1
|
Immunological consequences of compromised ocular immune privilege accelerate retinal degeneration in retinitis pigmentosa. Orphanet J Rare Dis 2022; 17:378. [PMID: 36253797 PMCID: PMC9575261 DOI: 10.1186/s13023-022-02528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a hereditary retinal disease which leads to visual impairment. The onset and progression of RP has physiological consequences that affects the ocular environment. Some of the key non-genetic factors which hasten the retinal degeneration in RP include oxidative stress, hypoxia and ocular inflammation. In this study, we investigated the status of the ocular immune privilege during retinal degeneration and the effect of ocular immune changes on the peripheral immune system in RP. We assessed the peripheral blood mononuclear cell stimulation by retinal antigens and their immune response status in RP patients. Subsequently, we examined alterations in ocular immune privilege machineries which may contribute to ocular inflammation and disease progression in rd1 mouse model. Results In RP patients, we observed a suppressed anti-inflammatory response to self-retinal antigens, thereby indicating a deviated response to self-antigens. The ocular milieu in rd1 mouse model indicated a significant decrease in immune suppressive ligands and cytokine TGF-B1, and higher pro-inflammatory ocular protein levels. Further, blood–retinal-barrier breakdown due to decrease in the expression of tight junction proteins was observed. The retinal breach potentiated pro-inflammatory peripheral immune activation against retinal antigens and caused infiltration of the peripheral immune cells into the ocular tissue. Conclusions Our studies with RP patients and rd1 mouse model suggest that immunological consequences in RP is a contributing factor in the progression of retinal degeneration. The ocular inflammation in the RP alters the ocular immune privilege mechanisms and peripheral immune response. These aberrations in turn create an auto-reactive immune environment and accelerate retinal degeneration.
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02528-x.
Collapse
|
2
|
Sherpa RD, Hui SP. An insight on established retinal injury mechanisms and prevalent retinal stem cell activation pathways in vertebrate models. Animal Model Exp Med 2021; 4:189-203. [PMID: 34557646 PMCID: PMC8446703 DOI: 10.1002/ame2.12177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Implementing different tools and injury mechanisms in multiple animal models of retina regeneration, researchers have discovered the existence of retinal stem/progenitor cells. Although they appear to be distributed uniformly across the vertebrate lineage, the reparative potential of the retina is mainly restricted to lower vertebrates. Regenerative repair post-injury requires the creation of a proliferative niche, vital for proper stem cell activation, propagation, and lineage differentiation. This seems to be lacking in mammals. Hence, in this review, we first discuss the many forms of retinal injuries that have been generated using animal models. Next, we discuss how they are utilized to stimulate regeneration and mimic eye disease pathologies. The key to driving stem cell activation in mammals relies on the information we can gather from these models. Lastly, we present a brief update about the genes, growth factors, and signaling pathways that have been brought to light using these models.
Collapse
Affiliation(s)
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for NeurosciencesUniversity of CalcuttaKolkataIndia
| |
Collapse
|
3
|
Surendran H, Nandakumar S, Reddy K VB, Stoddard J, Mohan K V, Upadhyay PK, McGill TJ, Pal R. Transplantation of retinal pigment epithelium and photoreceptors generated concomitantly via small molecule-mediated differentiation rescues visual function in rodent models of retinal degeneration. Stem Cell Res Ther 2021; 12:70. [PMID: 33468244 PMCID: PMC7814459 DOI: 10.1186/s13287-021-02134-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is a result of degeneration/damage of the retinal pigment epithelium (RPE) while retinitis pigmentosa (RP), an inherited early-onset disease, results from premature loss of photoreceptors. A promising therapeutic approach for both is the replacement of lost/damaged cells with human induced pluripotent stem cell (hiPSC)-derived retinal cells. Methods The aim of this study was to investigate the in vivo functionality of RPE and photoreceptor progenitor (PRP) cells derived from a clinical-grade hiPSC line through a unified protocol. De novo-generated RPE and PRP were characterized extensively to validate their identity, purity, and potency. Results RPE expressed tight junction proteins, showed pigmentation and ciliation, and secreted polarization-related factors vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). PRP expressed neural retina proteins and cone and rod markers, and responded to KCl-induced polarization. Transcriptomic analysis demonstrated an increase in the expression of mature retinal tissue-specific genes coupled with concomitant downregulation of genes from undesired lineages. RPE transplantation rescued visual function in RCS rats shown via optokinetic tracking and photoreceptor rescue. PRP transplantation improved light perception in NOD.SCID-rd1 mice, and positive electroretinography signals indicated functional photoreceptor activity in the host’s outer nuclear layer. Graft survival and integration were confirmed using immunohistochemistry, and no animals showed teratoma formation or any kind of ectopic growth in the eye. Conclusions To our knowledge, this is the first demonstration of a unified, scalable, and GMP-adaptable protocol indicating strong animal efficacy and safety data with hiPSC-derived RPE and PRP cells. These findings provide robust proof-of-principle results for IND-enabling studies to test these potential regenerative cell therapies in patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02134-x.
Collapse
Affiliation(s)
- Harshini Surendran
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR) Campus, GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Swapna Nandakumar
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR) Campus, GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Vijay Bhaskar Reddy K
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR) Campus, GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Jonathan Stoddard
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | - Trevor J McGill
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Rajarshi Pal
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR) Campus, GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India.
| |
Collapse
|
4
|
Mishra A, Mohan KV, Nagarajan P, Iyer S, Kesarwani A, Nath M, Moksha L, Bhattacharjee J, Das B, Jain K, Sahu P, Sinha P, Velapandian T, Upadhyay P. Peripheral blood-derived monocytes show neuronal properties and integration in immune-deficient rd1 mouse model upon phenotypic differentiation and induction with retinal growth factors. Stem Cell Res Ther 2020; 11:412. [PMID: 32967734 PMCID: PMC7510317 DOI: 10.1186/s13287-020-01925-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell therapy is one of the most promising therapeutic interventions for retinitis pigmentosa. In the current study, we aimed to assess if peripheral blood-derived monocytes which are highly abundant and accessible could be utilized as a potential candidate for phenotypic differentiation into neuron-like cells. METHODS The peripheral blood-derived monocytes were reconditioned phenotypically using extrinsic growth factors to induce pluripotency and proliferation. The reconditioned monocytes (RM) were further incubated with a cocktail of growth factors involved in retinal development and growth to induce retinal neuron-like properties. These cells, termed as retinal neuron-like cells (RNLCs) were characterized for their morphological, molecular and functional behaviour in vitro and in vivo. RESULTS The monocytes de-differentiated in vitro and acquired pluripotency with the expression of prominent stem cell markers. Treatment of RM with retinal growth factors led to an upregulation of neuronal and retinal lineage markers and downregulation of myeloid markers. These cells show morphological alterations resembling retinal neuron-like cells and expressed photoreceptor (PR) markers. The induced RNLCs also exhibited relative membrane potential change upon light exposure suggesting that they have gained some neuronal characteristics. Further studies showed that RNLCs could also integrate in an immune-deficient retinitis pigmentosa mouse model NOD.SCID-rd1 upon sub-retinal transplantation. The RNLCs engrafted in the inner nuclear layer (INL) and ganglion cell layer (GCL) of the RP afflicted retina. Mice transplanted with RNLCs showed improvement in depth perception, exploratory behaviour and the optokinetic response. CONCLUSIONS This proof-of-concept study demonstrates that reconditioned monocytes can be induced to acquire retinal neuron-like properties through differentiation using a defined growth media and can be a potential candidate for cell therapy-based interventions and disease modelling for ocular diseases.
Collapse
Affiliation(s)
- Alaknanda Mishra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - K Varsha Mohan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Perumal Nagarajan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srikanth Iyer
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashwani Kesarwani
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Madhu Nath
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Laxmi Moksha
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Barun Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kshama Jain
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Parul Sahu
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakriti Sinha
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - T Velapandian
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pramod Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Takeda A, Yanai R, Murakami Y, Arima M, Sonoda KH. New Insights Into Immunological Therapy for Retinal Disorders. Front Immunol 2020; 11:1431. [PMID: 32719682 PMCID: PMC7348236 DOI: 10.3389/fimmu.2020.01431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
In the twentieth century, a conspicuous lack of effective treatment strategies existed for managing several retinal disorders, including age-related macular degeneration; diabetic retinopathy (DR); retinopathy of prematurity (ROP); retinitis pigmentosa (RP); uveitis, including Behçet's disease; and vitreoretinal lymphoma (VRL). However, in the first decade of this century, advances in biomedicine have provided new treatment strategies in the field of ophthalmology, particularly biologics that target vascular endothelial growth factor or tumor necrosis factor (TNF)-α. Furthermore, clinical trials on gene therapy specifically for patients with autosomal recessive or X-linked RP have commenced. The overall survival rates of patients with VRL have improved, owing to earlier diagnoses and better treatment strategies. However, some unresolved problems remain such as primary or secondary non-response to biologics or chemotherapy, and the lack of adequate strategies for treating most RP patients. In this review, we provide an overview of the immunological mechanisms of the eye under normal conditions and in several retinal disorders, including uveitis, DR, ROP, RP, and VRL. In addition, we discuss recent studies that describe the inflammatory responses that occur during the course of these retinal disorders to provide new insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Ophthalmology, Clinical Research Institute, Kyushu Medical Center, National Hospital Organization, Fukuoka, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Chen F, Liu X, Chen Y, Liu JY, Lu H, Wang W, Lu X, Dean KC, Gao L, Kaplan HJ, Dean DC, Peng X, Liu Y. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells. EBioMedicine 2020; 52:102618. [PMID: 31982829 PMCID: PMC6994567 DOI: 10.1016/j.ebiom.2019.102618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/20/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background The retinal pigment epithelium (RPE) has the potential to regenerate the entire neuroretina upon retinal injury in amphibians. In contrast, this regenerative capacity has been lost in mammals. The reprogramming of differentiated somatic cells into induced pluripotent stem cells (iPSCs) by viral transduction of exogenous stem cell factors has triggered a revolution in regenerative medicine. However, the risks of potential mutation(s) caused by random viral vector insertion in host genomes and tumor formation in recipients hamper its clinical application. One alternative is to immortalize adult stem cells with limited potential or to partially reprogram differentiated somatic cells into progenitor-like cells through non-integration protocols. Methods Sphere-induced RPE stem cells (iRPESCs) were generated from adult mouse RPE cells. Their stem cell functionality was studied in a mouse model of retinal degeneration. The molecular mechanism underlying the sphere-induced reprogramming was investigated using microarray and loss-of-function approaches. Findings We provide evidence that our sphere-induced reprogramming protocol can immortalize and transform mouse RPE cells into iRPESCs with dual potential to differentiate into cells that express either RPE or photoreceptor markers both in vitro and in vivo. When subretinally transplanted into mice with retinal degeneration, iRPESCs can integrate to the RPE and neuroretina, thereby delaying retinal degeneration in the model animals. Our molecular analyses indicate that the Hippo signaling pathway is important in iRPESC reprogramming. Interpretation The Hippo factor Yap1 is activated in the nuclei of cells at the borders of spheres. The factors Zeb1 and P300 downstream of the Hippo pathway are shown to bind to the promoters of the stemness genes Oct4, Klf4 and Sox2, thereby likely transactivate them to reprogram RPE cells into iRPESCs. Fund National Natural Science Foundation of China and the National Institute of Health USA.
Collapse
Affiliation(s)
- Fenghua Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xiao Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; Department of Ophthalmology, Second Affiliated Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - John Y Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Huayi Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Ling Gao
- Department of Ophthalmology, Second Affiliated Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA; Birth Defects Center; University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.
| | - Xiaoyan Peng
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, Kentucky 40202, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA; Birth Defects Center; University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.
| |
Collapse
|
7
|
Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res 2019; 74:100778. [PMID: 31505218 DOI: 10.1016/j.preteyeres.2019.100778] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 01/03/2023]
Abstract
Innate immune cells such as neutrophils, monocyte-macrophages and microglial cells are pivotal for the health and disease of the retina. For the maintenance of retinal homeostasis, these cells and immunosuppressive molecules in the eye actively regulate the induction and the expression of inflammation in order to prevent excessive activation and subsequent tissue damage. In the disease context, these regulatory mechanisms are modulated genetically and/or by environmental stimuli such as damage-associated molecular patterns (DAMPs), and a chronic innate immune response regulates or contributes to the formation of diverse retinal disorders such as uveitis, retinitis pigmentosa, retinal vascular diseases and retinal fibrosis. Here we summarize the recent knowledge regarding the innate immune response in both ocular immune regulation and inflammatory retinal diseases, and we describe the potential of the innate immune response as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Iraha S, Tu HY, Yamasaki S, Kagawa T, Goto M, Takahashi R, Watanabe T, Sugita S, Yonemura S, Sunagawa GA, Matsuyama T, Fujii M, Kuwahara A, Kishino A, Koide N, Eiraku M, Tanihara H, Takahashi M, Mandai M. Establishment of Immunodeficient Retinal Degeneration Model Mice and Functional Maturation of Human ESC-Derived Retinal Sheets after Transplantation. Stem Cell Reports 2018; 10:1059-1074. [PMID: 29503091 PMCID: PMC5918611 DOI: 10.1016/j.stemcr.2018.01.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing demand for clinical retinal degeneration therapies featuring human ESC/iPSC-derived retinal tissue and cells warrants proof-of-concept studies. Here, we established two mouse models of end-stage retinal degeneration with immunodeficiency, NOG-rd1-2J and NOG-rd10, and characterized disease progress and immunodeficient status. We also transplanted human ESC-derived retinal sheets into NOG-rd1-2J and confirmed their long-term survival and maturation of the structured graft photoreceptor layer, without rejection or tumorigenesis. We recorded light responses from the host ganglion cells using a multi-electrode array system; this result was consistent with whole-mount immunostaining suggestive of host-graft synapse formation at the responding sites. This study demonstrates an application of our mouse models and provides a proof of concept for the clinical use of human ESC-derived retinal sheets. Two mouse models of immunodeficient end-stage retinal degeneration were established Immunodeficient host permitted transplantation of human ESC-derived retinal sheets Transplanted human ESC-derived retinal sheets survived long term and maturated After transplantation, light responses were recorded from the degenerated host retina
Collapse
Affiliation(s)
- Satoshi Iraha
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Suguru Yamasaki
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Takahiro Kagawa
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Takehito Watanabe
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies., Kobe, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Naoshi Koide
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|