1
|
Kagami H, Li X. Spheroids and organoids: Their implications for oral and craniofacial tissue/organ regeneration. J Oral Biol Craniofac Res 2024; 14:540-546. [PMID: 39092136 PMCID: PMC11292544 DOI: 10.1016/j.jobcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Spheroids are spherical aggregates of cells. Normally, most of adherent cells cannot survive in suspension; however, if they adhere to each other and grow to a certain size, they can survive without attaching to the dish surface. Studies have shown that spheroid formation induces dedifferentiation and improves plasticity, proliferative capability, and differentiation capability. In particular, spontaneous spheroids represent a selective and efficient cultivation technique for somatic stem cells. Organoids are considered mini-organs composed of multiple types of cells with extracellular matrices that are maintained in three-dimensional culture. Although their culture environment is similar to that of spheroids, organoids consist of differentiated cells with fundamental tissue/organ structures similar to those of native organs. Organoids have been used for drug development, disease models, and basic biological studies. Spheroid culture has been reported for various cell types in the oral and craniofacial regions, including salivary gland epithelial cells, periodontal ligament cells, dental pulp stem cells, and oral mucosa-derived cells. For broader clinical application, it is crucial to identify treatment targets that can leverage the superior stemness of spheroids. Organoids have been developed from various organs, including taste buds, oral mucosa, teeth, and salivary glands, for basic biological studies and also with the goal to replace damaged or defective organs. The development of novel immune-tolerant cell sources is the key to the widespread clinical application of organoids in regenerative medicine. Further efforts to understand the underlying basic mechanisms of spheroids and organoids will lead to the development of safe and efficient next-generation regenerative therapies.
Collapse
Affiliation(s)
- Hideaki Kagami
- Department of Dentistry and Oral Surgery, Aichi Medical University, Aichi, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| |
Collapse
|
2
|
Wang L, Li J. Morphogenesis of fungiform papillae in developing miniature pigs. Heliyon 2024; 10:e24953. [PMID: 38314265 PMCID: PMC10837543 DOI: 10.1016/j.heliyon.2024.e24953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Fungiform papillae contain taste buds and play a critical role in mastication and the gustatory system. In this study, we report a series of sequential observations of organogenesis of fungiform papillae in miniature pigs, as well as changes in the expression of BMP2, BMP4, Wnt5a, Sox2, and Notch1 signaling pathway components. Design In this study, we investigated the spatiotemporal expression patterns of BMP, Wnt, Sox2 and Notch in the fungiform papillae of miniature pigs at the bud stage (E40), cap stage (E50) and bell stage (E60). Pregnant miniature pigs were obtained, and the samples were processed for histological staining. Immunohistochemistry and real-time PCR were used to detect the mRNA and protein expression levels of BMP2, BMP4, Wnt5a, Sox2, and Notch1. Results At E40, fungiform papillae were present on the anterior two-thirds of the tongue in a specific array and pattern. The fungiform papillae were enlarged and basically developed at E50 and were largest at the earlier stage (E60). Most of the BMP2 was concentrated in the epithelial layer and the connective tissue core of the fungal papilloma and gradually accumulated from E40-E60. BMP-4 was weakly expressed in the fungiform papillae epithelia, but BMP-4-positive cells were also observed in the developing tongue muscle at E50 and E60. Wnt5a-positive cells were observed in the fungiform papillae epithelia and developing tongue muscle at all three time points. Sox2-positive cells were observed only in fungiform papillae epithelial cells, and Notch1-positive cells could not be detected. Conclusions This study provides primary data regarding the morphogenesis and expression of developmental signals in the fungiform papillae of miniature pigs, establishing a foundation for further research in both this model and humans.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, China
| |
Collapse
|
3
|
Ou M, Li Q, Ling X, Yao J, Mo X. Cocktail Formula and Application Prospects for Oral and Maxillofacial Organoids. Tissue Eng Regen Med 2022; 19:913-925. [PMID: 35612711 DOI: 10.1007/s13770-022-00455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Oral and maxillofacial organoids (OMOs), tiny tissues and organs derived from stem cells cultured through 3-d cell culture models, can fully summarize the cell tissue structure, physiological functions and biological characteristics of the source tissues in the body. OMOs are applied in areas such as disease modelling, developmental and regenerative medicine, drug screening, personalized treatment, etc. Although the construction of organoids in various parts of the oral and maxillofacial (OM) region has achieved considerable success, the existing cocktail formulae (construction strategies) are not widely applicable for tissues of various sources due to factors including the heterogeneity of the source tissues and the dependence on laboratory technology. Most of their formulae are based on growth factor niches containing expensive recombinant proteins with their efficiency remaining to be improved. In view of this, the cocktail formulae of various parts of the OM organs are reviewed with further discussion of the application and prospects for those OMOs to find some affordable cocktail formula with strong operability and high repeatability for various maxillofacial organs. The results may help improve the efficiency of organoid construction in the laboratory and accelerate the pace of the clinical use of organoid technology.
Collapse
Affiliation(s)
- Mingyu Ou
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Qing Li
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Xiaofang Ling
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China. .,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China.
| | - Xiaoqiang Mo
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.
| |
Collapse
|
4
|
McCormack MA, McFee WE, Whitehead HR, Piwetz S, Dutton J. Exploring the Use of SEM-EDS Analysis to Measure the Distribution of Major, Minor, and Trace Elements in Bottlenose Dolphin (Tursiops truncatus) Teeth. Biol Trace Elem Res 2022; 200:2147-2159. [PMID: 34273061 DOI: 10.1007/s12011-021-02809-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Dolphin teeth contain enamel, dentin, and cementum. In dentin, growth layer groups (GLGs), deposited at incremental rates (e.g., annually), are used for aging. Major, minor, and trace elements are incorporated within teeth; their distribution within teeth varies, reflecting tooth function and temporal changes in an individual's exposure. This study used a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) to determine the distribution of major (e.g., Ca, P), minor (e.g., Cl, Mg, Na), and trace elements (e.g., Cd, Hg, Pb, Zn) in teeth from 12 bottlenose dolphins (Tursiops truncatus). The objective was to compare elemental distributions between enamel and dentin and across GLGs. Across all dolphins and point analyses, the following elements were detected in descending weight percentage (wt %; mean ± SE): O (40.8 ± 0.236), Ca (24.3 ± 0.182), C (14.3 ± 0.409), P (14.0 ± 0.095), Al (4.28 ± 0.295), Mg (1.89 ± 0.047), Na (0.666 ± 0.008), Cl (0.083 ± 0.003). Chlorine and Mg differed between enamel and dentin; Mg increased from the enamel towards the dentin while Cl decreased. The wt % of elements did not vary significantly across the approximate location of the GLGs. Except for Al, which may be due to backscatter from the SEM stub, we did not detect trace elements. Other trace elements, if present, are below the detection limit. Technologies with lower detection limits (e.g., laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)) would be required to confirm the presence and distribution of trace elements in bottlenose dolphin teeth.
Collapse
Affiliation(s)
- Meaghan A McCormack
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA.
| | - Wayne E McFee
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, Charleston, SC, 29412, USA
| | | | - Sarah Piwetz
- Texas Marine Mammal Stranding Network, Galveston, TX, 77551, USA
| | - Jessica Dutton
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA
| |
Collapse
|
5
|
Lifestyle changes and its effect towards the evolution of human dentition. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2022. [DOI: 10.1186/s41935-022-00268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The dentition of modern humans has evolved from their hominid ancestors to their current form. Factors regarding the changes of lifestyle such as dietary habits and usage of tools have affected the evolution of human dentition. This article aimed to discuss the effect of dietary changes on the evolution of human teeth. An online literature search in the PubMed database was conducted according to the inclusion criteria of this study.
Main body
The culture transition from a hunter-gatherer society to agriculture is followed by dietary changes, which result in a decrease of tooth wear due to more refined food sources in agricultural intensification. By analyzing the microwear pattern such as shear, striation, and pattern of the buccal teeth, the dietary hypothesis based on the occlusal tooth microwear analysis could be examined.
Conclusion
The dietary hypothesis based on the occlusal tooth microwear study could be tested by analyzing the microwear pattern (shear, striation, pattern) of the buccal teeth. Posterior teeth are more closely related to diet, while anterior teeth are related to non-dietary tooth-use behaviors, or using the teeth as a tool or third hand which causes more limited striations at the labial surface.
Collapse
|
6
|
Moon JS, Nam YS, Kang JH, Yang DW, Kim DY, Lee SY, Ko HM, Kim MS, Kim SH. Regulatory role of insulin-like growth factor-binding proteins in odontogenic mineralization in rats. J Mol Histol 2021; 52:63-75. [PMID: 33141361 DOI: 10.1007/s10735-020-09923-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Much information is currently available for molecules in early odontogenesis, but there is limited knowledge regarding terminal cytodifferentiation of ameloblasts and odontoblasts for the determination of normal crown morphology. The present differential display PCR (DD-PCR) revealed that insulin-like growth factor-binding protein 5 (IGFBP5) was differentially expressed in molar tooth germs between the cap (before crown mineralization) and root formation (after crown mineralization) stages. Real-time PCR confirmed that the expression levels of IGFBP1-4 were not significantly changed but those of IGFBP5-7 were upregulated in a time-dependent manner. Immunoreactivities for IGFBP5-7 were hardly seen in molar germs at the cap/early bell stage and protective-stage ameloblasts at the root formation stage. However, the reactivity was strong in odontoblasts and maturation-stage ameloblasts, which are morphologically and functionally characterized by wide intercellular space and active enamel matrix mineralization. The localization of each IGFBP was temporospatial. IGFBP5 was localized in the nuclei of fully differentiated odontoblasts and ameloblasts, while IGFBP6 was localized in the apical cytoplasm of ameloblasts and odontoblasts with dentinal tubules, and IGFBP7 was mainly found in the whole cytoplasm of odontoblasts and the intercellular space of ameloblasts. IGFBP silencing using specific siRNAs upregulated representative genes for dentinogenesis and amelogenesis, such as DMP1 and amelogenin, respectively, and augmented the differentiation media-induced mineralization, which was confirmed by alizarin red s and alkaline phosphatase staining. These results suggest that IGFBP5-7 may play independent and redundant regulatory roles in late-stage odontogenesis by modulating the functional differentiation of ameloblasts and odontoblasts.
Collapse
Affiliation(s)
- Jung-Sun Moon
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Yoo-Sung Nam
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Jee-Hae Kang
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Dong-Wook Yang
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Dae-Yoon Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Su-Young Lee
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyun-Mi Ko
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Min-Seok Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
7
|
Wang H, Fu Y, Gu P, Zhang Y, Tu W, Chao Z, Wu H, Cao J, Zhou X, Liu B, Michal JJ, Fan C, Tan Y. Genome-Wide Characterization and Comparative Analyses of Simple Sequence Repeats among Four Miniature Pig Breeds. Animals (Basel) 2020; 10:ani10101792. [PMID: 33023098 PMCID: PMC7600727 DOI: 10.3390/ani10101792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Simple sequence repeats (SSRs) are present at high densities in regulatory elements, suggesting that they may affect gene function and phenotypic traits. Therefore, SSRs can be exploited in marker-assisted selection. In addition, they can be widely used as molecular markers to study genetic diversity, population structure, and evolution. While SSRs have been widely studied in many mammalian species, very little research has focused on genome-wide SSRs of miniature pigs, a small but special group of pigs that express the dwarf phenotype. Based on the SSR-enriched library building and sequencing, about 30,000 novel polymorphic SSRs for four miniature pig breeds were mapped to the Duroc pig reference genome. The four miniature pig breeds had different numbers and types of SSRs and distributions of repeat units. There were 2518 polymorphic SSRs in the intron or exon regions that were common to all four breeds and functional analyses revealed 17 genes that were associated with body size and other genes that were associated with growth and development. In conclusion, the SSRs detected in the miniature pigs in this study may provide useful genetic markers for the selection of farm animals and the polymorphic SSRs provide valuable insights into the determination of mature body size, as well as the immunity, growth and development of animals. Abstract Simple sequence repeats (SSRs) are commonly used as molecular markers in research on genetic diversity and discrimination among taxa or breeds because polymorphisms in these regions contribute to gene function and phenotypically important traits. In this study, we investigated genome-wide characteristics, repeat units, and polymorphisms of SSRs using sequencing data from SSR-enriched libraries created from Wuzhishan (WZS), Bama (BM), inbred Luchuan (LC) and Zangxiang (ZX) miniature pig breeds. The numbers and types of SSRs, distributions of repeat units and polymorphic SSRs varied among the four breeds. Compared to the Duroc pig reference genome, 2518 polymorphic SSRs were unique and common to all four breeds and functional annotation revealed that they may affect the coding and regulatory regions of genes. Several examples, such as FGF23, MYF6, IGF1R, and LEPROT, are associated with growth and development in pigs. Three of the polymorphic SSRs were selected to confirm the polymorphism and the corresponding alleles through fluorescence polymerase chain reaction (PCR) and capillary electrophoresis. Together, this study provides useful insights into the discovery, characteristics and distribution of SSRs in four pig breeds. The polymorphic SSRs, especially those common and unique to all four pig breeds, might affect associated genes and play important roles in growth and development.
Collapse
Affiliation(s)
- Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Yang Fu
- Research Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China;
| | - Yingying Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Huali Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Jianguo Cao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.L.)
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.L.)
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Chun Fan
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China;
| | - Yongsong Tan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
- Correspondence: ; Tel.: +86-021-34505325
| |
Collapse
|
8
|
Dai X, Lian X, Xiao L, Shang J, Zhang L, Zhang Q, Wang Y, Zou H. Comparison of actual porcine tooth crown development stages and computer image analysis. Anat Rec (Hoboken) 2020; 303:3136-3144. [PMID: 31930691 DOI: 10.1002/ar.24366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022]
Abstract
Tooth developmental stage evaluation is important in dental and chronological age estimation, and it is important for accurate diagnoses and appropriate treatment in dental practice. It is routinely assessed by clinical observations and radiographic techniques. This study aimed at ascertaining tooth developmental stage judgments made by examiners and Mimics software according to the Nolla method with radiographs. Meanwhile, the true tooth developmental stages would be explored with histological analysis. Twenty freshly slaughtered porcine heads were collected and hemisected, and both the left and right mandibular samples were numbered. The developmental stages of the second and third permanent molars (M2 and M3) were evaluated by examiners and Mimics software analysis. The ratio of the radiopaque calcified area to the dental follicle (RCA/DF) at different stages was calculated. Both non-decalcified and decalcified samples were processed for histologic observation. The results showed significant differences between RCA/DF ratios from different developmental stages. There was a high positive correlation between the examiners' evaluation results and Mimics analysis results. Radiograph judgments and histology observation results were consistent from Stages 2-6. However, radiograph images of Stage 1 samples showed only crypts present, while under a surgical operating microscope, a bell-shaped tooth germ was observed. This was also confirmed by normal and hard tissue histology. In conclusion, radiograph judgments made by either examiners or Mimics software were both reliable. Mimics analysis can be a useful tool in evaluating tooth developmental stages. However, judgments need to be made cautiously in early developmental stages.
Collapse
Affiliation(s)
- Xiaohua Dai
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Xiaoli Lian
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Ling Xiao
- Department of Oral and Maxillofacial Radiology, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Jianwei Shang
- Department of Oral Pathology, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Le Zhang
- Department of Oral Pathology, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Qingzhi Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Yue Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Huiru Zou
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| |
Collapse
|
9
|
Morphological features of tooth development and replacement in the rabbit Oryctolagus cuniculus. Arch Oral Biol 2019; 109:104576. [PMID: 31593891 DOI: 10.1016/j.archoralbio.2019.104576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Dental development mechanisms in mammals are highly studied using the mouse as a biological model. However, the mouse has a single, unreplaced, set of teeth. Features of mammalian tooth replacement are thus poorly known. In this paper, we study mammalian tooth development and replacement using the European rabbit, Oryctolagus cuniculus, as a new model. Using 3D-reconstructions associated with histological sections, we obtained the complete description of the histo-morphological chronology of dental development and replacement in rabbit. We also describe in the dentin the presence of holes opening the pulp cavity in newborns. These holes are quickly repaired with a new and fast apposition of dentin from the pre-existing odontoblasts. The detailed dental morphogenesis chronology presented allows us to propose the rabbit Oryctolagus cuniculus as a suitable model to study mammalian tooth replacement.
Collapse
|
10
|
Li L, Tang Q, Wang A, Chen Y. Regrowing a tooth: in vitro and in vivo approaches. Curr Opin Cell Biol 2019; 61:126-131. [PMID: 31493737 DOI: 10.1016/j.ceb.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 12/25/2022]
Abstract
Biologically oriented regenerative dentistry in an attempt to regrow a functional tooth by harnessing the natural healing capabilities of dental tissues has become a recent trend challenging the current dental practice on repairing the damaged or missing tooth. In this review, we outline the conceptual development on the in situ revitalization of the tooth replacement capability lost during evolution, the updated progress in stem-cell-based in vivo repair of the damaged tooth, and the recent endeavors for in vitro generation of an implantable bioengineered tooth germ. Thereafter, we summarize the major challenges that need to be overcome in order to provide the rationale and directions for the success of fully functional tooth regeneration in the near future.
Collapse
Affiliation(s)
- Liwen Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Amy Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|