10377800 DOI: 10.3390/cancers15143670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Postsurgical radiotherapy (RT) has been early proven to prevent local tumor recurrence, initially performed with whole brain RT (WBRT). Subsequent to disadvantageous cognitive sequalae for the patient and the broad distribution of modern linear accelerators, focal irradiation of the tumor has omitted WBRT in most cases. In many studies, the effectiveness of local RT of the resection cavity, either as single-fraction stereotactic radiosurgery (SRS) or hypo-fractionated stereotactic RT (hFSRT), has been demonstrated to be effective and safe. However, whereas prospective high-level incidence is still lacking on which dose and fractionation scheme is the best choice for the patient, further ablative techniques have come into play. Neoadjuvant SRS (N-SRS) prior to resection combines straightforward target delineation with an accelerated post-surgical phase, allowing an earlier start of systemic treatment or rehabilitation as indicated. In addition, low-energy intraoperative RT (IORT) on the surgical bed has been introduced as another alternative to external beam RT, offering sterilization of the cavity surface with steep dose gradients towards the healthy brain. This consensus paper summarizes current local treatment strategies for resectable brain metastases regarding available data and patient-centered decision-making.
Collapse
Affiliation(s)
- Christian D Diehl
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, University Medical Center, Medical Faculty, 79106 Freiburg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Klaus-Henning Kahl
- Department of Radiation Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Comprehensive Cancer Center Niedersachsen (CCC-N), 37075 Göttingen, Germany
| | - Gustavo R Sarria
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Ehab Shiban
- Department of Neurosurgery, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Arthur Wagner
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Stefanie Brehmer
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Oliver Ganslandt
- Neurosurgical Clinic, Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Marc Münter
- Department of Radiation Oncology, Klinikum Stuttgart Katharinenhospital, 70174 Stuttgart, Germany
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Veit Rohde
- Department of Neurosurgery, Universitätsmedizin Göttingen, 37075 Göttingen, Germany
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, 1211 Geneva, Switzerland
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Elena Sperk
- Mannheim Cancer Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| |
Collapse
|
7
|
Gagliardi F, De Domenico P, Snider S, Nizzola MG, Mortini P. Efficacy of neoadjuvant stereotactic radiotherapy in brain metastases from solid cancer: a systematic review of literature and meta-analysis. Neurosurg Rev 2023; 46:130. [PMID: 37256368 DOI: 10.1007/s10143-023-02031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
Neoadjuvant stereotactic radiotherapy (NaSRT) is a novel strategy for brain metastasis (BM) treatment, promising to achieve good local control, improved survival, and low toxicity. This is a systematic review of available literature and meta-analysis of 8 articles eligible for inclusion after searching MEDLINE via PubMed, Web-of-science, Cochrane Wiley, and Embase databases up to March 2023. A total of 484 patients undergoing NaSRT to treat 507 lesions were included. The median age was 60.9 (IQR 57-63) years, with a median tumor volume of 12.1 (IQR 9-14) cm3. The most frequent histology was non-small-cell lung cancer (41.3%), followed by breast (18.8%), and melanoma (14.3%). Lesions had a preferred supratentorial location (77.4%). Most of the studies used a single fraction schedule (91% of patients, n = 440). Treatment parameters were homogeneous and showed a median dose of 18 (IQR 15.5-20.5) Gy at a median of 80% isodose. Surgery was performed after a median of 1.5 (IQR 1-2.4) days and achieved gross-total extent in 94% of cases. Median follow-up was 12.9 (IQR 10-15.7) months. NaSRT showed an overall mortality rate of 58% (95% CI 43-73) at the last follow-up. Actuarial outcomes rates were 60% (95% CI 55-64) for 1-year overall survival (1y-OS), 38% (95% CI 33-43) for 2y-OS, 29% (95% CI 24-34) for 3y-OS; overall 15% (95% CI 11-19) for local failure, 46% (95% CI 37-55) for distant brain failure, 6% (95% CI 3-8) for radionecrosis, and 5% (95% CI 3-8) for leptomeningeal dissemination. The median local progression-free survival time was 10.4 (IQR 9.5-11.4) months, while the median survival without distant failure was 7.4 (IQR 6.9-8) months. The median OS time for the entire cohort was 17 (IQR 14.9-17.9) months. Existing data suggest that NaSRT is effective and safe in the treatment of BMs, achieving good local control on BMs with and low incidence of radionecrosis and leptomeningeal dissemination. Distant control appears limited compared to other radiation regimens.
Collapse
Affiliation(s)
- Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy.
| | - Pierfrancesco De Domenico
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy
| | - Silvia Snider
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy
| | - Maria Grazia Nizzola
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
8
|
Acker G, Nachbar M, Soffried N, Bodnar B, Janas A, Krantchev K, Kalinauskaite G, Kluge A, Shultz D, Conti A, Kaul D, Zips D, Vajkoczy P, Senger C. What if: A retrospective reconstruction of resection cavity stereotactic radiosurgery to mimic neoadjuvant stereotactic radiosurgery. Front Oncol 2023; 13:1056330. [PMID: 37007157 PMCID: PMC10062706 DOI: 10.3389/fonc.2023.1056330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Neoadjuvant stereotactic radiosurgery (NaSRS) of brain metastases has gained importance, but it is not routinely performed. While awaiting the results of prospective studies, we aimed to analyze the changes in the volume of brain metastases irradiated pre- and postoperatively and the resulting dosimetric effects on normal brain tissue (NBT). Methods We identified patients treated with SRS at our institution to compare hypothetical preoperative gross tumor and planning target volumes (pre-GTV and pre-PTV) with original postoperative resection cavity volumes (post-GTV and post-PTV) as well as with a standardized-hypothetical PTV with 2.0 mm margin. We used Pearson correlation to assess the association between the GTV and PTV changes with the pre-GTV. A multiple linear regression analysis was established to predict the GTV change. Hypothetical planning for the selected cases was created to assess the volume effect on the NBT exposure. We performed a literature review on NaSRS and searched for ongoing prospective trials. Results We included 30 patients in the analysis. The pre-/post-GTV and pre-/post-PTV did not differ significantly. We observed a negative correlation between pre-GTV and GTV-change, which was also a predictor of volume change in the regression analysis, in terms of a larger volume change for a smaller pre-GTV. In total, 62.5% of cases with an enlargement greater than 5.0 cm3 were smaller tumors (pre-GTV < 15.0 cm3), whereas larger tumors greater than 25.0 cm3 showed only a decrease in post-GTV. Hypothetical planning for the selected cases to evaluate the volume effect resulted in a median NBT exposure of only 67.6% (range: 33.2-84.5%) relative to the dose received by the NBT in the postoperative SRS setting. Nine published studies and twenty ongoing studies are listed as an overview. Conclusion Patients with smaller brain metastases may have a higher risk of volume increase when irradiated postoperatively. Target volume delineation is of great importance because the PTV directly affects the exposure of NBT, but it is a challenge when contouring resection cavities. Further studies should identify patients at risk of relevant volume increase to be preferably treated with NaSRS in routine practice. Ongoing clinical trials will evaluate additional benefits of NaSRS.
Collapse
Affiliation(s)
- Gueliz Acker
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Marcel Nachbar
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Nina Soffried
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Bohdan Bodnar
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Anastasia Janas
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Kiril Krantchev
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Goda Kalinauskaite
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Anne Kluge
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - David Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - David Kaul
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Carolin Senger
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| |
Collapse
|
9
|
Rajkumar S, Liang Y, Wegner RE, Shepard MJ. Utilization of neoadjuvant stereotactic radiosurgery for the treatment of brain metastases requiring surgical resection: a topic review. J Neurooncol 2022; 160:691-705. [DOI: 10.1007/s11060-022-04190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
|
10
|
Li YD, Coxon AT, Huang J, Abraham CD, Dowling JL, Leuthardt EC, Dunn GP, Kim AH, Dacey RG, Zipfel GJ, Evans J, Filiput EA, Chicoine MR. Neoadjuvant stereotactic radiosurgery for brain metastases: a new paradigm. Neurosurg Focus 2022; 53:E8. [PMID: 36321291 PMCID: PMC10602665 DOI: 10.3171/2022.8.focus22367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE For patients with surgically accessible solitary metastases or oligometastatic disease, treatment often involves resection followed by postoperative stereotactic radiosurgery (SRS). This strategy has several potential drawbacks, including irregular target delineation for SRS and potential tumor "seeding" away from the resection cavity during surgery. A neoadjuvant (preoperative) approach to radiation therapy avoids these limitations and offers improved patient convenience. This study assessed the efficacy of neoadjuvant SRS as a new treatment paradigm for patients with brain metastases. METHODS A retrospective review was performed at a single institution to identify patients who had undergone neoadjuvant SRS (specifically, Gamma Knife radiosurgery) followed by resection of a brain metastasis. Kaplan-Meier survival and log-rank analyses were used to evaluate risks of progression and death. Assessments were made of local recurrence and leptomeningeal spread. Additionally, an analysis of the contemporary literature of postoperative and neoadjuvant SRS for metastatic disease was performed. RESULTS Twenty-four patients who had undergone neoadjuvant SRS followed by resection of a brain metastasis were identified in the single-institution cohort. The median age was 64 years (range 32-84 years), and the median follow-up time was 16.5 months (range 1 month to 5.7 years). The median radiation dose was 17 Gy prescribed to the 50% isodose. Rates of local disease control were 100% at 6 months, 87.6% at 12 months, and 73.5% at 24 months. In 4 patients who had local treatment failure, salvage therapy included repeat resection, laser interstitial thermal therapy, or repeat SRS. One hundred thirty patients (including the current cohort) were identified in the literature who had been treated with neoadjuvant SRS prior to resection. Overall rates of local control at 1 year after neoadjuvant SRS treatment ranged from 49% to 91%, and rates of leptomeningeal dissemination from 0% to 16%. In comparison, rates of local control 1 year after postoperative SRS ranged from 27% to 91%, with 7% to 28% developing leptomeningeal disease. CONCLUSIONS Neoadjuvant SRS for the treatment of brain metastases is a novel approach that mitigates the shortcomings of postoperative SRS. While additional prospective studies are needed, the current study of 130 patients including the summary of 106 previously published cases supports the safety and potential efficacy of preoperative SRS with potential for improved outcomes compared with postoperative SRS.
Collapse
Affiliation(s)
- Yuping Derek Li
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Andrew T. Coxon
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Christopher D. Abraham
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Joshua L. Dowling
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Gavin P. Dunn
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Albert H. Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Ralph G. Dacey
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Gregory J. Zipfel
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - John Evans
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Eric A. Filiput
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R. Chicoine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
- Department of Neurosurgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Neoadjuvant Stereotactic Radiotherapy for Brain Metastases: Systematic Review and Meta-Analysis of the Literature and Ongoing Clinical Trials. Cancers (Basel) 2022; 14:cancers14174328. [PMID: 36077863 PMCID: PMC9455064 DOI: 10.3390/cancers14174328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The available treatment strategies for patients with brain metastases remain suboptimal, with current research focused on identifying therapies intended to improve patient outcomes while reducing the risk of treatment-related complications. Several studies have investigated the role of pre-operative neoadjuvant stereotactic radiotherapy, and have proposed it as a valid alternative to post-operative adjuvant stereotactic radiotherapy. The aim of our systematic review was to comprehensively analyze the current literature and ongoing clinical trials evaluating neoadjuvant stereotactic radiotherapy in patients with brain metastases, describing treatment protocols and related outcomes. Early evidence suggests that neoadjuvant stereotactic radiotherapy may offer rates of local control and overall survival comparable to those obtained with adjuvant postoperative SRS, but comparative studies are currently lacking. In addition, neoadjuvant stereotactic radiotherapy shows low rates of post-treatment radiation necrosis and leptomeningeal metastases. Ongoing clinical trials aim to evaluate long-term outcomes in large patient cohorts, with some focused on comparing neoadjuvant stereotactic radiotherapy to adjuvant stereotactic radiosurgery. Abstract Background: Brain metastases (BMs) carry a high morbidity and mortality burden. Neoadjuvant stereotactic radiotherapy (NaSRT) has shown promising results. We systematically reviewed the literature on NaSRT for BMs. Methods: PubMed, EMBASE, Scopus, Web-of-Science, Cochrane, and ClinicalTrial.gov were searched following the PRISMA guidelines to include studies and ongoing trials reporting NaSRT for BMs. Indications, protocols, and outcomes were analyzed using indirect random-effect meta-analyses. Results: We included 7 studies comprising 460 patients with 483 BMs, and 13 ongoing trials. Most BMs originated from non-small lung cell carcinoma (41.4%), breast cancer (18.7%) and melanoma (43.6%). Most patients had single-BM (69.8%) located supratentorial (77.8%). Patients were eligible if they had histologically-proven primary tumors and ≤4 synchronous BMs candidate for non-urgent surgery and radiation. Patients with primary tumors clinically responsive to radiotherapy, prior brain radiation, and leptomeningeal metastases were deemed non-eligible. Median planning target volume was 9.9 cm3 (range, 2.9–57.1), and NaSRT was delivered in 1-fraction (90.9%), 5-fraction (4.8%), or 3-fraction (4.3%), with a median biological effective dose of 39.6 Gy10 (range, 35.7–60). Most patients received piecemeal (76.3%) and gross-total (94%) resection after a median of 1-day (range, 1–10) post-NaSRT. Median follow-up was 19.2-months (range, 1–41.3). Actuarial post-treatment rates were 4% (95%CI: 2–6%) for symptomatic radiation necrosis, 15% (95%CI: 12–18%) and 47% (95%CI: 42–52%) for local and distant recurrences, 6% (95%CI: 3–8%) for leptomeningeal metastases, 81% (95%CI: 75–87%) and 59% (95%CI: 54–63%) for 1-year local tumor control and overall survival. Conclusion: NaSRT is effective and safe for BMs. Ongoing trials will provide high-level evidence on long-term post-treatment outcomes, further compared to adjuvant stereotactic radiotherapy.
Collapse
|
12
|
Dohm AE, Oliver DE, Michael Yu HH, Ahmed KA. Commentary: From Postoperative to Preoperative: A Case Series of Hypofractionated and Single-Fraction Neoadjuvant Stereotactic Radiosurgery for Brain Metastases. Oper Neurosurg (Hagerstown) 2022; 22:e283-e284. [DOI: 10.1227/ons.0000000000000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
|