1
|
Niznik T, Grossen A, Shi H, Stephens M, Herren C, Desai VR. Learning Curve in Robotic Stereoelectroencephalography: Single Platform Experience. World Neurosurg 2024; 182:e442-e452. [PMID: 38030071 DOI: 10.1016/j.wneu.2023.11.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Learning curve, training, and cost impede widespread implementation of new technology. Neurosurgical robotic technology introduces challenges to visuospatial reasoning and requires the acquisition of new fine motor skills. Studies detailing operative workflow, learning curve, and patient outcomes are needed to describe the utility and cost-effectiveness of new robotic technology. METHODS A retrospective analysis was performed of pediatric patients who underwent robotic stereoelectroencephalography (sEEG) with the Medtronic Stealth Autoguide. Workflow, total operative time, and time per electrode were evaluated alongside target accuracy assessed via error measurements and root sum square. Patient demographics and clinical outcomes related to sEEG were also assessed. RESULTS Robot-assisted sEEG was performed in 12 pediatric patients. Comparison of cases over time demonstrated a mean operative time of 363.3 ± 109.5 minutes for the first 6 cases and 256.3 ± 59.1 minutes for the second 6 cases, with reduced operative time per electrode (P = 0.037). Mean entry point error, target point error, and depth point error were 1.82 ± 0.77 mm, 2.26 ± 0.71 mm, and 1.27 ± 0.53 mm, respectively, with mean root sum square of 3.23 ± 0.97 mm. Error measurements between magnetic resonance imaging and computed tomography angiography found computed tomography angiography to be more accurate with significant differences in mean entry point error (P = 0.043) and mean target point error (P = 0.035). The epileptogenic zone was identified in 11 patients, with therapeutic surgeries following in 9 patients, of whom 78% achieved an Engel class I. CONCLUSIONS This study demonstrated institutional workflow evolution and learning curve for the Autoguide in pediatric sEEG, resulting in reduced operative times and increased accuracy over a small number of cases. The platform may seamlessly and quickly be incorporated into clinical practice, and the provided workflow can facilitate a smooth transition.
Collapse
Affiliation(s)
- Taylor Niznik
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Neurosurgery, Section of Pediatric Neurosurgery, Oklahoma Children's Hospital, University of Oklahoma School of Medicine, Oklahoma City, Oklahoma, USA
| | - Audrey Grossen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Neurosurgery, Section of Pediatric Neurosurgery, Oklahoma Children's Hospital, University of Oklahoma School of Medicine, Oklahoma City, Oklahoma, USA
| | - Helen Shi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Neurosurgery, Section of Pediatric Neurosurgery, Oklahoma Children's Hospital, University of Oklahoma School of Medicine, Oklahoma City, Oklahoma, USA
| | - Mark Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Neurosurgery, Section of Pediatric Neurosurgery, Oklahoma Children's Hospital, University of Oklahoma School of Medicine, Oklahoma City, Oklahoma, USA
| | - Cherie Herren
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Virendra R Desai
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Neurosurgery, Section of Pediatric Neurosurgery, Oklahoma Children's Hospital, University of Oklahoma School of Medicine, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
2
|
Mutoh M, Maesawa S, Nakatsubo D, Ishizaki T, Tanei T, Torii J, Ito Y, Hashida M, Saito R. Boltless nylon-suture technique for stereotactic electroencephalography as a safe, effective alternative when the anchor bolt is inappropriate. Acta Neurochir (Wien) 2024; 166:18. [PMID: 38231293 DOI: 10.1007/s00701-024-05889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The use of anchor bolts to secure electrodes to the skull can be difficult in some clinical situations. Herein, we present the boltless technique to secure electrodes to the scalp using nylon sutures to overcome the problems associated with anchor bolts. We investigated the safety, accuracy errors, and patient-related and operative factors affecting errors in the boltless technique. METHODS This single-institution retrospective series analyzed 103 electrodes placed in 12 patients. The target-point localization error (TPLE), entry-point localization error (EPLE), radial error (RE), and depth error (DE) of the electrodes were calculated. RESULTS The median of the mean operative time per electrode was 9.3 min. The median TPLE, EPLE, RE, and absolute DE value were 4.1 mm, 1.6 mm, 2.7 mm, and 1.9 mm, respectively. Positive correlations were observed between the preoperative scalp thickness, mean operative time per electrode, EPLE, RE, and the absolute value of DE versus TPLE (r = .228, p = .02; r = .678, p = .015; r = .228, p = .02; r = .445, p < .01; r = .630, p < .01, respectively), and electrode approach angle versus EPLE (r = .213, p = .031). Multivariate analysis revealed that the absolute value of DE had the strongest influence on the TPLE, followed by RE and preoperative scalp thickness, respectively (β = .938, .544, .060, respectively, p < .001). No complications related to SEEG insertion and monitoring were encountered. CONCLUSION The boltless technique using our unique planning and technical method is a safe, effective, and low-cost alternative in cases where anchor bolts are contraindicated.
Collapse
Affiliation(s)
- Manabu Mutoh
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Satoshi Maesawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan.
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.
| | - Daisuke Nakatsubo
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
- Focused Ultrasound Therapy Center, Nagoya Kyoritsu Hospital, Nagoya, Aichi, Japan
| | - Tomotaka Ishizaki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Takafumi Tanei
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Jun Torii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Yoshiki Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Miki Hashida
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 4668650, Japan
| |
Collapse
|
3
|
Ljungqvist J, Barchéus H, Abbas F, Ozanne A, Nilsson D, Corell A. Clinical experiences and learning curves from robot-assisted neurosurgical biopsies with Stealth Autoguide™. Neurooncol Adv 2024; 6:vdae079. [PMID: 38845693 PMCID: PMC11154144 DOI: 10.1093/noajnl/vdae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Background Biopsies of intracranial lesions are a cornerstone in the diagnosis of unresectable tumors to guide neurooncological treatment; however, the procedure is also associated with risks. The results from the cranial robot guidance system Stealth Autoguide™ were studied after introduction at a neurosurgical department. Primary aims include the presentation of clinical and radiological data, accuracy of radiological diagnosis, learning curves of the new technology, diagnostic yield, and precision. The secondary aim was to study complications. Methods Retrospective data inclusion was performed on patients ≥ 18 years undergoing biopsy with Stealth Autoguide™ due to suspected brain tumors in the first 3 years after the introduction of the technique. Data regarding clinical characteristics, intraoperative variables, pathological diagnosis, and complications were recorded. Analyses of learning curves were performed. Results A total of 79 procedures were performed on 78 patients with a mean age of 62 years (SD 12.7, range 23-82), 30.8% were female. Tumors were often multifocal (63.3%) and supratentorial (89.9%). The diagnostic yield was 87.3%. The first-hand radiological diagnosis was correct in 62.0%. A slight decrease in operation time was observed, although not significant. The surgeon contributed to 12% of the variability. Conclusions Robot-assisted biopsies with Stealth Autoguide™ seem to be comparable, with regards to complications, to frame-based and other frameless neurosurgical biopsies. Learning curves demonstrated no statistical differences in time of surgery and only 12% surgeon-related variation (ie, variation caused by the change of performing surgeon), suggesting a successful implementation of this technical adjunct.
Collapse
Affiliation(s)
- Johan Ljungqvist
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanna Barchéus
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Fatima Abbas
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Anneli Ozanne
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Nilsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alba Corell
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Kreatsoulas DC, Vignolles-Jeong J, Ambreen Y, Damante M, Akhter A, Lonser RR, Elder JB. Surgical Characteristics of Intracranial Biopsy Using a Frameless Stereotactic Robotic Platform: A Single-Center Experience. Oper Neurosurg (Hagerstown) 2023:01787389-990000000-00966. [PMID: 37976149 DOI: 10.1227/ons.0000000000000999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Cranial robotics are a burgeoning field of neurosurgery. To date, all cranial robotic systems described have been computerized, arm-based instruments that take up significant space in the operating room. The Medtronic Stealth Autoguide robot has a smaller operating room footprint and offers multiaxial, frame-based surgical targeting. The authors set out to define the surgical characteristics of a novel robotic platform for brain biopsy in a large patient cohort. METHODS Patients who underwent stereotactic biopsy using the Stealth Autoguide cranial robotic platform from July 2020 to March 2023 were included in this study. Clinical, surgical, and histological data were collected and analyzed. RESULTS Ninety-six consecutive patients (50 female, 46 male) were included. The mean age at biopsy was 53.7 ± 18.0 years. The mean target depth was 68.2 ± 15.3 mm. The biopsy diagnostic tissue acquisition rate was 100%. The mean time from incision to biopsy tissue acquisition was 15.4 ± 9.9 minutes. Target lesions were located throughout the brain: in the frontal lobe (n = 32, 33.3%), parietal lobe (n = 21, 21.9%), temporal lobe (n = 22, 22.9%), deep brain nuclei/thalamus (n = 13, 13.5%), cerebellum (n = 7, 7.3%), and brainstem (n = 1, 1.0%). Most cases were gliomas (n = 75, 78.2%). Patients were discharged home on postoperative day 0 or 1 in 62.5% of cases. A total of 7 patients developed postoperative complications (7.2%). CONCLUSION This cranial robotic platform can be used for efficient, safe, and accurate cranial biopsies that allow for reliable diagnosis of intracranial pathology in a minimally invasive setting.
Collapse
Affiliation(s)
- Daniel C Kreatsoulas
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Joshua Vignolles-Jeong
- The Ohio State University College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yamenah Ambreen
- The Ohio State University College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mark Damante
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Asad Akhter
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - J Bradley Elder
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Vasconcellos FDN, Almeida T, Müller Fiedler A, Fountain H, Santos Piedade G, Monaco BA, Jagid J, Cordeiro JG. Robotic-Assisted Stereoelectroencephalography: A Systematic Review and Meta-Analysis of Safety, Outcomes, and Precision in Refractory Epilepsy Patients. Cureus 2023; 15:e47675. [PMID: 38021558 PMCID: PMC10672406 DOI: 10.7759/cureus.47675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Robotic assistance in stereoelectroencephalography (SEEG) holds promising potential for enhancing accuracy, efficiency, and safety during electrode placement and surgical procedures. This systematic review and meta-analysis, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and International Prospective Register of Systematic Reviews (PROSPERO) registration, delves into the latest advancements and implications of robotic systems in SEEG, while meticulously evaluating outcomes and safety measures. Among 855 patients suffering from medication-refractory epilepsy who underwent SEEG in 29 studies, averaging 24.6 years in age, the most prevalent robots employed were robotic surgical assistant (ROSA) (450 patients), Neuromate (207), Sinovation (140), and ISys1 (58). A total of 8,184 electrodes were successfully implanted, with an average operative time of 157.2 minutes per procedure and 15.1 minutes per electrode, resulting in an overall mean operative time of 157.7 minutes across all studies. Notably, the mean target point error (TPE) stood at 2.13 mm, the mean entry point error (EPE) at 1.48 mm, and postoperative complications occurred in 7.69% of robotically assisted (RA) SEEG cases (60), with 85% of these complications being asymptomatic. This comprehensive analysis underscores the safety and efficacy of RA-SEEG in patients with medication-refractory epilepsy, characterized by low complication rates, reduced operative time, and precise electrode placement, supporting its widespread adoption in clinical practice, with no discernible differences noted among the various robotic systems.
Collapse
Affiliation(s)
| | - Timoteo Almeida
- Department of Neurosurgery, University of Miami, Miami, USA
- Department of Radiation Oncology, University of Miami, Miami, USA
| | | | - Hayes Fountain
- Department of Neurosurgery, University of Miami, Miami, USA
| | | | - Bernardo A Monaco
- Department of Neurological Surgery, University of Miami, Miami, USA
- Department of Neurological Surgery, CDF (Clinica de Dor e Funcional), Sao Paulo, BRA
- Department of Neurological Surgery, University of Sao Paulo, Sao Paulo, BRA
| | - Jonathan Jagid
- Department of Neurological Surgery, University of Miami, Miami, USA
| | | |
Collapse
|
6
|
Yindeedej V, Uda T, Kawashima T, Koh S, Tanoue Y, Kojima Y, Goto T. Electrode Tip Shift During the Stereotactic Electroencephalography Evaluation Period with Boltless Suture Fixation. World Neurosurg 2023; 175:e1210-e1219. [PMID: 37427700 DOI: 10.1016/j.wneu.2023.04.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Electrodes for stereotactic electroencephalography (SEEG) are typically fixed to the skull with anchor bolts. When anchor bolts are unavailable, electrodes have to be fixed using other methods, carrying the possibility of electrode shift. This study, therefore, evaluated the characteristics of electrode tip shift during SEEG monitoring in patients with electrodes fixed using the suture technique. METHODS We retrospectively included patients who underwent SEEG implantation with suture fixation and evaluated the tip shift distance (TSD) of electrodes. Possible influences evaluated included: 1) implantation period, 2) lobe of entry, 3) unilateral or bilateral implantation, 4) electrode length, 5) skull thickness, and 6) scalp thickness difference. RESULTS A total of 50 electrodes in 7 patients were evaluated. TSD was 1.4 ± 2.0 mm (mean ± standard deviation). Implantation period was 8.1 ± 2.2 days. Entry lobe was frontal for 28 electrodes and temporal for 22 electrodes. Implantation was bilateral for 25 electrodes and unilateral for 25 electrodes. Electrode length was 45.4 ± 14.3 mm. Skull thickness was 6.0 ± 3.7 mm. Scalp thickness difference was -1.5 ± 2.1 mm, which was found greater in temporal lobe entry compared with frontal lobe entry. According to univariate analyses, neither implantation period nor electrode length correlated with TSD. Multivariate regression analysis showed that only greater scalp thickness difference correlated significantly with greater TSD (P = 0.0018). CONCLUSIONS Greater scalp thickness difference correlated with greater TSD. Surgeons need to consider the degree of scalp thickness difference and electrode shift when using suture fixation, especially with temporal lobe entry.
Collapse
Affiliation(s)
- Vich Yindeedej
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Division of Neurosurgery, Department of Surgery, Thammasat University Hospital, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Takehiro Uda
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Toshiyuki Kawashima
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Saya Koh
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yuta Tanoue
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Kojima
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Takeo Goto
- Department of Neurosurgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Joris V, Ribeiro-Vaz JG, Finet P, El Tahry R, Elkaim LM, Raftopoulos C, Ferrao-Santos S. Stereoelectroencephalography Implantation Using Frameless Neuronavigation and Varioguide: Prospective Analysis of Accuracy and Safety in a Case Series of 11 Patients. World Neurosurg 2023; 174:e62-e71. [PMID: 36871656 DOI: 10.1016/j.wneu.2023.02.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Stereoencephalography (SEEG) is becoming a widespread diagnostic procedure for drug-resistant epilepsy investigation. Techniques include frame-based and robot-assisted implantation, and more recently, frameless neuronavigated systems (FNSs). Despite its recent use, the accuracy and safety of FNS are still under investigation. OBJECTIVE To assess in a prospective study the accuracy and safety of a specific FNS use for SEEG implantation. METHODS Twelve patients who underwent SEEG implantation using FNS (Varioguide [Brainlab]) were included in this study. Data were collected prospectively and included demographic data, postoperative complications, functional results, and implantation characteristics (i.e., duration and number of electrodes). Further analysis included accuracy at entry point and target using measurements of the euclidean distance between planned and actual trajectories. RESULTS Eleven patients underwent SEEG-FNS implantation from May 2019 to March 2020. One patient did not undergo surgery because of a bleeding disorder. The mean target deviation was 4.06 mm, and mean entry point deviation was 4.2 mm, with insular electrodes significantly more deviated. Results excluding insular electrodes showed a mean target deviation of 3.66 mm and a mean entry point deviation of 3.77 mm. No severe complications occurred; a few mild to moderate adverse events were reported (1 superficial infection, 1 seizure cluster, and 3 transient neurologic impairments). The mean implantation duration by electrodes was 18.5 minutes. CONCLUSIONS Implantation of depth electrodes for SEEG using FNS seems to be safe, but larger prospective studies are needed to validate these results. Accuracy is sufficient for noninsular trajectories but warrant caution for insular trajectories with statistically significantly less accuracy.
Collapse
Affiliation(s)
- Vincent Joris
- Department of Neurosurgery, Cliniques Universitaires St-Luc, Woluwe-St-Lambert, Belgium.
| | | | - Patrice Finet
- Department of Neurosurgery, Cliniques Universitaires St-Luc, Woluwe-St-Lambert, Belgium
| | - Riëm El Tahry
- Department of Neurology, Cliniques Universitaires St-Luc, Woluwe-St-Lambert, Belgium
| | - Lior M Elkaim
- Division of Neurology and Neurosurgery, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Christian Raftopoulos
- Department of Neurosurgery, Cliniques Universitaires St-Luc, Woluwe-St-Lambert, Belgium
| | - Susana Ferrao-Santos
- Department of Neurology, Cliniques Universitaires St-Luc, Woluwe-St-Lambert, Belgium
| |
Collapse
|
8
|
Philipp L, Miller C, Wu C. Letter: Placement of Stereotactic Electroencephalography Depth Electrodes Using the Stealth Autoguide Robotic System: Technical Methods and Initial Results. Oper Neurosurg (Hagerstown) 2022; 23:e216-e217. [PMID: 35972123 DOI: 10.1227/ons.0000000000000351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Lucas Philipp
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Christopher Miller
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Mamelak AN. In Reply: Placement of Stereotactic Electroencephalography Depth Electrodes Using the Stealth Autoguide Robotic System: Technical Methods and Initial Results. Oper Neurosurg (Hagerstown) 2022; 23:e218-e219. [PMID: 35972124 DOI: 10.1227/ons.0000000000000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Adam N Mamelak
- Department of Neurological Surgery, Functional and Epilepsy Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|