1
|
Kushwaha S, Mallik B, Bisht A, Mushtaq Z, Pippadpally S, Chandra N, Das S, Ratnaparkhi G, Kumar V. dAsap regulates cellular protrusions via an Arf6-dependent actin regulatory pathway in S2R+ cells. FEBS Lett 2024; 598:1491-1505. [PMID: 38862211 DOI: 10.1002/1873-3468.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Membrane protrusions are fundamental to cellular functions like migration, adhesion, and communication and depend upon dynamic reorganization of the cytoskeleton. GAP-dependent GTP hydrolysis of Arf proteins regulates actin-dependent membrane remodeling. Here, we show that dAsap regulates membrane protrusions in S2R+ cells by a mechanism that critically relies on its ArfGAP domain and relocalization of actin regulators, SCAR, and Ena. While our data reinforce the preference of dAsap for Arf1 GTP hydrolysis in vitro, we demonstrate that induction of membrane protrusions in S2R+ cells depends on Arf6 inactivation. This study furthers our understanding of how dAsap-dependent GTP hydrolysis maintains a balance between active and inactive states of Arf6 to regulate cell shape.
Collapse
Affiliation(s)
- Shikha Kushwaha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagaban Mallik
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Anjali Bisht
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Srikanth Pippadpally
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Nitika Chandra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Subhradip Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Girish Ratnaparkhi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
2
|
Gupta K, Chakrabarti S, Janardan V, Gogia N, Banerjee S, Srinivas S, Mahishi D, Visweswariah SS. Neuronal expression in Drosophila of an evolutionarily conserved metallophosphodiesterase reveals pleiotropic roles in longevity and odorant response. PLoS Genet 2023; 19:e1010962. [PMID: 37733787 PMCID: PMC10547211 DOI: 10.1371/journal.pgen.1010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Evolutionarily conserved genes often play critical roles in organismal physiology. Here, we describe multiple roles of a previously uncharacterized Class III metallophosphodiesterase in Drosophila, an ortholog of the MPPED1 and MPPED2 proteins expressed in the mammalian brain. dMpped, the product of CG16717, hydrolyzed phosphodiester substrates including cAMP and cGMP in a metal-dependent manner. dMpped is expressed during development and in the adult fly. RNA-seq analysis of dMppedKO flies revealed misregulation of innate immune pathways. dMppedKO flies showed a reduced lifespan, which could be restored in Dredd hypomorphs, indicating that excessive production of antimicrobial peptides contributed to reduced longevity. Elevated levels of cAMP and cGMP in the brain of dMppedKO flies was restored on neuronal expression of dMpped, with a concomitant reduction in levels of antimicrobial peptides and restoration of normal life span. We observed that dMpped is expressed in the antennal lobe in the fly brain. dMppedKO flies showed defective specific attractant perception and desiccation sensitivity, correlated with the overexpression of Obp28 and Obp59 in knock-out flies. Importantly, neuronal expression of mammalian MPPED2 restored lifespan in dMppedKO flies. This is the first description of the pleiotropic roles of an evolutionarily conserved metallophosphodiesterase that may moonlight in diverse signaling pathways in an organism.
Collapse
Affiliation(s)
- Kriti Gupta
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sveta Chakrabarti
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Vishnu Janardan
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Nishita Gogia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sanghita Banerjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Swarna Srinivas
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Deepthi Mahishi
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sandhya S. Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Zhao J, Veeranan-Karmegam R, Baker FC, Mysona BA, Bagchi P, Liu Y, Smith SB, Gonsalvez GB, Bollinger KE. Defining the ligand-dependent proximatome of the sigma 1 receptor. Front Cell Dev Biol 2023; 11:1045759. [PMID: 37351276 PMCID: PMC10284605 DOI: 10.3389/fcell.2023.1045759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Sigma 1 Receptor (S1R) is a therapeutic target for a wide spectrum of pathological conditions ranging from neurodegenerative diseases to cancer and COVID-19. S1R is ubiquitously expressed throughout the visceral organs, nervous, immune and cardiovascular systems. It is proposed to function as a ligand-dependent molecular chaperone that modulates multiple intracellular signaling pathways. The purpose of this study was to define the S1R proximatome under native conditions and upon binding to well-characterized ligands. This was accomplished by fusing the biotin ligase, Apex2, to the C terminus of S1R. Cells stably expressing S1R-Apex or a GFP-Apex control were used to map proximal proteins. Biotinylated proteins were labeled under native conditions and in a ligand dependent manner, then purified and identified using quantitative mass spectrometry. Under native conditions, S1R biotinylates over 200 novel proteins, many of which localize within the endomembrane system (endoplasmic reticulum, Golgi, secretory vesicles) and function within the secretory pathway. Under conditions of cellular exposure to either S1R agonist or antagonist, results show enrichment of proteins integral to secretion, extracellular matrix formation, and cholesterol biosynthesis. Notably, Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) displays increased binding to S1R under conditions of treatment with Haloperidol, a well-known S1R antagonist; whereas Low density lipoprotein receptor (LDLR) binds more efficiently to S1R upon treatment with (+)-Pentazocine ((+)-PTZ), a classical S1R agonist. Furthermore, we demonstrate that the ligand bound state of S1R correlates with specific changes to the cellular secretome. Our results are consistent with the postulated role of S1R as an intracellular chaperone and further suggest important and novel functionalities related to secretion and cholesterol metabolism.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
| | - Rajalakshmi Veeranan-Karmegam
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Frederick C. Baker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, United States
| | - Yutao Liu
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Graydon B. Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Tsapras P, Petridi S, Chan S, Geborys M, Jacomin AC, Sagona AP, Meier P, Nezis IP. Selective autophagy controls innate immune response through a TAK1/TAB2/SH3PX1 axis. Cell Rep 2022; 38:110286. [PMID: 35081354 DOI: 10.1016/j.celrep.2021.110286] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Selective autophagy is a catabolic route that turns over specific cellular material for degradation by lysosomes, and whose role in the regulation of innate immunity is largely unexplored. Here, we show that the apical kinase of the Drosophila immune deficiency (IMD) pathway Tak1, as well as its co-activator Tab2, are both selective autophagy substrates that interact with the autophagy protein Atg8a. We also present a role for the Atg8a-interacting protein Sh3px1 in the downregulation of the IMD pathway, by facilitating targeting of the Tak1/Tab2 complex to the autophagy platform through its interaction with Tab2. Our findings show the Tak1/Tab2/Sh3px1 interactions with Atg8a mediate the removal of the Tak1/Tab2 signaling complex by selective autophagy. This in turn prevents constitutive activation of the IMD pathway in Drosophila. This study provides mechanistic insight on the regulation of innate immune responses by selective autophagy.
Collapse
Affiliation(s)
| | - Stavroula Petridi
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Selina Chan
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Marta Geborys
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | | | - Antonia P Sagona
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK.
| |
Collapse
|
5
|
Baker FC, Neiswender H, Veeranan-Karmegam R, Gonsalvez GB. In vivo proximity biotin ligation identifies the interactome of Egalitarian, a Dynein cargo adaptor. Development 2021; 148:dev199935. [PMID: 35020877 PMCID: PMC8645207 DOI: 10.1242/dev.199935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 06/21/2024]
Abstract
Numerous motors of the Kinesin family contribute to plus-end-directed microtubule transport. However, almost all transport towards the minus-end of microtubules involves Dynein. Understanding the mechanism by which Dynein transports this vast diversity of cargo is the focus of intense research. In selected cases, adaptors that link a particular cargo with Dynein have been identified. However, the sheer diversity of cargo suggests that additional adaptors must exist. We used the Drosophila egg chamber as a model to address this issue. Within egg chambers, Egalitarian is required for linking mRNA with Dynein. However, in the absence of Egalitarian, Dynein transport into the oocyte is severely compromised. This suggests that additional cargoes might be linked to Dynein in an Egalitarian-dependent manner. We therefore used proximity biotin ligation to define the interactome of Egalitarian. This approach yielded several novel interacting partners, including P body components and proteins that associate with Dynein in mammalian cells. We also devised and validated a nanobody-based proximity biotinylation strategy that can be used to define the interactome of any GFP-tagged protein.
Collapse
Affiliation(s)
| | | | | | - Graydon B. Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
7
|
Exploring the dermotoxicity of the mycotoxin deoxynivalenol: combined morphologic and proteomic profiling of human epidermal cells reveals alteration of lipid biosynthesis machinery and membrane structural integrity relevant for skin barrier function. Arch Toxicol 2021; 95:2201-2221. [PMID: 33890134 PMCID: PMC8166681 DOI: 10.1007/s00204-021-03042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
Deoxynivalenol (vomitoxin, DON) is a secondary metabolite produced by Fusarium spp. fungi and it is one of the most prevalent mycotoxins worldwide. Crop infestation results not only in food and feed contamination, but also in direct dermal exposure, especially during harvest and food processing. To investigate the potential dermotoxicity of DON, epidermoid squamous cell carcinoma cells A431 were compared to primary human neonatal keratinocytes (HEKn) cells via proteome/phosphoproteome profiling. In A431 cells, 10 µM DON significantly down-regulated ribosomal proteins, as well as mitochondrial respiratory chain elements (OXPHOS regulation) and transport proteins (TOMM22; TOMM40; TOMM70A). Mitochondrial impairment was reflected in altered metabolic competence, apparently combined with interference of the lipid biosynthesis machinery. Functional effects on the cell membrane were confirmed by live cell imaging and membrane fluidity assays (0.1–10 µM DON). Moreover, a common denominator for both A431 and HEKn cells was a significant downregulation of the squalene synthase (FDFT1). In sum, proteome alterations could be traced back to the transcription factor Klf4, a crucial regulator of skin barrier function. Overall, these results describe decisive molecular events sustaining the capability of DON to impair skin barrier function. Proteome data generated in the study are fully accessible via ProteomeXchange with the accession numbers PXD011474 and PXD013613.
Collapse
|
8
|
IPIP27 Coordinates PtdIns(4,5)P 2 Homeostasis for Successful Cytokinesis. Curr Biol 2019; 29:775-789.e7. [PMID: 30799246 PMCID: PMC6408333 DOI: 10.1016/j.cub.2019.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/03/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
During cytokinesis, an actomyosin contractile ring drives the separation of the two daughter cells. A key molecule in this process is the inositol lipid PtdIns(4,5)P2, which recruits numerous factors to the equatorial region for contractile ring assembly. Despite the importance of PtdIns(4,5)P2 in cytokinesis, the regulation of this lipid in cell division remains poorly understood. Here, we identify a role for IPIP27 in mediating cellular PtdIns(4,5)P2 homeostasis. IPIP27 scaffolds the inositol phosphatase oculocerebrorenal syndrome of Lowe (OCRL) by coupling it to endocytic BAR domain proteins. Loss of IPIP27 causes accumulation of PtdIns(4,5)P2 on aberrant endomembrane vacuoles, mislocalization of the cytokinetic machinery, and extensive cortical membrane blebbing. This phenotype is observed in Drosophila and human cells and can result in cytokinesis failure. We have therefore identified IPIP27 as a key modulator of cellular PtdIns(4,5)P2 homeostasis required for normal cytokinesis. The results indicate that scaffolding of inositol phosphatase activity is critical for maintaining PtdIns(4,5)P2 homeostasis and highlight a critical role for this process in cell division. IPIP27 scaffolds the inositol phosphatase OCRL via coupling to BAR domain proteins IPIP27 scaffolding of OCRL is critical for cellular PtdIns(4,5)P2 homeostasis IPIP27 is required for cortical actin and membrane stability during cytokinesis IPIP27 function is conserved from flies to humans
Collapse
|
9
|
Wasserman SS, Shteiman-Kotler A, Harris K, Iliadi KG, Persaud A, Zhong Y, Zhang Y, Fang X, Boulianne GL, Stewart B, Rotin D. Regulation of SH3PX1 by dNedd4-long at the Drosophila neuromuscular junction. J Biol Chem 2018; 294:1739-1752. [PMID: 30518551 DOI: 10.1074/jbc.ra118.005161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/12/2018] [Indexed: 11/06/2022] Open
Abstract
Drosophila Nedd4 (dNedd4) is a HECT E3 ubiquitin ligase present in two major isoforms: short (dNedd4S) and long (dNedd4Lo), with the latter containing two unique regions (N terminus and Middle). Although dNedd4S promotes neuromuscular synaptogenesis (NMS), dNedd4Lo inhibits it and impairs larval locomotion. To explain how dNedd4Lo inhibits NMS, MS analysis was performed to find its binding partners and identified SH3PX1, which binds dNedd4Lo unique Middle region. SH3PX1 contains SH3, PX, and BAR domains and is present at neuromuscular junctions, where it regulates active zone ultrastructure and presynaptic neurotransmitter release. Here, we demonstrate direct binding of SH3PX1 to the dNedd4Lo Middle region (which contains a Pro-rich sequence) in vitro and in cells, via the SH3PX1-SH3 domain. In Drosophila S2 cells, dNedd4Lo overexpression reduces SH3PX1 levels at the cell periphery. In vivo overexpression of dNedd4Lo post-synaptically, but not pre-synaptically, reduces SH3PX1 levels at the subsynaptic reticulum and impairs neurotransmitter release. Unexpectedly, larvae that overexpress dNedd4Lo post-synaptically and are heterozygous for a null mutation in SH3PX1 display increased neurotransmission compared with dNedd4Lo or SH3PX1 mutant larvae alone, suggesting a compensatory effect from the remaining SH3PX1 allele. These results suggest a post-synaptic-specific regulation of SH3PX1 by dNedd4Lo.
Collapse
Affiliation(s)
- Samantha S Wasserman
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Ontario M5G 0A4, Canada
| | - Alina Shteiman-Kotler
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Ontario M5G 0A4, Canada
| | - Kathryn Harris
- Department of Cell and System Biology, University of Toronto, Ontario M5G 0A4, Canada
| | - Konstantin G Iliadi
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada
| | - Avinash Persaud
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada
| | - Yvonne Zhong
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Ontario M5G 0A4, Canada
| | - Yi Zhang
- Department of Gastrointestinal Surgery, Jilin University, Changchun 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal Surgery, Jilin University, Changchun 130033, China
| | - Gabrielle L Boulianne
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Ontario M5G 0A4, Canada
| | - Bryan Stewart
- Department of Cell and System Biology, University of Toronto, Ontario M5G 0A4, Canada
| | - Daniela Rotin
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
10
|
Liu C, Zhai X, Du H, Cao Y, Cao H, Wang Y, Yu X, Gao J, Xu Z. Sorting nexin 9 (SNX9) is not essential for development and auditory function in mice. Oncotarget 2018; 7:68921-68932. [PMID: 27655699 PMCID: PMC5356600 DOI: 10.18632/oncotarget.12040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Sorting nexins are a large family of evolutionarily conserved proteins that play fundamental roles in endocytosis, endosomal sorting and signaling. As an important member of sorting nexin family, sorting nexin 9 (SNX9) has been shown to participate in coordinating actin polymerization with membrane tubulation and vesicle formation. We previously showed that SNX9 is expressed in mouse auditory hair cells and might regulate actin polymerization in those cells. To further examine the physiological role of SNX9, we generated Snx9 knockout mice using homologous recombination method. Unexpectedly, Snx9 knockout mice have normal viability and fertility, and are morphologically and behaviorally indistinguishable from control mice. Further investigation revealed that the morphology and function of auditory hair cells are not affected by Snx9 inactivation, and Snx9 knockout mice have normal hearing threshold. In conclusion, our data revealed that Snx9-deficient mice do not show defects in development as well as auditory function, suggesting that SNX9 is not essential for mice development and hearing.
Collapse
Affiliation(s)
- Chengcheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yujie Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Huiren Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiao Yu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P. R. China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
11
|
Bendris N, Schmid SL. Endocytosis, Metastasis and Beyond: Multiple Facets of SNX9. Trends Cell Biol 2016; 27:189-200. [PMID: 27989654 DOI: 10.1016/j.tcb.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
Sorting nexin (SNX)9 was first discovered as an endocytic accessory protein involved in clathrin-mediated endocytosis. However, recent data suggest that SNX9 is a multifunctional scaffold that coordinates membrane trafficking and remodeling with changes in actin dynamics to affect diverse cellular processes. Here, we review the accumulated knowledge on SNX9 with an emphasis on its recently identified roles in clathrin-independent endocytic pathways, cell invasion, and cell division, which have implications for SNX9 function in human disease, including cancer.
Collapse
Affiliation(s)
- Nawal Bendris
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sandra L Schmid
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Ukken FP, Bruckner JJ, Weir KL, Hope SJ, Sison SL, Birschbach RM, Hicks L, Taylor KL, Dent EW, Gonsalvez GB, O'Connor-Giles KM. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission. J Cell Sci 2015; 129:166-77. [PMID: 26567222 PMCID: PMC4732300 DOI: 10.1242/jcs.178699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function.
Collapse
Affiliation(s)
- Fiona P Ukken
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kurt L Weir
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah J Hope
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha L Sison
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan M Birschbach
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lawrence Hicks
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erik W Dent
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kate M O'Connor-Giles
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|