1
|
Munakata Y, Hu M, Kitamura Y, Bynder AL, Fritz AS, Schultz RM, Namekawa SH. Chromatin remodeler CHD4 establishes chromatin states required for ovarian reserve formation, maintenance, and germ cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607691. [PMID: 39185217 PMCID: PMC11343143 DOI: 10.1101/2024.08.12.607691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ovarian reserve defines female reproductive lifespan, which in humans spans decades due to the maintenance of meiotic arrest in non-growing oocytes (NGO) residing in primordial follicles. Unknown is how the chromatin state of NGOs is established to enable long-term maintenance of the ovarian reserve. Here, we show that a chromatin remodeler, CHD4, a member of the Nucleosome Remodeling and Deacetylase (NuRD) complex, establishes chromatin states required for formation and maintenance of the ovarian reserve. Conditional loss of CHD4 in perinatal mouse oocytes results in acute death of NGOs and depletion of the ovarian reserve. CHD4 establishes closed chromatin at regulatory elements of pro-apoptotic genes to prevent cell death and at specific genes required for meiotic prophase I to facilitate the transition from meiotic prophase I oocytes to meiotic arrested NGOs. In addition, CHD4 establishes closed chromatin at the regulatory elements of pro-apoptotic genes in male germ cells, allowing male germ cell survival. These results demonstrate a role for CHD4 in defining a chromatin state that ensures germ cell survival, thereby enabling the long-term maintenance of both female and male germ cells.
Collapse
Affiliation(s)
- Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Adam L. Bynder
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Amelia S. Fritz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Richard M. Schultz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Grochowska A, Statkiewicz M, Kulecka M, Cybulska M, Sandowska-Markiewicz Z, Kopczynski M, Drezinska-Wolek E, Tysarowski A, Prochorec-Sobieszek M, Ostrowski J, Mikula M. Evidence supporting the oncogenic role of BAZ1B in colorectal cancer. Am J Cancer Res 2022; 12:4751-4763. [PMID: 36381331 PMCID: PMC9641411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023] Open
Abstract
Bromodomain Adjacent to Zinc Finger Domain 1B (BAZ1B) is involved in multiple nuclear processes, and its role in tumorigenesis is emerging. However, the function of BAZ1B in colorectal cancer (CRC) remains largely unexplored. High-density tissue microarrays comprising 100 pairs of matched normal colon and treatment-naïve CRC samples were analyzed by immunohistochemistry with an anti-BAZ1B antibody. The HCT116 and SW480 CRC cell lines were used for overexpression and small hairpin RNA-mediated BAZ1B knockdown models, respectively. Both cell lines were xenografted to immunodeficient NU/J mice to assess tumor burden. The molecular consequences of alterations of BAZ1B expression were assessed by RNA-Seq of xenografts and functional analyses using the Reactome database. Immunohistochemical analysis of BAZ1B showed that BAZ1B staining intensity was higher in 93 tumor specimens and significantly correlated with tumor size (P = 0.03), but not with the presence of KRAS mutation. BAZ1B overexpression significantly increased and its knockdown inhibited the proliferation of HCT116 and SW480 cell lines, respectively. These findings were reproduced when both cell lines were grown as xenografts. RNA-Seq of HCT116 and SW480 xenografts identified 2046 and 99 differentially expressed genes (DEGs) (adjusted P ≤ 0.05), respectively. Functional annotation of DEGs identified already established as well as new molecular processes dependent on BAZ1B protein expression. In conclusion, BAZ1B is overexpressed in CRC tissue and contributes to CRC cell proliferation in vitro and in vivo. The data support the emerging oncogenic role of BAZ1B in cancerogenesis including in CRC.
Collapse
Affiliation(s)
- Aleksandra Grochowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical EducationWarsaw 01-813, Poland
| | - Malgorzata Statkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical EducationWarsaw 01-813, Poland
| | - Magdalena Cybulska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
| | | | - Michal Kopczynski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
| | - Edyta Drezinska-Wolek
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
| | - Andrzej Tysarowski
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
| | - Monika Prochorec-Sobieszek
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical EducationWarsaw 01-813, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of OncologyWarsaw 02-781, Poland
| |
Collapse
|
3
|
Xu X, Zhang J, Tian Y, Gao Y, Dong X, Chen W, Yuan X, Yin W, Xu J, Chen K, He C, Wei L. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer 2020; 19:128. [PMID: 32838810 PMCID: PMC7446195 DOI: 10.1186/s12943-020-01246-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023] Open
Abstract
Background Deregulated circular RNAs (circRNAs) are associated with the development of cancer and therapy resistance. However, functional research of circRNAs mostly focus on potential miRNA or protein binding and more potential regulation of circRNA on host gene DNA in cancers are yet to be inspected. Method We performed total RNA sequencing on clinical breast cancer samples and identified the expression patterns of circRNAs and corresponding host genes in patient blood, tumor and adjacent normal tissues. qPCR, northern blot and in situ hybridization were used to validate the dysregulation of circRNA circSMARCA5. A series of procedures including R-loop dot-blotting, DNA-RNA immunoprecipitation and mass spectrum, etc. were conducted to explore the regulation of circSMARCA5 on the transcription of exon 15 of SMARCA5. Moreover, immunofluorescence and in vivo experiments were executed to investigate the overexpression of circSMARCA5 with drug sensitivities. Results We found that circRNAs has average higher expression over its host linear genes in peripheral blood. Compared to adjacent normal tissues, circSMARCA5 is decreased in breast cancer tissues, contrary to host gene SMARCA5. The enforced expression of circSMARCA5 induced drug sensitivity of breast cancer cell lines in vitro and in vivo. Furthermore, we demonstrated that circSMARCA5 can bind to its parent gene locus, forming an R-loop, which results in transcriptional pausing at exon 15 of SMARCA5. CircSMARCA5 expression resulted in the downregulation of SMARCA5 and the production of a truncated nonfunctional protein, and the overexpression of circSMARCA5 was sufficient to improve sensitivity to cytotoxic drugs. Conclusion Our results revealed a new regulatory mechanism for circRNA on its host gene and provided evidence that circSMARCA5 may serve as a therapeutic target for drug-resistant breast cancer patients.
Collapse
Affiliation(s)
- Xiaolong Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jingwei Zhang
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Breast and Thyroid Surgery, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yihao Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yang Gao
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xin Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Wenbo Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoning Yuan
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Weinan Yin
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jinjing Xu
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Breast and Thyroid Surgery, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chunjiang He
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China. .,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lei Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, Hubei, China.
| |
Collapse
|
4
|
Hegde RS, Roychoudhury K, Pandey RN. The multi-functional eyes absent proteins. Crit Rev Biochem Mol Biol 2020; 55:372-385. [PMID: 32727223 PMCID: PMC7727457 DOI: 10.1080/10409238.2020.1796922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.
Collapse
Affiliation(s)
- Rashmi S. Hegde
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| | - Kaushik Roychoudhury
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| | - Ram Naresh Pandey
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| |
Collapse
|
5
|
The Initiation of Meiotic Sex Chromosome Inactivation Sequesters DNA Damage Signaling from Autosomes in Mouse Spermatogenesis. Curr Biol 2020; 30:408-420.e5. [PMID: 31902729 PMCID: PMC7076562 DOI: 10.1016/j.cub.2019.11.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022]
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential event in the mammalian male germline. MSCI is directed by a DNA damage response (DDR) pathway centered on the phosphorylation of histone variant H2AX at serine 139 (termed γH2AX). The failure to initiate MSCI is linked to complete meiotic arrest and elimination of germ cells; however, the mechanisms underlying this arrest and elimination remain unknown. To address this question, we established a new separation-of-function mouse model for H2ax that shows specific and complete defects in MSCI. The genetic change is a point mutation in which another H2AX amino acid residue important in the DDR, tyrosine 142 (Y142), is converted to alanine (H2ax-Y142A). In H2ax-Y142A meiosis, the establishment of DDR signals on the chromosome-wide domain of the sex chromosomes is impaired. The initiation of MSCI is required for stage progression, which enables crossover formation, suggesting that the establishment of MSCI permits the timely progression of male meiosis. Our results suggest that normal meiotic progression requires the removal of ATR-mediated DDR signaling from autosomes. We propose a novel biological function for MSCI: the initiation of MSCI sequesters DDR factors from autosomes to the sex chromosomes at the onset of the pachytene stage, and the subsequent formation of an isolated XY nuclear compartment-the XY body-sequesters DDR factors to permit meiotic progression from the mid-pachytene stage onward. VIDEO ABSTRACT.
Collapse
|
6
|
Mahadevan IA, Pentakota S, Roy R, Bhaduri U, Satyanarayana Rao MR. TH2BS11ph histone mark is enriched in the unsynapsed axes of the XY body and predominantly associates with H3K4me3-containing genomic regions in mammalian spermatocytes. Epigenetics Chromatin 2019; 12:53. [PMID: 31493790 PMCID: PMC6731575 DOI: 10.1186/s13072-019-0300-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background TH2B is a major histone variant that replaces about 80–85% of somatic H2B in mammalian spermatocytes and spermatids. The post-translational modifications (PTMs) on TH2B have been well characterised in spermatocytes and spermatids. However, the biological function(s) of these PTMs on TH2B have not been deciphered in great detail. In our attempt to decipher the unique function(s) of histone variant TH2B, we detected the modification in the N-terminal tail, Serine 11 phosphorylation on TH2B (TH2BS11ph) in spermatocytes. Results The current study is aimed at understanding the function of the TH2BS11ph modification in the context of processes that occur during meiotic prophase I. Immunofluorescence studies with the highly specific antibodies revealed that TH2BS11ph histone mark is enriched in the unsynapsed axes of the sex body and is associated with XY body-associated proteins like Scp3, γH2AX, pATM, ATR, etc. Genome-wide occupancy studies as determined by ChIP sequencing experiments in P20 C57BL6 mouse testicular cells revealed that TH2BS11ph is enriched in X and Y chromosomes confirming the immunofluorescence staining pattern in the pachytene spermatocytes. Apart from the localisation of this modification in the XY body, TH2BS11ph is majorly associated with H3K4me3-containing genomic regions like gene promoters, etc. These data were also found to corroborate with the ChIP sequencing data of TH2BS11ph histone mark carried out in P12 C57BL6 mouse testicular cells, wherein we found the predominant localisation of this modification at H3K4me3-containing genomic regions. Mass spectrometry analysis of proteins that associate with TH2BS11ph-containing mononucleosomes revealed key proteins linked with the functions of XY body, pericentric heterochromatin and transcription. Conclusions TH2BS11ph modification is densely localised in the unsynapsed axes of the XY body of the pachytene spermatocyte. By ChIP sequencing studies in mouse P12 and P20 testicular cells, we demonstrate that TH2BS11ph is predominantly associated with H3K4me3 positive genomic regions like gene promoters, etc. We propose that TH2BS11ph modification could act alone or in concert with other histone modifications to recruit the appropriate transcription or XY body recombination protein machinery at specific genomic loci.
Collapse
Affiliation(s)
- Iyer Aditya Mahadevan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO., Bangalore, 560064, India
| | - Satyakrishna Pentakota
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Raktim Roy
- The Graduate School of the Stowers Institute for Medical Research, 1000E. 50th St., Kansas City, MO, 64110, USA
| | - Utsa Bhaduri
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO., Bangalore, 560064, India
| | - Manchanahalli R Satyanarayana Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO., Bangalore, 560064, India.
| |
Collapse
|
7
|
Maezawa S, Hasegawa K, Alavattam KG, Funakoshi M, Sato T, Barski A, Namekawa SH. SCML2 promotes heterochromatin organization in late spermatogenesis. J Cell Sci 2018; 131:jcs217125. [PMID: 30097555 PMCID: PMC6140322 DOI: 10.1242/jcs.217125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis involves the progressive reorganization of heterochromatin. However, the mechanisms that underlie the dynamic remodeling of heterochromatin remain unknown. Here, we identify SCML2, a germline-specific Polycomb protein, as a critical regulator of heterochromatin organization in spermatogenesis. We show that SCML2 accumulates on pericentromeric heterochromatin (PCH) in male germ cells, where it suppresses PRC1-mediated monoubiquitylation of histone H2A at Lysine 119 (H2AK119ub) and promotes deposition of PRC2-mediated H3K27me3 during meiosis. In postmeiotic spermatids, SCML2 is required for heterochromatin organization, and the loss of SCML2 leads to the formation of ectopic patches of facultative heterochromatin. Our data suggest that, in the absence of SCML2, the ectopic expression of somatic lamins drives this process. Furthermore, the centromere protein CENP-V is a specific marker of PCH in postmeiotic spermatids, and SCML2 is required for CENP-V localization on PCH. Given the essential functions of PRC1 and PRC2 for genome-wide gene expression in spermatogenesis, our data suggest that heterochromatin organization and spermatogenesis-specific gene expression are functionally linked. We propose that SCML2 coordinates the organization of heterochromatin and gene expression through the regulation of Polycomb complexes.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Mayuka Funakoshi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Taiga Sato
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
8
|
Alavattam KG, Abe H, Sakashita A, Namekawa SH. Chromosome Spread Analyses of Meiotic Sex Chromosome Inactivation. Methods Mol Biol 2018; 1861:113-129. [PMID: 30218364 PMCID: PMC8243718 DOI: 10.1007/978-1-4939-8766-5_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A distinct form of X chromosome inactivation takes place during male meiosis, when the male sex chromosomes undergo a phenomenon known as meiotic sex chromosome inactivation (MSCI). MSCI is directed by DNA damage response signaling independent of Xist RNA to silence the transcriptional activity of the sex chromosomes, an essential event in male germ cell development. Here, we present protocols for the preparation and analyses of chromosome spread slides of mouse meiotic spermatocytes, thereby enabling a quick, inexpensive, and powerful cytological method to complement gene expression studies.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hironori Abe
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Liu Y, Long YH, Wang SQ, Li YF, Zhang JH. Phosphorylation of H2A.XTyr39positively regulates DNA damage response and is linked to cancer progression. FEBS J 2016; 283:4462-4473. [PMID: 27813335 DOI: 10.1111/febs.13951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/03/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Liu
- College of Life Science; North China University of Science and Technology; Tangshan China
- Cancer Institute; Affiliated Tangshan People's Hospital of North China University of Science and Technology; Tangshan China
| | - Yue-Hong Long
- College of Life Science; North China University of Science and Technology; Tangshan China
| | - Shu-Qing Wang
- Hospital of North China University of Science and Technology; Tangshan China
| | - Yu-Feng Li
- Cancer Institute; Affiliated Tangshan People's Hospital of North China University of Science and Technology; Tangshan China
| | - Jing-Hua Zhang
- Cancer Institute; Affiliated Tangshan People's Hospital of North China University of Science and Technology; Tangshan China
| |
Collapse
|
10
|
Meng J, Zhang XT, Liu XL, Fan L, Li C, Sun Y, Liang XH, Wang JB, Mei QB, Zhang F, Zhang T. WSTF promotes proliferation and invasion of lung cancer cells by inducing EMT via PI3K/Akt and IL-6/STAT3 signaling pathways. Cell Signal 2016; 28:1673-82. [PMID: 27449264 DOI: 10.1016/j.cellsig.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
Abstract
Williams syndrome transcription factor (WSTF), which is encoded by the BAZ1B gene, was first identified as a hemizygously deleted gene in patients with Williams syndrome. WSTF protein has been reported to be involved in transcription, replication, chromatin remodeling and DNA damage response, and also functions as a tyrosine protein kinase. However, the function of WSTF in cancer is not known. Here, we show that WSTF overexpression promotes proliferation, colony formation, migration and invasion of lung cancer A549 and H1299 cells. WSTF overexpression also promotes tumor growth and invasive abilities of lung cancer cells in mouse xenograft models. cDNA microarray and subsequent qRT-PCR validation revealed that WSTF overexpression significantly upregulated the expression of EMT (epithelial to mesenchymal transition) marker fibronectin (FN1) and EMT-inducing genes Fos and CEACAM6. The changes of EMT markers including downregulated E-cadherin and upregulated N-cadherin and FN1 were further confirmed at both mRNA and protein levels upon WSTF overexpression, with typical morphological changes of EMT. Furthermore, WSTF activates both PI3K/Akt and IL-6/STAT3 oncogenic signaling pathways. Treatment with PI3K inhibitor ZSTK474 or STAT3 inhibitor niclosamide reversed the effects of WSTF overexpression by inhibiting cell proliferation, migration and invasion, with decreased level of p-Akt, p-STAT3 and IL-6. ZSTK474 and niclosamide also reversed EMT markers and EMT-inducing proteins including Snail, Slug, Twist and CEACAM6 in WSTF-overexpressing A549 cells. Taken together, these results demonstrate that WSTF may act as an oncoprotein in lung cancer to accelerate tumor aggressiveness by promoting EMT via activation of PI3K/Akt and IL-6/STAT3 pathways.
Collapse
Affiliation(s)
- Jin Meng
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China; Department of Pharmacy, No. 309 Hospital of PLA, Beijing, China
| | - Xu-Tao Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xin-Li Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lei Fan
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hua Liang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian-Bo Wang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
11
|
Serber DW, Runge JS, Menon DU, Magnuson T. The Mouse INO80 Chromatin-Remodeling Complex Is an Essential Meiotic Factor for Spermatogenesis. Biol Reprod 2015; 94:8. [PMID: 26607718 PMCID: PMC4809561 DOI: 10.1095/biolreprod.115.135533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022] Open
Abstract
The ability to faithfully transmit genetic information across generations via the germ cells is a critical aspect of mammalian reproduction. The process of germ cell development requires a number of large-scale modulations of chromatin within the nucleus. One such occasion arises during meiotic recombination, when hundreds of DNA double-strand breaks are induced and subsequently repaired, enabling the transfer of genetic information between homologous chromosomes. The inability to properly repair DNA damage is known to lead to an arrest in the developing germ cells and sterility within the animal. Chromatin-remodeling activity, and in particular the BRG1 subunit of the SWI/SNF complex, has been shown to be required for successful completion of meiosis. In contrast, remodeling complexes of the ISWI and CHD families are required for postmeiotic processes. Little is known regarding the contribution of the INO80 family of chromatin-remodeling complexes, which is a particularly interesting candidate due to its well described functions during DNA double-strand break repair. Here we show that INO80 is expressed in developing spermatocytes during the early stages of meiotic prophase I. Based on this information, we used a conditional allele to delete the INO80 core ATPase subunit, thereby eliminating INO80 chromatin-remodeling activity in this lineage. The loss of INO80 resulted in an arrest during meiosis associated with a failure to repair DNA damage during meiotic recombination.
Collapse
Affiliation(s)
- Daniel W Serber
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John S Runge
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Debashish U Menon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terry Magnuson
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|