1
|
Kerdkumthong K, Roytrakul S, Songsurin K, Pratummanee K, Runsaeng P, Obchoei S. Proteomics and Bioinformatics Identify Drug-Resistant-Related Genes with Prognostic Potential in Cholangiocarcinoma. Biomolecules 2024; 14:969. [PMID: 39199357 PMCID: PMC11352417 DOI: 10.3390/biom14080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Drug resistance is a major challenge in the treatment of advanced cholangiocarcinoma (CCA). Understanding the mechanisms of drug resistance can aid in identifying novel prognostic biomarkers and therapeutic targets to improve treatment efficacy. This study established 5-fluorouracil- (5-FU) and gemcitabine-resistant CCA cell lines, KKU-213FR and KKU-213GR, and utilized comparative proteomics to identify differentially expressed proteins in drug-resistant cells compared to parental cells. Additionally, bioinformatics analyses were conducted to explore the biological and clinical significance of key proteins. The drug-resistant phenotypes of KKU-213FR and KKU-213GR cell lines were confirmed. In addition, these cells demonstrated increased migration and invasion abilities. Proteomics analysis identified 81 differentially expressed proteins in drug-resistant cells, primarily related to binding functions, biological regulation, and metabolic processes. Protein-protein interaction analysis revealed a highly interconnected network involving MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1. siRNA-mediated knockdown of these genes in drug-resistant cell lines attenuated cell migration and cell invasion abilities and increased sensitivity to 5-FU and gemcitabine. The mRNA expression of these genes is upregulated in CCA patient samples and is associated with poor prognosis in gastrointestinal cancers. Furthermore, the functions of these proteins are closely related to the epithelial-mesenchymal transition (EMT) pathway. These findings elucidate the potential molecular mechanisms underlying drug resistance and tumor progression in CCA, providing insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Tani 12120, Thailand;
| | - Kawinnath Songsurin
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Kandawasri Pratummanee
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Phanthipha Runsaeng
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| | - Sumalee Obchoei
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Lee SG, Lee DG, Joo YH, Chung N. Synergistic inhibitory effects of the oxyresveratrol and dacarbazine combination against melanoma cells. Oncol Lett 2021; 22:667. [PMID: 34386089 PMCID: PMC8299023 DOI: 10.3892/ol.2021.12928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Various therapies have been developed to target malignant melanoma, which is associated with a high mortality rate worldwide. Although dacarbazine (DTIC) is employed for treating melanoma, it is associated with several side effects. Hence, patients with melanoma are co-treated with additional drugs to mitigate the side effects of DTIC. In the present study, synergistic therapeutic effects of the DTIC/oxyresveratrol (ORT) combination were examined using the human malignant melanoma WM-266-4 cell line. Treatment with ORT and DTIC inhibited the proliferation of WM-266-4 cells. Compared with those in the ORT- and DTIC-treated groups, the proportion of cells arrested at the S phase, as well as apoptotic rates, were increased in the ORT and DTIC co-treatment group. In WM-266-4 cells, synergistic proliferation-inhibitory activities of the ORT/DTIC combination were assessed based on cell viability and migration, antioxidant capacity, cytokine production, cell cycle arrest, apoptotic rate and protein expression through WST-1 assay, wound healing assay, flow cytometry and western blotting. Furthermore, the expression levels of proteins, including NOTCH, involved in the pathogenesis of solid cancers, such as melanoma, were examined. Overall, the ORT/DTIC combination synergistically promoted cell cycle arrest at the S phase and the apoptosis of WM-266-4 cells. Thus, this combination treatment may serve as a novel therapeutic strategy for treating malignant melanoma.
Collapse
Affiliation(s)
- Sang Gyu Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong Gun Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yong Hoon Joo
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Namhyun Chung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Yang Z, Shan N, Deng Q, Wang Y, Hou Y, Mei J, Wu Z. Extracellular vesicle-derived microRNA-18b ameliorates preeclampsia by enhancing trophoblast proliferation and migration via Notch2/TIM3/mTORC1 axis. J Cell Mol Med 2021; 25:4583-4595. [PMID: 33835684 PMCID: PMC8107107 DOI: 10.1111/jcmm.16234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/27/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE), a common disorder of pregnancy, is characterized by insufficient trophoblast migration and inadequate vascular remodelling, such that promotion of trophoblast proliferation might ameliorate PE. In the current study, we sought to study the underlying mechanism of extracellular vesicle (EV)-derived microRNA-18 (miR-18b) in PE. Human umbilical cord mesenchymal stem cells (HUCMSCs) isolated from placental tissues were verified through osteogenic, adipogenic and chondrogenic differentiation assays. Bioinformatics analyses and dual-luciferase reporter gene assay were adopted to confirm the targeting relationship between miR-18b and Notch2. The functional roles of EV-derived miR-18b and Notch2 in trophoblasts were determined using loss- and gain-of-function experiments, and trophoblast proliferation and migration were assayed using CCK-8 and Transwell tests. In vivo experiments were conducted to determine the effect of EV-derived miR-18b, Notch2 and TIM3/mTORC1 in a rat model of PE, with monitoring of blood pressure and urine proteinuria. TUNEL staining was conducted to observe the cell apoptosis of placental tissues of PE rats. We found down-regulated miR-18b expression, and elevated Notch2, TIM3 and mTORC1 levels in the placental tissues of PE patients compared with normal placenta. miR-18b was delivered to trophoblasts and targeted Notch2 and negatively its expression, whereas Notch2 positively mediated the expression of TIM3/mTORC1. EV-derived miR-18b or Notch2 down-regulation enhanced trophoblast proliferation and migration in vitro and decreased blood pressure and 24 hours urinary protein in PE rats by deactivating the TIM3/mTORC1 axis in vivo. In summary, EV-derived miR-18b promoted trophoblast proliferation and migration via down-regulation of Notch2-dependent TIM3/mTORC1.
Collapse
Affiliation(s)
- Zhongmei Yang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinyin Deng
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Hou
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Jung JH, Ikeda G, Tada Y, von Bornstädt D, Santoso MR, Wahlquist C, Rhee S, Jeon YJ, Yu AC, O'brien CG, Red-Horse K, Appel EA, Mercola M, Woo J, Yang PC. miR-106a-363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury. Basic Res Cardiol 2021; 116:19. [PMID: 33742276 PMCID: PMC8601755 DOI: 10.1007/s00395-021-00858-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/05/2021] [Indexed: 01/18/2023]
Abstract
Endogenous capability of the post-mitotic human heart holds great promise to restore the injured myocardium. Recent evidence indicates that the extracellular vesicles (EVs) regulate cardiac homeostasis and regeneration. Here, we investigated the molecular mechanism of EVs for self-repair. We isolated EVs from human iPSC-derived cardiomyocytes (iCMs), which were exposed to hypoxic (hEVs) and normoxic conditions (nEVs), and examined their roles in in vitro and in vivo models of cardiac injury. hEV treatment significantly improved the viability of hypoxic iCMs in vitro and cardiac function of severely injured murine myocardium in vivo. Microarray analysis of the EVs revealed significantly enriched expression of the miR-106a-363 cluster (miR cluster) in hEVs vs. nEVs. This miR cluster preserved survival and contractility of hypoxia-injured iCMs and maintained murine left-ventricular (LV) chamber size, improved LV ejection fraction, and reduced myocardial fibrosis of the injured myocardium. RNA-Seq analysis identified Jag1-Notch3-Hes1 as a target intracellular pathway of the miR cluster. Moreover, the study found that the cell cycle activator and cytokinesis genes were significantly up-regulated in the iCMs treated with miR cluster and Notch3 siRNA. Together, these results suggested that the miR cluster in the EVs stimulated cardiomyocyte cell cycle re-entry by repressing Notch3 to induce cell proliferation and augment myocardial self-repair. The miR cluster may represent an effective therapeutic approach for ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Ji-Hye Jung
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gentaro Ikeda
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yuko Tada
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daniel von Bornstädt
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michelle R Santoso
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christine Wahlquist
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Anthony C Yu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Connor G O'brien
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Phillip C Yang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford University School of Medicine, 240 Pasteur Dr, BMI 3053, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
Pang J, Le L, Zhou Y, Tu R, Hou Q, Tsuchiya D, Thomas N, Wang Y, Yu Z, Alexander R, Thexton M, Lewis B, Corbin T, Durnin M, Li H, Ashery-Padan R, Yan D, Xie T. NOTCH Signaling Controls Ciliary Body Morphogenesis and Secretion by Directly Regulating Nectin Protein Expression. Cell Rep 2021; 34:108603. [PMID: 33440163 DOI: 10.1016/j.celrep.2020.108603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Anterior segment dysgenesis is often associated with cornea diseases, cataracts, and glaucoma. In the anterior segment, the ciliary body (CB) containing inner and outer ciliary epithelia (ICE and OCE) secretes aqueous humor that maintains intraocular pressure (IOP). However, CB development and function remain poorly understood. Here, this study shows that NOTCH signaling in the CB maintains the vitreous, IOP, and eye structures by regulating CB morphogenesis, aqueous humor secretion, and vitreous protein expression. Notch2 and Notch3 function via RBPJ in the CB to control ICE-OCE adhesion, CB morphogenesis, aqueous humor secretion, and protein expression, thus maintaining IOP and eye structures. Mechanistically, NOTCH signaling transcriptionally controls Nectin1 expression in the OCE to promote cell adhesion for driving CB morphogenesis and to directly stabilize Cx43 for controlling aqueous humor secretion. Finally, NOTCH signaling directly controls vitreous protein secretion in the ICE. Therefore, this study provides important insight into CB functions and involvement in eye diseases.
Collapse
Affiliation(s)
- Ji Pang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Le
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yi Zhou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Qiang Hou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; State Key Laboratory and Key Laboratory of Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Nancy Thomas
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Richard Alexander
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Marina Thexton
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Brandy Lewis
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Timothy Corbin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Michael Durnin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
6
|
Marinello WP, Mohseni ZS, Cunningham SJ, Crute C, Huang R, Zhang JJ, Feng L. Perfluorobutane sulfonate exposure disrupted human placental cytotrophoblast cell proliferation and invasion involving in dysregulating preeclampsia related genes. FASEB J 2020; 34:14182-14199. [PMID: 32901980 DOI: 10.1096/fj.202000716rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
We reported that maternal PFBS, an emerging pollutant, exposure is positively associated with preeclampsia which can result from aberrant trophoblasts invasion and subsequent placental ischemia. In this study, we investigated the effects of PFBS on trophoblasts proliferation/invasion and signaling pathways. We exposed a human trophoblast line, HTR8/SVneo, to PFBS. Cell viability, proliferation, and cell cycle were evaluated by the MTS assay, Ki-67 staining, and flow cytometry, respectively. We assessed cell migration and invasion with live-cell imaging-based migration assay and matrigel invasion assay, respectively. Signaling pathways were examined by Western blot, RNA-seq, and qPCR. PFBS exposure interrupted cell proliferation and invasion in a dose-dependent manner. PFBS (100 μM) did not cause cell death but instead significant cell proliferation without cell cycle disruption. PFBS (10 and 100 μM) decreased cell migration and invasion, while PFBS (0.1 μM) significantly increased cell invasion but not migration. Further, RNA-seq analysis identified dysregulated HIF-1α target genes that are relevant to cell proliferation/invasion and preeclampsia, while Western Blot data showed the activation of HIF-1α, but not Notch, ERK1/2, (PI3K)AKT, and P38 pathways. PBFS exposure altered trophoblast cell proliferation/invasion which might be mediated by preeclampsia-related genes, suggesting a possible association between prenatal PFBS exposure and adverse placentation.
Collapse
Affiliation(s)
- William P Marinello
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Zahra S Mohseni
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah J Cunningham
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Christine Crute
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Rong Huang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Jun J Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Y-Box Binding Protein 1 Expression in Trophoblast Cells Promotes Fetal and Placental Development. Cells 2020; 9:cells9091942. [PMID: 32842598 PMCID: PMC7563187 DOI: 10.3390/cells9091942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Y-box binding protein 1 (YB-1) is pivotal for the regulation of cancerogenesis and inflammation. However, its involvement in pregnancy processes such as fetal and placental development remains to be elucidated. We studied Ybx1 (YB-1)+/− heterozygous intercrossings and compared them to YB-1+/+ wild-type (WT) combinations. Additionally, we generated trophoblast-specific YB-1-deficient mice by pairing FVB Cyp19-Cre females to YB-1fl/fl males. YB-1fl/fl-paired FVB WT females served as controls. Serial in vivo ultrasound measurements were performed to assess fetal and placental parameters. After sacrificing the females, implantation and abortion rates were recorded, spiral artery (SA) remodeling was analyzed and fetal and placental weights were determined. Compared to YB-1+/+ counterparts, YB-1+/− females showed reduced implantation areas at gestation day (GD)10, insufficiently remodeled SAs at GD12, increased placental diameter/thickness ratios at GD14 and reduced placental and fetal weights at GD14. Compared to WT, Cyp19-Cre females with YB-1-deficient placentas showed reduced implantation areas at GD8, 10 and 12; decreased placental areas and diameters at GD10 and 12; diminished placental thicknesses at GD12; as well as reduced placental weights at GD12 and 14. In conclusion, our data suggest haploinsufficiency of YB-1 resulting in disturbed fetal and placental development. Moreover, we provide the first evidence for the relevance of trophoblast-specific YB-1 for placentation.
Collapse
|
8
|
Tang J, Wang D, Lu J, Zhou X. MiR-125b participates in the occurrence of preeclampsia by regulating the migration and invasion of extravillous trophoblastic cells through STAT3 signaling pathway. J Recept Signal Transduct Res 2020; 41:202-208. [PMID: 32787544 DOI: 10.1080/10799893.2020.1806318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preeclampsia (PE) is a major risk factor for maternal and fetal mortality. Studies showed that microRNAs (miRNAs) play important roles in PE, and are closely related to extra-villous trophoblastic proliferation and invasion. The current study determined miR-125b expression in PE patients, and explored the role of miR-125b in the occurrence and development of PE and its possible mechanism, aiming to provide a novel basis for the diagnosis and treatment of PE. The level of miR-125b in serum derived from pregnant women was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, invasion and migration of HTR-8/SVneo were determined by Cell Counting Kit-8 (CCK-8), Transwell and scratch assay, respectively. The target gene of miR-125b was predicted by Targetscan, and verified by luciferase reporter assay. The expressions of related proteins were determined by Western Blotting. The miR-125b level in the serum of PE patients was up-regulated as compared with normal pregnant women, and high level of miR-125b reduced cell proliferation, inhibited invasion and migration of HTR-8/SVneo as well as the expressions of STAT3, p-STAT3 and SOCS3, while low level of miR-125b produced the opposite results. STAT3 was predicted as the target gene of miR-125b, and the high level of miR-125b inhibited STAT3 signaling pathway. High expression of miR-125b may be involved in the occurrence of PE through inhibiting STAT3 pathway to inhibit the migration and invasion of extra-villous trophoblastic cells.
Collapse
Affiliation(s)
- Jiani Tang
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Dan Wang
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Jing Lu
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Xiaoyu Zhou
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| |
Collapse
|
9
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
10
|
Yuan Y, Wang X, Sun Q, Dai X, Cai Y. MicroRNA-16 is involved in the pathogenesis of pre-eclampsia via regulation of Notch2. J Cell Physiol 2019; 235:4530-4544. [PMID: 31643078 DOI: 10.1002/jcp.29330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
In recent years, the role of microRNAs (miRNAs) in pre-eclampsia (PE) has been demonstrated, while the relevant mechanisms of miR-16 in PE await to be unearthed. Thus, the aim of this study is to explore whether miR-16 exerts its function in PE, and we assumed that miR-16 may be implicated in the occurrence of PE by adjusting the biological functions of trophoblast cells via modulating Notch2. Placental tissues of pregnant women with normal pregnancy and PE were collected to detect the expression of miR-16, Notch2, and Notch3. The effects of miR-16 and Notch2 on the biological functions of BeWo and JEG-3 cells were further determined. Expression of miR-16 and Notch2 in trophoblast cells was detected by reverse transcription quantitative polymerase chain reaction and western blot assay. Downregulated Notch2 and upregulated miR-16 and Notch3 were found in placental tissues of PE. There was a negative correlation between Notch2 and miR-16 expression (r = -0.769), and a positive correlation between Notch3 and miR-16 expression (r = 0.676; p < .05). Overexpression of miR-16 inhibited proliferation, migration, and invasion, and facilitated the apoptosis of BeWo and JEG-3 cells, but overexpression of Notch2 reversed this trend. Overexpression of miR-16 inhibited Notch2 expression in BeWo and JEG-3 cells, and Notch2 was the target gene of miR-16. Our study highlights that overexpression of miR-16 is involved in PE by regulating the biological functions of trophoblast cells via inhibition of Notch2. This paper provides a new idea for further study of the pathogenesis of PE.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xiaoying Wang
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qiuyu Sun
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xu Dai
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yan Cai
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
11
|
Sava RI, March KL, Pepine CJ. Hypertension in pregnancy: Taking cues from pathophysiology for clinical practice. Clin Cardiol 2018; 41:220-227. [PMID: 29485737 PMCID: PMC6490052 DOI: 10.1002/clc.22892] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Pregnancy-related hypertension (PHTN) syndromes are a frequent and potentially deadly complication of pregnancy, while also negatively impacting the lifelong health of the mother and child. PHTN appears in women likely to develop hypertension later in life, with the stress of pregnancy unmasking a subclinical hypertensive phenotype. However, distinguishing between PHTN and chronic hypertension is essential for optimal management. Preeclampsia (PE) is linked to potentially severe outcomes and lacks effective treatments due to poorly understood mechanisms. Inadequate remodeling of spiral uterine arteries (SUAs), the cornerstone of PE pathophysiology, leads to hypoperfusion of the developing placenta. In normal pregnancies, extravillous trophoblast (EVT) cells assume an invasive phenotype and invade SUAs, transforming them into large conduits. Decidual natural killer cells play an essential role, mediating materno-fetal immune tolerance, inducing early SUA remodeling and regulating EVT invasiveness. Notch signaling is important in EVT phenotypic switch and is dysregulated in PE. The hypoxic placenta releases antiangiogenic and proinflammatory factors that converge upon maternal endothelium, inducing endothelial dysfunction, hypertension, and organ damage. Hypoxia-inducible factor 1-α is upstream of such molecules, whereas endothelin-1 is a major effector. We also describe important genetic links and evidence of incomplete materno-fetal immune tolerance, with PE patients presenting with autoantibodies, lower Treg , and higher Th 17 cells. Thus, PE manifestations arise as a consequence of mal-placentation or/and because of a predisposition of the maternal vascular bed to excessively react to pathogenic molecules. From this pathophysiological basis, we provide current and propose future therapeutic directions for PE.
Collapse
Affiliation(s)
- Ruxandra I. Sava
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- “Elias” Emergency University Hospital“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| | - Keith L. March
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| | - Carl J. Pepine
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| |
Collapse
|
12
|
Liu M, Wang Y, Lu H, Wang H, Shi X, Shao X, Li YX, Zhao Y, Wang YL. miR-518b Enhances Human Trophoblast Cell Proliferation Through Targeting Rap1b and Activating Ras-MAPK Signal. Front Endocrinol (Lausanne) 2018; 9:100. [PMID: 29599749 PMCID: PMC5862798 DOI: 10.3389/fendo.2018.00100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/01/2018] [Indexed: 11/21/2022] Open
Abstract
Preeclampsia is a pregnancy-specific complication defined as newly onset gestational hypertension and proteinuria. Deficiency in placental development is considered as the predominant cause of preeclampsia. Our previous study found that the expression of miR-518b increased significantly in the preeclamptic placentas, indicating the potential participation of this small RNA in the occurrence of preeclampsia. In this study, data analysis using multiple databases predicted Rap1b as a candidate target of miR-518b. An evident decrease in Rap1b expression was observed in preeclamptic placentas when compared with the control placentas, which was negatively correlated with the level of miR-518b. Based on the data of in situ hybridization and immunohistochemistry showing that Rap1b exhibited similar localization with miR-518b in villous cytotrophoblast cells and column trophoblasts, we further explored their function in regulating trophoblast cell proliferation. In HTR8/SVneo cells, exogenous transfection of miR-518b reduced the expression of Rap1b, and dual-luciferase reporter assay validated Rap1b as the direct target of miR-518b. The small RNA could increase the BrdU incorporation and the ratio of cells at S phase, and enhance the phosphorylation of Raf-1 and ERK1/2. Such growth-promoting effect could be efficiently reversed by Rap1b overexpression. The data indicate that miR-518b can promote trophoblast cell proliferation via Rap1b-Ras-MAPK pathway, and the aberrant upregulation of miR-518b in preeclamptic placenta may contribute to the excessive trophoblast proliferation. The study provides new evidence to further understand the etiology of preeclampsia.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongqing Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Huifen Lu
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Xiaoming Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-xia Li
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Yangyu Zhao, ; Yan-Ling Wang,
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yangyu Zhao, ; Yan-Ling Wang,
| |
Collapse
|