1
|
Smith HJ, Lanjuin A, Sharma A, Prabhakar A, Nowak E, Stine PG, Sehgal R, Stojanovski K, Towbin BD, Mair WB. Neuronal mTORC1 inhibition promotes longevity without suppressing anabolic growth and reproduction in C. elegans. PLoS Genet 2023; 19:e1010938. [PMID: 37721956 PMCID: PMC10538657 DOI: 10.1371/journal.pgen.1010938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/28/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Abstract
mTORC1 (mechanistic target of rapamycin complex 1) is a metabolic sensor that promotes growth when nutrients are abundant. Ubiquitous inhibition of mTORC1 extends lifespan in multiple organisms but also disrupts several anabolic processes resulting in stunted growth, slowed development, reduced fertility, and disrupted metabolism. However, it is unclear if these pleiotropic effects of mTORC1 inhibition can be uncoupled from longevity. Here, we utilize the auxin-inducible degradation (AID) system to restrict mTORC1 inhibition to C. elegans neurons. We find that neuron-specific degradation of RAGA-1, an upstream activator of mTORC1, or LET-363, the ortholog of mammalian mTOR, is sufficient to extend lifespan in C. elegans. Unlike raga-1 loss of function genetic mutations or somatic AID of RAGA-1, neuronal AID of RAGA-1 robustly extends lifespan without impairing body size, developmental rate, brood size, or neuronal function. Moreover, while degradation of RAGA-1 in all somatic tissues alters the expression of thousands of genes, demonstrating the widespread effects of mTORC1 inhibition, degradation of RAGA-1 in neurons only results in around 200 differentially expressed genes with a specific enrichment in metabolism and stress response. Notably, our work demonstrates that targeting mTORC1 specifically in the nervous system in C. elegans uncouples longevity from growth and reproductive impairments, and that many canonical effects of low mTORC1 activity are not required to promote healthy aging. These data challenge previously held ideas about the mechanisms of mTORC1 lifespan extension and underscore the potential of promoting longevity by neuron-specific mTORC1 modulation.
Collapse
Affiliation(s)
- Hannah J. Smith
- Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Massachusetts, United States of America
| | - Anne Lanjuin
- Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Massachusetts, United States of America
| | - Arpit Sharma
- Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Massachusetts, United States of America
| | - Aditi Prabhakar
- Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Massachusetts, United States of America
| | - Ewelina Nowak
- Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Massachusetts, United States of America
| | - Peter G. Stine
- Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Massachusetts, United States of America
| | - Rohan Sehgal
- Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Massachusetts, United States of America
| | | | | | - William B. Mair
- Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Massachusetts, United States of America
| |
Collapse
|
2
|
Phanindhar K, Mishra RK. Auxin-inducible degron system: an efficient protein degradation tool to study protein function. Biotechniques 2023; 74:186-198. [PMID: 37191015 DOI: 10.2144/btn-2022-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Targeted protein degradation, with its rapid protein depletion kinetics, allows the measurement of acute changes in the cell. The auxin-inducible degron (AID) system, rapidly degrades AID-tagged proteins only in the presence of auxin. The AID system being inducible makes the study of essential genes and dynamic processes like cell differentiation, cell cycle and genome organization feasible. The AID degradation system has been adapted to yeast, protozoans, C. elegans, Drosophila, zebrafish, mouse and mammalian cell lines. Using the AID system, researchers have unveiled novel functions for essential proteins at developmental stages that were previously difficult to investigate due to early lethality. This comprehensive review discusses the development, advancements, applications and drawbacks of the AID system and compares it with other available protein degradation systems.
Collapse
Affiliation(s)
- Kundurthi Phanindhar
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Tata Institute for Genetics & Society (TIGS), Bangalore, 560065, India
| |
Collapse
|
3
|
Sepers JJ, Verstappen NHM, Vo AA, Ragle JM, Ruijtenberg S, Ward JD, Boxem M. The mIAA7 degron improves auxin-mediated degradation in Caenorhabditiselegans. G3 (BETHESDA, MD.) 2022; 12:jkac222. [PMID: 36029236 PMCID: PMC9526053 DOI: 10.1093/g3journal/jkac222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 04/08/2023]
Abstract
Auxin-inducible degradation is a powerful tool for the targeted degradation of proteins with spatiotemporal control. One limitation of the auxin-inducible degradation system is that not all proteins are degraded efficiently. Here, we demonstrate that an alternative degron sequence, termed mIAA7, improves the efficiency of degradation in Caenorhabditiselegans, as previously reported in human cells. We tested the depletion of a series of proteins with various subcellular localizations in different tissue types and found that the use of the mIAA7 degron resulted in faster depletion kinetics for 5 out of 6 proteins tested. The exception was the nuclear protein HIS-72, which was depleted with similar efficiency as with the conventional AID* degron sequence. The mIAA7 degron also increased the leaky degradation for 2 of the tested proteins. To overcome this problem, we combined the mIAA7 degron with the C. elegans AID2 system, which resulted in complete protein depletion without detectable leaky degradation. Finally, we show that the degradation of ERM-1, a highly stable protein that is challenging to deplete, could be improved further by using multiple mIAA7 degrons. Taken together, the mIAA7 degron further increases the power and applicability of the auxin-inducible degradation system. To facilitate the generation of mIAA7-tagged proteins using CRISPR/Cas9 genome engineering, we generated a toolkit of plasmids for the generation of dsDNA repair templates by PCR.
Collapse
Affiliation(s)
- Jorian J Sepers
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Noud H M Verstappen
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - An A Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Suzan Ruijtenberg
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Morphis AC, Edwards SL, Erdenebat P, Kumar L, Li J. Auxin-Inducible Degron System Reveals Temporal-Spatial Roles of HSF-1 and Its Transcriptional Program in Lifespan Assurance. FRONTIERS IN AGING 2022; 3:899744. [PMID: 35899092 PMCID: PMC9309338 DOI: 10.3389/fragi.2022.899744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022]
Abstract
HSF-1 is a key regulator of cellular proteotoxic stress response and is required for animal lifespan. In C. elegans, HSF-1 mediated heat shock response (HSR) declines sharply on the first day of adulthood, and HSF-1 was proposed to function primarily during larval stages for lifespan assurance based on studies using RNAi. The tissue requirement for HSF-1 in lifespan, however, is not well understood. Using the auxin-inducible degron (AID) system, we manage to uncouple the roles of HSF-1 in development and longevity. In wild-type animals, we find HSF-1 is required during the whole self-reproductive period for lifespan. This period is extended in long-lived animals that have arrested germline stem cells (GSC) or reduced insulin/IGF-1 signaling (IIS). While depletion of HSF-1 from any major somatic tissues during development results in severe defects, HSF-1 primarily functions in the intestine and likely neural system of adults to support lifespan. Finally, by combining AID and genome-wide transcriptional analyses, we find HSF-1 directly activates the transcription of constitutively-expressed chaperone and co-chaperone genes among others in early adulthood, which underlies its roles in longevity assurance.
Collapse
Affiliation(s)
| | | | | | | | - Jian Li
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, United States
| |
Collapse
|
5
|
Elder CR, Pasquinelli AE. New Roles for MicroRNAs in Old Worms. FRONTIERS IN AGING 2022; 3:871226. [PMID: 35821862 PMCID: PMC9261348 DOI: 10.3389/fragi.2022.871226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Abstract
The use of Caenorhabditis elegans as a model organism in aging research has been integral to our understanding of genes and pathways involved in this process. Several well-conserved signaling pathways that respond to insulin signaling, diet, and assaults to proteostasis have defined roles in controlling lifespan. New evidence shows that microRNAs (miRNAs) play prominent roles in regulating these pathways. In some cases, key aging-related genes have been established as direct targets of specific miRNAs. However, the precise functions of other miRNAs and their protein cofactors in promoting or antagonizing longevity still need to be determined. Here, we highlight recently uncovered roles of miRNAs in common aging pathways, as well as new techniques for the ongoing discovery of miRNA functions in aging C. elegans.
Collapse
|
6
|
Hills-Muckey K, Martinez MAQ, Stec N, Hebbar S, Saldanha J, Medwig-Kinney TN, Moore FEQ, Ivanova M, Morao A, Ward JD, Moss EG, Ercan S, Zinovyeva AY, Matus DQ, Hammell CM. An engineered, orthogonal auxin analog/AtTIR1(F79G) pairing improves both specificity and efficacy of the auxin degradation system in Caenorhabditis elegans. Genetics 2022; 220:iyab174. [PMID: 34739048 PMCID: PMC9097248 DOI: 10.1093/genetics/iyab174] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.
Collapse
Affiliation(s)
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Joanne Saldanha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Ivanova
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
| | - Ana Morao
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - J D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric G Moss
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
| | - Sevinc Ercan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
7
|
Negishi T, Kitagawa S, Horii N, Tanaka Y, Haruta N, Sugimoto A, Sawa H, Hayashi KI, Harata M, Kanemaki MT. The auxin-inducible degron 2 (AID2) system enables controlled protein knockdown during embryogenesis and development in Caenorhabditis elegans. Genetics 2022; 220:iyab218. [PMID: 34865044 PMCID: PMC9208642 DOI: 10.1093/genetics/iyab218] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/18/2021] [Indexed: 01/09/2023] Open
Abstract
Targeted protein degradation using the auxin-inducible degron (AID) system is garnering attention in the research field of Caenorhabditis elegans, because of the rapid and efficient target depletion it affords, which can be controlled by treating the animals with the phytohormone auxin. However, the current AID system has drawbacks, i.e., leaky degradation in the absence of auxin and the requirement for high auxin doses. Furthermore, it is challenging to deplete degron-fused proteins in embryos because of their eggshell, which blocks auxin permeability. Here, we apply an improved AID2 system utilizing AtTIR1(F79G) and 5-phenyl-indole-3-acetic acid (5-Ph-IAA) to C. elegans and demonstrated that it confers better degradation control vs the previous system by suppressing leaky degradation and inducing sharp degradation using 1,300-fold lower 5-Ph-IAA doses. We successfully degraded the endogenous histone H2A.Z protein fused to an mAID degron and disclosed its requirement in larval growth and reproduction, regardless of the presence of maternally inherited H2A.Z molecules. Moreover, we developed an eggshell-permeable 5-Ph-IAA analog, 5-Ph-IAA-AM, that affords an enhanced degradation in laid embryos. Our improved system will contribute to the disclosure of the roles of proteins in C. elegans, in particular those that are involved in embryogenesis and development, through temporally controlled protein degradation.
Collapse
Affiliation(s)
- Takefumi Negishi
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Saho Kitagawa
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-0845, Japan
| | - Natsumi Horii
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-0845, Japan
| | - Yuka Tanaka
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Nami Haruta
- Laboratory of Developmental Dynamics, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Hitoshi Sawa
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-0845, Japan
| | - Masato T Kanemaki
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
- Molecular Cell Engineering Laboratory, Department of Chromosome Science, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|