1
|
Cochran JK, Banks C, Buchwalter DB. Respirometry reveals major lineage-based differences in the energetics of osmoregulation in aquatic invertebrates. J Exp Biol 2023; 226:jeb246376. [PMID: 37767711 PMCID: PMC10629685 DOI: 10.1242/jeb.246376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
All freshwater organisms are challenged to control their internal balance of water and ions in strongly hypotonic environments. We compared the influence of external salinity on the oxygen consumption rates (ṀO2) of three species of freshwater insects, one snail and two crustaceans. Consistent with available literature, we found a clear decrease in ṀO2 with increasing salinity in the snail Elimia sp. and crustaceans Hyalella azteca and Gammarus pulex (r5=-0.90, P=0.03). However, we show here for the first time that metabolic rate was unchanged by salinity in the aquatic insects, whereas ion transport rates were positively correlated with higher salinities. In contrast, when we examined the ionic influx rates in the freshwater snail and crustaceans, we found that Ca uptake rates were highest under the most dilute conditions, while Na uptake rates increased with salinity. In G. pulex exposed to a serially diluted ion matrix, Ca uptake rates were positively associated with ṀO2 (r5=-0.93, P=0.02). This positive association between Ca uptake rate and ṀO2 was also observed when conductivity was held constant but Ca concentration was manipulated (1.7-17.3 mg Ca l-1) (r5=0.94, P=0.05). This finding potentially implicates the cost of calcium uptake as a driver of increased metabolic rate under dilute conditions in organisms with calcified exoskeletons and suggests major phyletic differences in osmoregulatory physiology. Freshwater insects may be energetically challenged by higher salinities, while lower salinities may be more challenging for other freshwater taxa.
Collapse
Affiliation(s)
- Jamie K. Cochran
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Catelyn Banks
- North Carolina School of Science and Mathematics, 1219 Broad St, Durham, NC 27705, USA
| | - David B. Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Barrios-Figueroa R, Urbina MA. Behavioural and physiological responses to salinization and air exposure during the ontogeny of a freshwater South American snail. CONSERVATION PHYSIOLOGY 2023; 11:coac089. [PMID: 36726867 PMCID: PMC9885736 DOI: 10.1093/conphys/coac089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Salinization is of global concern, threatening freshwater biodiversity. Salinity tolerance is highly variable and therefore needs to be evaluated on a species-specific basis. An estuarine population of Chilina dombeiana, a freshwater gastropod endemic to Chile and classified as vulnerable, has been recently found in the Biobío River's mouth, suggesting some degree of tolerance to brackish waters. This study evaluated the survival, behaviour (medium preference) and physiology of C. dombeiana when exposed to salinities higher than freshwater, thus elucidating the potential mechanisms used to survive salinization. Chilina dombeiana belongs to the Pulmonate group;, so we evaluated oxygen uptake in air and water, aiming to evaluate emersion as a potential avoidance response to a progressive salinity increase. Complete embryo development was observed for salinities ≤ 16 PSU (practical salinity units) but hatching rates above 50% were only achieved in freshwater (0 PSU). It was also found that salinity had stage-specific effects during embryonic development. In adults, acute exposure to brackish water (12 PSU) caused a decrease in oxygen consumption (compared to freshwater), in the ammonium excretion rates and in the percentage of muscular water content. Although C. dombeiana was able to take up oxygen in both mediums, survival in air decreased over time (days), which correlates with the behavioural preference to remain submerged, even at elevated salinities. Considering the survival of adults and embryos decreased as salinity increased and the lack of an avoidance behaviour or a physiological ability to maintain homeostasis at salinities higher than freshwater, our results suggest this snail could be adversely affected by salinization in the long term. Furthermore, given the ability of C. dombeiana to uptake oxygen in both mediums, it should be considered as a facultative air breather snail, rather than a strictly aquatic species.
Collapse
Affiliation(s)
- R Barrios-Figueroa
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile
- Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, 4030000, Chile
| | - M A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, PO Box 1313, Concepción, 4030000, Chile
| |
Collapse
|
3
|
Álvarez-Vergara F, Sanchez-Hernandez JC, Sabat P. Biochemical and osmoregulatory responses of the African clawed frog experimentally exposed to salt and pesticide. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109367. [PMID: 35569782 DOI: 10.1016/j.cbpc.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Salinization and pollution are two main environmental stressors leading deterioration to water quality and degradation of aquatic ecosystems. Amphibians are a highly sensitive group of vertebrates to environmental disturbance of aquatic ecosystems. However, studies on the combined effect of salinization and pollution on the physiology of amphibians are limited. In this study, we measured the standard metabolic rate (SMR) and biochemical parameters of adult males of the invasive frog Xenopus laevis after 45 days of exposure to contrasting salinity environments (400 and 150 mOsm NaCl) with either 1.0 μg/L of the organophosphate pesticide chlorpyrifos (CPF) or pesticide-free medium. Our results revealed a decrease in SMR of animals exposed to the pesticide and in the ability to concentrate the plasma in animals exposed simultaneously to both stressors. The lack of ability to increase plasma concentration in animals exposed to both salt water and CPF, suggests that osmoregulatory response is decreased by pesticide exposure. In addition, we found an increase of liver citrate synthase activity in response to salt stress. Likewise, the liver acetylcholinesterase (AChE) activity decreased by 50% in frogs exposed to salt water and CPF and 40% in those exposed only to CPF, which suggest an additive effect of salinity on inhibition of AChE. Finally, oxidative stress increased as shown by the higher lipid peroxidation and concentration of aqueous peroxides found in the group exposed to salt water and pesticide. Thus, our results revealed that X. laevis physiology is compromised by salinization and pesticide exposure to both environmental stressors join.
Collapse
Affiliation(s)
- Felipe Álvarez-Vergara
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
| | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Science (ICAM), University of Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
4
|
Lorrain-Soligon L, Bichet C, Robin F, Brischoux F. From the Field to the Lab: Physiological and Behavioural Consequences of Environmental Salinity in a Coastal Frog. Front Physiol 2022; 13:919165. [PMID: 35721550 PMCID: PMC9201275 DOI: 10.3389/fphys.2022.919165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental salinization is recognized as a global threat affecting biodiversity, particularly in coastal ecosystems (affected by sea level rise and increased frequency and severity of storms), and the consequent osmoregulatory challenges can negatively affect wildlife. In order to assess whether coastal species can respond to changes in environmental salinity, it remains essential to investigate the consequences of exposure to salinity in an environmentally-relevant context. In this study, we assessed the consequences of exposure to environmental salinity in coastal frogs (Pelophylax sp., N = 156) both in the field and experimentally, using a comprehensive combination of markers of physiology, behaviour and ecology. Exposure to salinity in the field negatively affected physiological parameters (osmolality, monocytes and eosinophils counts), as well as body condition and locomotor performance, and influenced size- and sex-specific habitat selection. Further, we demonstrated in a controlled experiment that short-term exposure to salinity strongly affected physiological parameters (salt influxes, water effluxes, immunity-related stress markers) and locomotor performance. Most of these effects were transient (water and salt fluxes, locomotor performance) once optimal conditions resumed (i.e., freshwater). Taken together, our results highlight the need to investigate whether exposure to environmental salinity can ultimately affect individual fitness and population persistence across taxa.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS–La Rochelle Université, Villiers en Bois, France
- *Correspondence: Léa Lorrain-Soligon,
| | - Coraline Bichet
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS–La Rochelle Université, Villiers en Bois, France
| | - Frédéric Robin
- LPO France, Fonderies Royales, Rochefort, France
- Réserve Naturelle de Moëze-Oléron, LPO, Plaisance, Saint-Froult, France
| | - François Brischoux
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS–La Rochelle Université, Villiers en Bois, France
| |
Collapse
|
5
|
Méndez‐Narváez J, Warkentin KM. Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecol Evol 2022; 12:e8570. [PMID: 35222954 PMCID: PMC8843769 DOI: 10.1002/ece3.8570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Vertebrate colonization of land has occurred multiple times, including over 50 origins of terrestrial eggs in frogs. Some environmental factors and phenotypic responses that facilitated these transitions are known, but responses to water constraints and risk of ammonia toxicity during early development are poorly understood. We tested if ammonia accumulation and dehydration risk induce a shift from ammonia to urea excretion during early stages of four anurans, from three origins of terrestrial development. We quantified ammonia and urea concentrations during early development on land, under well-hydrated and dry conditions. Where we found urea excretion, we tested for a plastic increase under dry conditions and with ammonia accumulation in developmental environments. We assessed the potential adaptive role of urea excretion by comparing ammonia tolerance measured in 96h-LC50 tests with ammonia levels in developmental environments. Ammonia accumulated in foam nests and perivitelline fluid, increasing over development and reaching higher concentrations under dry conditions. All four species showed high ammonia tolerance, compared to fishes and aquatic-breeding frogs. Both nest-dwelling larvae of Leptodactylus fragilis and late embryos of Hyalinobatrachium fleischmanni excreted urea, showing a plastic increase under dry conditions. These two species can develop the longest on land and urea excretion appears adaptive, preventing their exposure to potentially lethal levels of ammonia. Neither late embryos of Agalychnis callidryas nor nest-dwelling larvae of Engystomops pustulosus experienced toxic ammonia levels under dry conditions, and neither excreted urea. Our results suggest that an early onset of urea excretion, its increase under dry conditions, and elevated ammonia tolerance can all help prevent ammonia toxicity during terrestrial development. High ammonia represents a general risk for development which may be exacerbated as climate change increases dehydration risk for terrestrial-breeding frogs. It may also be a cue that elicits adaptive physiological responses during early development.
Collapse
Affiliation(s)
- Javier Méndez‐Narváez
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- CalimaFundación para la Investigación de la Biodiversidad y Conservación en el TrópicoCaliColombia
| | - Karen M. Warkentin
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
6
|
Lorrain-Soligon L, Robin F, Lelong V, Jankovic M, Barbraud C, Brischoux F. Distance to coastline modulates morphology and population structure in a coastal amphibian. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Salinization due to sea-level rise and marine submersions is expected to strongly impact coastal ecosystems. Exposure to salinity can negatively impact biodiversity especially in coastal wetlands. To understand comprehensively the consequences of environmental salinization on coastal biodiversity, it is essential to document how coastal species currently respond to exposure to salinity. In this study, we investigated how variations of environmental salinity relative to the distance to the ocean influence population structure (age ratio and sex ratio), and individual hydro-mineral balance (osmolality) and morphology (size, mass, condition) in the western spadefoot toad (Pelobates cultripes) in two populations from the French Atlantic coast. We show that distance to coastline strongly influences exposure to salt on a small spatial scale. Some variables (e.g., abundances, osmolality, morphology) responded similarly in both sites and may be related to salt deposition due to landward sea-spray. Interestingly, other variables (sex ratio and age ratio) displayed site-specific responses and appeared to be linked to the salinity of breeding sites. Distance to the shoreline appears to be a critical population structuring factor in this coastal salt-tolerant species. Future studies should investigate how distance to shoreline—and thus environmental salinity—can ultimately affect individual performances and fitness.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS – La Rochelle Université, Villiers en Bois, France
| | - Frédéric Robin
- LPO France, Fonderies Royales, Rochefort, France
- Réserve naturelle de Moëze-Oléron, LPO, Plaisance, Saint-Froult, France
- Réserve naturelle du marais d’Yves LPO, Ferme de la belle espérance, Yves, France
| | - Vincent Lelong
- Réserve naturelle de Moëze-Oléron, LPO, Plaisance, Saint-Froult, France
| | - Marko Jankovic
- Réserve naturelle du marais d’Yves LPO, Ferme de la belle espérance, Yves, France
| | - Christophe Barbraud
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS – La Rochelle Université, Villiers en Bois, France
| | - François Brischoux
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS – La Rochelle Université, Villiers en Bois, France
| |
Collapse
|
7
|
Szeligowski RV, Scanley JA, Broadbridge CC, Brady SP. Road salt compromises functional morphology of larval gills in populations of an amphibian. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118441. [PMID: 34728326 DOI: 10.1016/j.envpol.2021.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Across the planet, winter de-icing practices have caused secondary salinization of freshwater habitats. Many amphibians are vulnerable because of permeable skin and reliance on small ponds, where salinity can be high. Early developmental stages of amphibians are especially sensitive to salt, and larvae developing in salt-polluted environments must osmoregulate through ion exchange in gills. Though ionoregulation in amphibian gills is generally understood, the role of gill morphology remains poorly described. Yet gill structure should affect ionoregulatory capacity, for instance in terms of available surface area. As larval amphibian gills also play critical roles in gas exchange and foraging, changes in gill morphology from salt pollution potentially affect not only osmoregulation, but also respiration and feeding. Here, we used an exposure experiment to quantify salinity effects on larval gill morphology in wood frogs (Rana sylvatica). We measured a suite of morphological traits on gill tufts-where ionoregulation and gas exchange occur-and on gill filters used in feeding. Larvae raised in elevated salinity developed larger gill tufts but with lower surface area to volume ratio. Epithelial cells on these tufts were less circular but occurred at higher densities. Gill filters showed increased spacing, likely reducing feeding efficiency. Many morphological gill traits responded quadratically, suggesting that salinity might induce plasticity in gills at intermediate concentrations until energetic demands exceed plasticity. Together, these changes likely diminish ionoregulatory and respiratory functionality of gill tufts, and compromise feeding functionality of gill filters. Thus, a singular change in aquatic environment from a widespread pollutant appears to generate a suite of consequences via changes in gill morphology. Critically, these changes in traits likely compound the severity of fitness impacts in populations dwelling in salinized environments, whereby ionoregulatory energetic demands should increase respiratory and foraging demands, but in individuals who possess structures poorly adapted for these functions.
Collapse
Affiliation(s)
- Richard V Szeligowski
- Biology Department, Southern Connecticut State University, New Haven, CT, 06515, USA.
| | - Jules A Scanley
- Center for Nanotechnology, Connecticut State Colleges and Universities, New Haven, CT, 06515, USA
| | - Christine C Broadbridge
- Center for Nanotechnology, Connecticut State Colleges and Universities, New Haven, CT, 06515, USA
| | - Steven P Brady
- Biology Department, Southern Connecticut State University, New Haven, CT, 06515, USA
| |
Collapse
|
8
|
Venâncio C, Ribeiro R, Lopes I. Seawater intrusion: an appraisal of taxa at most risk and safe salinity levels. Biol Rev Camb Philos Soc 2021; 97:361-382. [PMID: 34626061 DOI: 10.1111/brv.12803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Seawater intrusion into low-lying coastal ecosystems carries environmental risks. Salinity levels at these coastal ecosystems may vary substantially, causing ecological effects from mortality to several sublethal endpoints, such as depression of rates of feeding, somatic growth, or reproduction. This review attempts to establish safe salinity levels for both terrestrial and freshwater temperate ecosystems by integrating data available in the literature. We have four specific objectives: (i) to identify the most sensitive ecological taxa to seawater intrusion; (ii) to establish maximum acceptable concentrations-environmental quality standards (MAC-EQSs) for sea water (SW) from species sensitivity distributions (SSDs); (iii) to compile from the literature examples of saline intrusion [to be used as predicted environmental concentrations (PECs)] and to compute risk quotients for the temperate zone; and (iv) to assess whether sodium chloride (NaCl) is an appropriate surrogate for SW in ecological risk assessments by comparing SSD-derived values for NaCl and SW and by comparing these with field data. Zooplankton, early life stages of amphibians and freshwater mussels were the most sensitive ecological receptors for the freshwater compartment, while soil invertebrates were the most sensitive ecological receptors for the terrestrial compartment. Hazard concentration 5% (HC5 ) values, defined as the concentration (herein measured as conductivity) that affects (causes lethal or sublethal effects) 5% of the species in a distribution, computed for SW were over 22 and 40 times lower than the conductivity of natural SW (≈ 52 mS/cm) for the freshwater and soil compartment, respectively. This sensitivity of both compartments means that small increments in salinity levels or small SW intrusions might represent severe risks for low-lying coastal ecosystems. Furthermore, the proximity between HC5 values for the soil and freshwater compartments suggests that salinized soils might represent an additional risk for nearby freshwater systems. This sensitivity was corroborated by the derivation of risk quotients using real saline intrusion examples (PECs) collected from the literature: risk was >1 in 34 out of 37 examples. By contrast, comparisons of HC5 values obtained from SSDs in field surveys or mesocosm studies suggest that natural communities are more resilient to salinization than expected. Finally, NaCl was found to be slightly more toxic than SW, at both lethal and sublethal levels, and, thus, is suggested to be an acceptable surrogate for use in risk assessment.
Collapse
Affiliation(s)
- Cátia Venâncio
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Rui Ribeiro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
9
|
Nagy KA, Guerra-Correa C, Shoemaker VH. Dining Intertidally: Diet, Energetics, and Osmotic Relations of Two Shoreline-Foraging Tropidurid Lizard Species. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2021. [DOI: 10.2994/sajh-d-19-00098.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kenneth A. Nagy
- Department of Ecology and Evolutionary Biology, 621 CE Young Drive South, University of California, Los Angeles, California 90095-1606, USA
| | - Carlos Guerra-Correa
- Centro Regional de Estudios y Educación Ambiental, University of Antofagasta, Chile
| | - Vaughan H. Shoemaker
- Department of Biology, University of California, Riverside, California 92502, USA (deceased)
| |
Collapse
|
10
|
Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, Titze J. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol 2020; 17:65-77. [PMID: 33005037 DOI: 10.1038/s41581-020-00350-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic inhibition of the sodium-glucose co-transporter 2 (SGLT2) leads to substantial loss of energy (in the form of glucose) and additional solutes (in the form of Na+ and its accompanying anions) in urine. However, despite the continuously elevated solute excretion, long-term osmotic diuresis does not occur in humans with SGLT2 inhibition. Rather, patients on SGLT2 inhibitor therapy adjust to the reduction in energy availability and conserve water. The metabolic adaptations that are induced by SGLT2 inhibition are similar to those observed in aestivation - an evolutionarily conserved survival strategy that enables physiological adaptation to energy and water shortage. Aestivators exploit amino acids from muscle to produce glucose and fatty acid fuels. This endogenous energy supply chain is coupled with nitrogen transfer for organic osmolyte production, which allows parallel water conservation. Moreover, this process is often accompanied by a reduction in metabolic rate. By comparing aestivation metabolism with the fuel switches that occur during therapeutic SGLT2 inhibition, we suggest that SGLT2 inhibitors induce aestivation-like metabolic patterns, which may contribute to the improvements in cardiac and renal function observed with this class of therapeutics.
Collapse
Affiliation(s)
- Adriana Marton
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Tatsuroh Kaneko
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Atsutaka Yasui
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Jens Titze
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore. .,Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany. .,Division of Nephrology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
11
|
Wu CW, Tessier SN, Storey KB. Dehydration stress alters the mitogen-activated-protein kinase signaling and chaperone stress response in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110461. [PMID: 32497588 DOI: 10.1016/j.cbpb.2020.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
In arid conditions, the African Clawed frog Xenopus laevis enters a state of estivation dormancy as an adaptive survival strategy. Under estivation, X. laevis experience severe dehydration stress as 25-35% of total body water is lost. Dehydration in X. laevis can lead to periods of hypoxia due to elevated blood viscosity that impedes tissue perfusion. To understand how X. laevis survives under such stress, we studied the regulation pattern of key mitogen-activated protein kinases (MAPK) and their downstream transcription factors, along with several heat shock proteins in the oxygen sensitive brain and heart tissue of X. laevis under dehydration stress. Our study revealed that the activation phosphorylation residues of MAPK including JNK and MSK and their downstream transcription factors c-Jun and ATF2 are significantly decreased in the heart under dehydration. Given that JNK, c-Jun, and ATF2 are known positive regulators of apoptosis, this regulatory pattern suggest that a state of pro-survival signals may be established in the dehydrated heart. In support of this, protein levels of HSP60, a pro-apoptotic mitochondrial chaperone, was also downregulated in the heart in response to dehydration stress. In the brain tissue, most proteins remain unchanged with the exception of the apoptosis regulating p53 transcription factor, which showed a significant decrease in its activating phosphorylation residue under dehydration. Overall, our study revealed that in the Xenopus brain and heart, a specific suppression pattern of MAPK, transcription factors, and HSP takes place to potentially establish a state of pro-survival under dehydration stress.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, SK S7N 5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Shannon N Tessier
- BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Canada.
| |
Collapse
|
12
|
Hidalgo J, Álvarez-Vergara F, Peña-Villalobos I, Contreras-Ramos C, Sanchez-Hernandez JC, Sabat P. Effect of salinity acclimation on osmoregulation, oxidative stress, and metabolic enzymes in the invasive Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:333-340. [PMID: 32306529 DOI: 10.1002/jez.2360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Aquatic animals often display physiological adjustments to improve their biological performance and hydrosaline balance in saline environments. In addition to energetic costs associated with osmoregulation, oxidative stress, and the activation of the antioxidant system are common cellular responses to salt stress in many species, but the knowledge of osmoregulation-linked oxidative homeostasis in amphibians is scarce. Here we studied the biochemical responses and oxidative responses of Xenopus laevis females exposed for 40 days to two contrasting salinities: hypo-osmotic (150 mOsm·kg-1 ·H2 O NaCl, HYPO group) and hyper-osmotic environments (340 mOsm·kg-1 ·H2 O NaCl, HYPER group). We found an increase of plasma osmolality and plasma urea concentration in the animals incubated in the HYPER treatment. Increases in electrolyte concentration were paralleled with an increase of both citrate synthase and cytochrome c oxidase activities in liver and heart. Interestingly, HYPO group had higher catabolic activity of the skin and liver total antioxidant capacity (TAC), compared with animals from the HYPER group. Moreover, there was an inverse relationship between liver TAC and plasma osmolality; and with the metabolic enzymes from liver. These findings suggest that salinity induces changes in urea metabolism and specific activity of metabolic enzymes, which appears to be tissue-dependent in X. laevis. Contrary to our expectations, we also found a moderate change in the oxidative status as revealed by the increase in TAC activity in the animals acclimated to low salinity medium, but constancy in the lipid peroxidation of membranes.
Collapse
Affiliation(s)
- Jaime Hidalgo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile
| | - Felipe Álvarez-Vergara
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile
| | - Isaac Peña-Villalobos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile.,Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carolina Contreras-Ramos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile
| | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile.,Departamento de Ecología, Center of Applied Ecology & Sustainability (CAPES-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Brady SP, Goedert D. Positive Sire Effects and Adaptive Genotype by Environment Interaction Occur despite Pattern of Local Maladaptation in Roadside Populations of an Amphibian. COPEIA 2017. [DOI: 10.1643/cg-16-535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Masero JA, Abad-Gómez JM, Gutiérrez JS, Santiago-Quesada F, Senner NR, Sánchez-Guzmán JM, Piersma T, Schroeder J, Amat JA, Villegas A. Wetland salinity induces sex-dependent carry-over effects on the individual performance of a long-distance migrant. Sci Rep 2017; 7:6867. [PMID: 28761120 PMCID: PMC5537338 DOI: 10.1038/s41598-017-07258-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Salinization is having a major impact on wetlands and its biota worldwide. Specifically, many migratory animals that rely on wetlands are increasingly exposed to elevated salinity on their nonbreeding grounds. Experimental evidence suggests that physiological challenges associated with increasing salinity may disrupt self-maintenance processes in these species. Nonetheless, the potential role of salinity as a driver of ecological carry-over effects remains unstudied. Here, we investigated the extent to which the use of saline wetlands during winter - inferred from feather stable isotope values - induces residual effects that carry over and influence physiological traits relevant to fitness in black-tailed godwits Limosa limosa limosa on their northward migration. Overwintering males and females were segregated by wetland salinity in West Africa, with females mostly occupying freshwater wetlands. The use of these wetlands along a gradient of salinities was associated with differences in immune responsiveness to phytohaemagglutinin and sized-corrected body mass in godwits staging in southern Europe during northward migration - 3,000 km from the nonbreeding grounds - but in males only. These findings provide a window onto the processes by which wetland salinity can induce carry-over effects and can help predict how migratory species should respond to future climate-induced increases in salinity.
Collapse
Affiliation(s)
- José A Masero
- Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain.
| | - José M Abad-Gómez
- Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
| | - Jorge S Gutiérrez
- Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain.,NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, PO Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Francisco Santiago-Quesada
- Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
| | - Nathan R Senner
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands.,Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana, 59802, USA
| | - Juan M Sánchez-Guzmán
- Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, PO Box 59, 1790 AB, Den Burg, Texel, The Netherlands.,Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Julia Schroeder
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands.,Imperial College London, Department of Life Sciences, Silwood Park Campus, London, United Kingdom
| | - Juan A Amat
- Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), 41092, Seville, Spain
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
| |
Collapse
|
15
|
Wu CW, Tessier SN, Storey KB. Regulation of the insulin-Akt signaling pathway and glycolysis during dehydration stress in the African clawed frog Xenopus laevis. Biochem Cell Biol 2017; 95:663-671. [PMID: 28708941 DOI: 10.1139/bcb-2017-0117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estivation is an adaptive stress response utilized by some amphibians during periods of drought in the summer season. In this study, we examine the regulation of the insulin signaling cascade and glycolysis pathway in the African clawed frog Xenopus laevis during the dehydration stress induced state of estivation. We show that in the brain and heart of X. laevis, dehydration reduces the phosphorylation of the insulin growth factor-1 receptor (IGF-1R), and this is followed by similar reductions in the phosphorylation of the Akt and mechanistic target of rapamycin (mTOR) kinase. Interestingly, phosphorylation levels of IGF-1R and mTOR were not affected in the kidney, and phosphorylation levels of P70S6K and the ribosomal S6 protein were elevated during dehydration stress. Animals under estivation are also susceptible to periods of hypoxia, suggesting that glycolysis may also be affected. We observed that protein levels of many glycolytic enzymes remained unchanged during dehydration; however, the hypoxia response factor-1 alpha (HIF-1α) protein was elevated by greater than twofold in the heart during dehydration. Overall, we provide evidence that shows that the insulin signaling pathway in X. laevis is regulated in a tissue-specific manner during dehydration stress and suggests an important role for this signaling cascade in mediating the estivation response.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada.,Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada.,Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada.,Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| |
Collapse
|
16
|
Pallarés S, Botella-Cruz M, Arribas P, Millán A, Velasco J. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. J Exp Biol 2017; 220:1277-1286. [DOI: 10.1242/jeb.152108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023]
Abstract
Exposing organims to a particular stressor may enhance tolerance to a subsequent stress, when protective mechanisms against both stressors are shared. Such cross-tolerance is a common adaptive response in dynamic multivariate environments and often indicates potential co-evolution of stress traits. Many aquatic insects in inland saline waters from Mediterranean-climate regions are sequentially challenged with salinity and desiccation stress. Thus, cross-tolerance to these physiologically similar stressors could have been positively selected in insects of these regions. We used adults of the saline water beetles Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses to desiccation and salinity. In independent laboratory experiments, we evaluated the effects of i) salinity stress on the subsequent resistance to desiccation and ii) desiccation stress (rapid and slow dehydration) on the subsequent tolerance to salinity. Survival, water loss and haemolymph osmolality were measured. Exposure to stressful salinity improved water control under subsequent desiccation stress in both species, with a clear cross-tolerance (enhanced performance) in N. baeticus. In contrast, general negative effects on performance were found under the inverse stress sequence. The rapid and slow dehydration produced different water loss and haemolymph osmolality dynamics that were reflected in different survival patterns. Our finding of cross-tolerance to salinity and desiccation in ecologically similar species from distant lineages, together with parallel responses between salinity and thermal stress previously found in several aquatic taxa, highlights the central role of adaption to salinity and co-occurring stressors in arid inland waters, having important implications for the species' persistence under climate change.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - María Botella-Cruz
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Paula Arribas
- Department of Life Sciences, Natural History Museum London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Island Ecology and Evolution Research Group, IPNA-CSIC, La Laguna, Spain
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Josefa Velasco
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| |
Collapse
|