1
|
Lee GG, Peterson AJ, Kim MJ, Shimell M, O’Connor MB, Park JH. Linking expression and function of Drosophila type-I TGF-β receptor baboon isoforms: Multiple roles of BaboA isoform in shaping of the adult central nervous system. PLoS One 2025; 20:e0318406. [PMID: 40445987 PMCID: PMC12124520 DOI: 10.1371/journal.pone.0318406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/05/2025] [Indexed: 06/02/2025] Open
Abstract
Evolutionarily conserved transforming growth factor β (TGF-β) signaling is used in both vertebrates and invertebrates to regulate a variety of developmental and cellular processes. The baboon (babo) gene encoding a Drosophila type-I TGF-β receptor produces three isoforms via alternative splicing: BaboA, BaboB, and BaboC. In this study, we generated three fly lines, each carrying an isoform-specific GFP tag, and another line with a GFP conjugated at the C-terminus common to all isoforms. Using these lines, we assessed (1) whether the tagged proteins function properly in rescue assays and (2) how the isoform expression is regulated in various tissues including the central nervous system (CNS). A Gal4 knock-in line in the babo locus was also characterized for reporter expression, mutant phenotypes, and isoform-specific knockdown phenotypes. We found that the C-terminal tag does not interrupt the subcellular targeting and functions of the tagged isoforms, but the internal isoform tags do so in a cell- and isoform-specific fashion. Nevertheless, our results demonstrated that these tags faithfully reflect endogenous expression of individual isoforms. Certain cell types express single or multiple isoforms at different levels, suggesting that alternative splicing could determine the isoform types and their levels depending on cell (or tissue) type. The larval CNS displays distinct patterns of two isoforms, BaboA and BaboC. BaboC is mostly expressed in neural cells originating during embryogenesis, while BaboA is broadly expressed in neural cells produced from both embryonic and postembryonic stages. Assays of both isoform-specific mutants and cell-specific knockdown of individual isoforms revealed broad roles played by BaboA in postembryonic neurogenesis and differentiation of precursor neurons, remodeling processes of persisting larval neurons, and metamorphic CNS reorganization, which are essential for establishing of the adult CNS. Taken together, this study demonstrates that the GFP-tagged lines permit visualization of endogenous expression of individual isoforms, which further provides clues about cell- and stage-specific functions played by each isoform.
Collapse
Affiliation(s)
- Gyunghee G. Lee
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Aidan J. Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jae H. Park
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
2
|
Lehmann KS, Hupp MT, Abalde-Atristain L, Jefferson A, Cheng YC, Sheehan AE, Kang Y, Freeman MR. Astrocyte-dependent local neurite pruning in Beat-Va neurons. J Cell Biol 2025; 224:e202312043. [PMID: 39652106 PMCID: PMC11627112 DOI: 10.1083/jcb.202312043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 12/12/2024] Open
Abstract
Developmental neuronal remodeling is extensive and mechanistically diverse across the nervous system. We sought to identify Drosophila pupal neurons that underwent mechanistically new types of neuronal remodeling and describe remodeling Beat-VaM and Beat-VaL neurons. We show that Beat-VaM neurons produce highly branched neurites in the CNS during larval stages that undergo extensive local pruning. Surprisingly, although the ecdysone receptor (EcR) is essential for pruning in all other cell types studied, Beat-VaM neurons remodel their branches extensively despite cell autonomous blockade EcR or caspase signaling. Proper execution of local remodeling in Beat-VaM neurons instead depends on extrinsic signaling from astrocytes converging with intrinsic and less dominant EcR-regulated mechanisms. In contrast, Beat-VaL neurons undergo steroid hormone-dependent, apoptotic cell death, which we show relies on the segment-specific expression of the Hox gene Abd-B. Our work provides new cell types in which to study neuronal remodeling, highlights an important role for astrocytes in activating local pruning in Drosophila independent of steroid signaling, and defines a Hox gene-mediated mechanism for segment-specific cell elimination.
Collapse
Affiliation(s)
| | - Madison T. Hupp
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Amanda Jefferson
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ya-Chen Cheng
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Amy E. Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
4
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Pérez E, Venkatanarayan A, Lundell MJ. Hunchback prevents notch-induced apoptosis in the serotonergic lineage of Drosophila Melanogaster. Dev Biol 2022; 486:109-120. [PMID: 35381219 DOI: 10.1016/j.ydbio.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022]
Abstract
The serotonergic lineage (NB7-3) in the Drosophila ventral nerve cord produces six cells during neurogenesis. Four of the cells differentiate into neurons: EW1, EW2, EW3 and GW. The other two cells undergo apoptosis. This simple lineage provides an opportunity to examine genes that are required to induce or repress apoptosis during cell specification. Previous studies have shown that Notch signaling induces apoptosis within the NB7-3 lineage. The three EW neurons are protected from Notch-induced apoptosis by asymmetric distribution of Numb protein, an inhibitor of Notch signaling. In a numb1 mutant EW2 and EW3 undergo apoptosis. The EW1 and GW neurons survive even in a numb1 mutant background suggesting that these cells are protected from Notch-induced apoptosis by some factor other than Numb. The EW1 and GW neurons are mitotic sister cells, and uniquely express the transcription factor Hunchback. We present evidence that Hunchback prevents apoptosis in the NB7-3 lineage during normal CNS development and can rescue the two apoptotic cells in the lineage when it is ectopically expressed. We show that hunchback overexpression produces ectopic cells that express markers similar to the EW2 neuron and changes the expression pattern of the EW3 neuron to a EW2 neuron In addition we show that hunchback overexpression can override apoptosis that is genetically induced by the pro-apoptotic genes grim and hid.
Collapse
Affiliation(s)
- Ernesto Pérez
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
6
|
Drosophila Corazonin Neurons as a Hub for Regulating Growth, Stress Responses, Ethanol-Related Behaviors, Copulation Persistence and Sexually Dimorphic Reward Pathways. J Dev Biol 2021; 9:jdb9030026. [PMID: 34287347 PMCID: PMC8293205 DOI: 10.3390/jdb9030026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The neuronal mechanisms by which complex behaviors are coordinated and timed often involve neuropeptidergic regulation of stress and reward pathways. Recent studies of the neuropeptide Corazonin (Crz), a homolog of the mammalian Gonadotrophin Releasing Hormone (GnRH), have suggested its crucial role in the regulation of growth, internal states and behavioral decision making. We focus this review on Crz neurons with the goal to (1) highlight the diverse roles of Crz neuron function, including mechanisms that may be independent of the Crz peptide, (2) emphasize current gaps in knowledge about Crz neuron functions, and (3) propose exciting ideas of novel research directions involving the use of Crz neurons. We describe the different developmental fates of distinct subsets of Crz neurons, including recent findings elucidating the molecular regulation of apoptosis. Crz regulates systemic growth, food intake, stress responses and homeostasis by interacting with the short Neuropeptide F (sNPF) and the steroid hormone ecdysone. Additionally, activation of Crz neurons is shown to be pleasurable by interacting with the Neuropeptide F (NPF) and regulates reward processes such as ejaculation and ethanol-related behaviors in a sexually dimorphic manner. Crz neurons are proposed to be a motivational switch regulating copulation duration using a CaMKII-dependent mechanism described as the first neuronal interval timer lasting longer than a few seconds. Lastly, we propose ideas to use Crz neuron-induced ejaculation to study the effects of fictive mating and sex addiction in flies, as well as to elucidate dimorphic molecular mechanisms underlying reward behaviors and feeding disorders.
Collapse
|
7
|
Lee G, Park JH. Programmed cell death reshapes the central nervous system during metamorphosis in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 43:39-45. [PMID: 33065339 PMCID: PMC10754214 DOI: 10.1016/j.cois.2020.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Metamorphosis is fascinating and dramatic stage of postembryonic development in insects [1]. The most prominent metamorphic changes seen in holometabolous insects involve destruction of most larval structures and concomitant generation of adult ones. Such diverse cellular events are orchestrated by ecdysone. The central nervous system (CNS) is also extensively remodeled to process new sensory inputs; to coordinate new types of locomotion; and to perform higher-order decision making [2]. Programmed cell death (PCD) is an integral part of the metamorphic development. It eliminates obsolete larval tissues and extra cells that are generated from the morphogenesis of adult tissues. In the CNS, PCD of selected neurons and glial cells as well as reshaping of persistent larval cells are essential for establishing the adult CNS. In this review, we summarize the ecdysone signaling, and then molecular and cellular events associated with PCD primarily in the metamorphosing CNS of Drosophila melanogaster.
Collapse
Affiliation(s)
- Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville TN 37996, United States
| | - Jae H Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville TN 37996, United States.
| |
Collapse
|
8
|
Brown J, Bush I, Bozon J, Su TT. Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms. PLoS Genet 2020; 16:e1009056. [PMID: 33075096 PMCID: PMC7595702 DOI: 10.1371/journal.pgen.1009056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 10/29/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of Heterozygosity (LOH) typically refers to a phenomenon in which diploid cells that are heterozygous for a mutant allele lose their wild type allele through mutations. LOH is implicated in oncogenesis when it affects the remaining wild type copy of a tumor suppressor. Drosophila has been a useful model to identify genes that regulate the incidence of LOH, but most of these studies use adult phenotypic markers such as multiple wing hair (mwh). Here, we describe a cell-autonomous fluorescence-based system that relies on the QF/QS transcriptional module to detect LOH, which may be used in larval, pupal and adult stages and in conjunction with the GAL4/UAS system. Using the QF/QS system, we were able to detect the induction of cells with LOH by X-rays in a dose-dependent manner in the larval wing discs, and to monitor their fate through subsequent development in pupa and adult stages. We tested the genetic requirement for changes in LOH, using both classical mutants and GAL4/UAS-mediated RNAi. Our results identify two distinct culling phases that eliminate cells with LOH, one in late larval stages and another in the pupa. The two culling phases are genetically separable, showing differential requirement for pro-apoptotic genes of the H99 locus and transcription factor Srp. A direct comparison of mwh LOH and QF/QS LOH suggests that cells with different LOH events are distinguished from each other in a p53-dependent manner and are retained to different degrees in the final adult structure. These studies reveal previously unknown mechanisms for the elimination of cells with chromosome aberrations.
Collapse
Affiliation(s)
- Jeremy Brown
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Inle Bush
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Justine Bozon
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
9
|
Pop S, Chen CL, Sproston CJ, Kondo S, Ramdya P, Williams DW. Extensive and diverse patterns of cell death sculpt neural networks in insects. eLife 2020; 9:59566. [PMID: 32894223 PMCID: PMC7535934 DOI: 10.7554/elife.59566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/06/2020] [Indexed: 11/20/2022] Open
Abstract
Changes to the structure and function of neural networks are thought to underlie the evolutionary adaptation of animal behaviours. Among the many developmental phenomena that generate change programmed cell death (PCD) appears to play a key role. We show that cell death occurs continuously throughout insect neurogenesis and happens soon after neurons are born. Mimicking an evolutionary role for increasing cell numbers, we artificially block PCD in the medial neuroblast lineage in Drosophila melanogaster, which results in the production of ‘undead’ neurons with complex arborisations and distinct neurotransmitter identities. Activation of these ‘undead’ neurons and recordings of neural activity in behaving animals demonstrate that they are functional. Focusing on two dipterans which have lost flight during evolution we reveal that reductions in populations of flight interneurons are likely caused by increased cell death during development. Our findings suggest that the evolutionary modulation of death-based patterning could generate novel network configurations. Just like a sculptor chips away at a block of granite to make a statue, the nervous system reaches its mature state by eliminating neurons during development through a process known as programmed cell death. In vertebrates, this mechanism often involves newly born neurons shrivelling away and dying if they fail to connect with others during development. Most studies in insects have focused on the death of neurons that occurs at metamorphosis, during the transition between larva to adult, when cells which are no longer needed in the new life stage are eliminated. Pop et al. harnessed a newly designed genetic probe to point out that, in fruit flies, programmed cell death of neurons at metamorphosis is not the main mechanism through which cells die. Rather, the majority of cell death takes place as soon as neurons are born throughout all larval stages, when most of the adult nervous system is built. To gain further insight into the role of this ‘early’ cell death, the neurons were stopped from dying, showing that these cells were able to reach maturity and function. Together, these results suggest that early cell death may be a mechanism fine-tuned by evolution to shape the many and varied nervous systems of insects. To explore this, Pop et al. looked for hints of early cell death in relatives of fruit flies that are unable to fly: the swift lousefly and the bee lousefly. This analysis showed that early cell death is likely to occur in these two insects, but it follows different patterns than in the fruit fly, potentially targeting the neurons that would have controlled flight in these flies’ ancestors. Brains are the product of evolution: learning how neurons change their connections and adapt could help us understand how the brain works in health and disease. This knowledge may also be relevant to work on artificial intelligence, a discipline that often bases the building blocks and connections in artificial ‘brains’ on how neurons communicate with one another.
Collapse
Affiliation(s)
- Sinziana Pop
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Chin-Lin Chen
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Connor J Sproston
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Wang Z, Lee G, Vuong R, Park JH. Two-factor specification of apoptosis: TGF-β signaling acts cooperatively with ecdysone signaling to induce cell- and stage-specific apoptosis of larval neurons during metamorphosis in Drosophila melanogaster. Apoptosis 2020; 24:972-989. [PMID: 31641960 DOI: 10.1007/s10495-019-01574-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developmentally regulated programmed cell death (PCD) is one of the key cellular events for precise controlling of neuronal population during postembryonic development of the central nervous system. Previously we have shown that a group of corazonin-producing peptidergic neurons (vCrz) undergo apoptosis in response to ecdysone signaling via ecdysone receptor (EcR)-B isoforms and Ultraspiracle during early phase of metamorphosis. Further utilizing genetic, transgenic, and mosaic analyses, we have found that TGF-β signaling mediated by a glia-produced ligand, Myoglianin, type-I receptor Baboon (particularly Babo-A isoform) and dSmad2, is also required autonomously for PCD of the vCrz neurons. Our studies show that TGF-β signaling is not acting epistatically to EcR or vice versa. We also show that ectopic expression of a constitutively active phosphomimetic form of dSmad2 (dSmad2PM) is capable of inducing premature death of vCrz neurons in larva but not other larval neurons. Intriguingly, the dSmad2PM-mediated killing is completely suppressed by coexpression of a dominant-negative form of EcR (EcRDN), suggesting that EcR function is required for the proapoptotic dSmad2PM function. Based on these data, we suggest that TGF-β and ecdysone signaling pathways act cooperatively to induce vCrz neuronal PCD. We propose that this type of two-factor authentication is a key developmental strategy to ensure the timely PCD of specific larval neurons during metamorphosis.
Collapse
Affiliation(s)
- Zixing Wang
- UT-ORNL Graduate School of Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard Vuong
- Undergraduate program in Neuroscience, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jae H Park
- Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA. .,UT-ORNL Graduate School of Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
11
|
Lee G, Sehgal R, Wang Z, Park JH. Ultraspiracle-independent anti-apoptotic function of ecdysone receptors is required for the survival of larval peptidergic neurons via suppression of grim expression in Drosophila melanogaster. Apoptosis 2020; 24:256-268. [PMID: 30637539 DOI: 10.1007/s10495-019-01514-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Drosophila melanogaster a significant number of heterogenous larval neurons in the central nervous system undergo metamorphosis-associated programmed cell death, termed metamorphoptosis. Interestingly distinct groups of doomed larval neurons are eliminated at different metamorphic phases. Although ecdysone hormonal signaling via nuclear ecdysone receptors (EcRs) is known to orchestrate the neuronal metamorphoptosis, little is known about how this signaling controls such diverse neuronal responses. Crustacean cardioactive peptide (CCAP)-producing neurons in the ventral nerve cord are developmentally programmed to die shortly after adult emergence. In this study, we show that disruption of endogenous EcR function by ectopic expression of dominant negative forms of EcRs (EcRDN) causes premature death of larval CCAP neurons in a caspase-dependent manner. This event is rescued by co-expression of individual EcR isoforms. Furthermore, larval CCAP neurons are largely normal in ecr mutants lacking either EcR-A or EcR-B isoforms, suggesting that EcR isoforms redundantly function to protect larval CCAP neurons. Of surprise, a role of Ultraspiracle (Usp), a canonical partner of EcR, is dispensable in the protection of CCAP neurons, whereas both EcR and Usp are required for inducing metamorphoptosis of vCrz neurons shortly after prepupal formation. As a downstream, grim is an essential cell death gene for the EcRDN-mediated CCAP neuronal death, while either hid or rpr function is dispensable. Together, our results suggest that Usp-independent EcR actions protect CCAP neurons from their premature death by repressing grim expression until their normally scheduled apoptosis at post-emergence. Our studies highlight two opposite roles played by EcR function for metamorphoptosis of two different peptidergic neuronal groups, proapoptotic (vCrz) versus antiapoptotic (CCAP), and propose that distinct death timings of doomed larval neurons are determined by differential signaling mechanisms involving EcR.
Collapse
Affiliation(s)
- Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ritika Sehgal
- Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zixing Wang
- UT-ORNL Graduate School of Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jae H Park
- Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA. .,UT-ORNL Graduate School of Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
Prieto-Godino LL, Silbering AF, Khallaf MA, Cruchet S, Bojkowska K, Pradervand S, Hansson BS, Knaden M, Benton R. Functional integration of "undead" neurons in the olfactory system. SCIENCE ADVANCES 2020; 6:eaaz7238. [PMID: 32195354 PMCID: PMC7065876 DOI: 10.1126/sciadv.aaz7238] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/03/2019] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) is widespread during neurodevelopment, eliminating the surpluses of neuronal production. Using the Drosophila olfactory system, we examined the potential of cells fated to die to contribute to circuit evolution. Inhibition of PCD is sufficient to generate new cells that express neural markers and exhibit odor-evoked activity. These "undead" neurons express a subset of olfactory receptors that is enriched for relatively recent receptor duplicates and includes some normally found in different chemosensory organs and life stages. Moreover, undead neuron axons integrate into the olfactory circuitry in the brain, forming novel receptor/glomerular couplings. Comparison of homologous olfactory lineages across drosophilids reveals natural examples of fate change from death to a functional neuron. Last, we provide evidence that PCD contributes to evolutionary differences in carbon dioxide-sensing circuit formation in Drosophila and mosquitoes. These results reveal the remarkable potential of alterations in PCD patterning to evolve new neural pathways.
Collapse
Affiliation(s)
- Lucia L. Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- The Francis Crick Institute, London NW1 1BF, UK
| | - Ana F. Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Mohammed A. Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Karolina Bojkowska
- Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
13
|
Lee G, Kim J, Kim Y, Yoo S, Park JH. Identifying and monitoring neurons that undergo metamorphosis-regulated cell death (metamorphoptosis) by a neuron-specific caspase sensor (Casor) in Drosophila melanogaster. Apoptosis 2019; 23:41-53. [PMID: 29224041 DOI: 10.1007/s10495-017-1435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Activation of caspases is an essential step toward initiating apoptotic cell death. During metamorphosis of Drosophila melanogaster, many larval neurons are programmed for elimination to establish an adult central nervous system (CNS) as well as peripheral nervous system (PNS). However, their neuronal functions have remained mostly unknown due to the lack of proper tools to identify them. To obtain detailed information about the neurochemical phenotypes of the doomed larval neurons and their timing of death, we generated a new GFP-based caspase sensor (Casor) that is designed to change its subcellular position from the cell membrane to the nucleus following proteolytic cleavage by active caspases. Ectopic expression of Casor in vCrz and bursicon, two different peptidergic neuronal groups that had been well-characterized for their metamorphic programmed cell death, showed clear nuclear translocation of Casor in a caspase-dependent manner before their death. We found similar events in some cholinergic neurons from both CNS and PNS. Moreover, Casor also reported significant caspase activities in the ventral and dorsal common excitatory larval motoneurons shortly after puparium formation. These motoneurons were previously unknown for their apoptotic fate. Unlike the events seen in the neurons, expression of Casor in non-neuronal cell types, such as glial cells and S2 cells, resulted in the formation of cytoplasmic aggregates, preventing its use as a caspase sensor in these cell types. Nonetheless, our results support Casor as a valuable molecular tool not only for identifying novel groups of neurons that become caspase-active during metamorphosis but also for monitoring developmental timing and cytological changes within the dying neurons.
Collapse
Affiliation(s)
- Gyunghee Lee
- Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jaeman Kim
- Department of Biological Science, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | - Yujin Kim
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Siuk Yoo
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae H Park
- Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Notch signaling and neuronal death in stroke. Prog Neurobiol 2018; 165-167:103-116. [PMID: 29574014 DOI: 10.1016/j.pneurobio.2018.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.
Collapse
|
15
|
Cloning and functional characterizations of an apoptogenic Hid gene in the Scuttle Fly, Megaselia scalaris (Diptera; Phoridae). Gene 2016; 604:9-21. [PMID: 27940109 DOI: 10.1016/j.gene.2016.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
Abstract
Although the mechanisms of apoptotic cell death have been well studied in the fruit fly, Drosophila melanogaster, it is unclear whether such mechanisms are conserved in other distantly related species. Using degenerate primers and PCR, we cloned a proapoptotic gene homologous to Head involution defective (Hid) from the Scuttle fly, Megaselia scalaris (MsHid). MsHid cDNA encodes a 197-amino acid-long polypeptide, which so far is the smallest HID protein. PCR analyses revealed that the MsHid gene consists of four exons and three introns. Ectopic expression of MsHid in various peptidergic neurons and non-neuronal tissues in Drosophila effectively induced apoptosis of these cells. However, deletion of either conserved domain, N-terminal IBM or C-terminal MTS, abolished the apoptogenic activity of MsHID, indicating that these two domains are indispensable. Expression of MsHid was found in all life stages, but more prominently in embryos and pupae. MsHid is actively expressed in the central nervous system (CNS), indicating its important role in CNS development. Together MsHID is likely to be an important cell death inducer during embryonic and post-embryonic development in this species. In addition, we found 2-fold induction of MsHid expression in UV-irradiated embryos, indicating a possible role for MsHid in UV-induced apoptosis.
Collapse
|
16
|
Liu Y, Luo J, Nässel DR. The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage. Front Mol Neurosci 2016; 9:97. [PMID: 27790090 PMCID: PMC5064288 DOI: 10.3389/fnmol.2016.00097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Drosophila could be regulated by insulin/IGF signaling and the insulin receptor (dInR). Dimm is also known to confer a secretory phenotype to neuroendocrine cells and can be part of a combinatorial code specifying terminal differentiation in peptidergic neurons. To further understand the mechanisms of Dimm function we ectopically expressed Dimm or Dimm together with dInR in a wide range of Dimm positive and Dimm negative peptidergic neurons, sensory neurons, interneurons, motor neurons, and gut endocrine cells. We provide further evidence that dInR mediated cell growth occurs in a Dimm dependent manner and that one source of insulin-like peptide (DILP) for dInR mediated cell growth in the CNS is DILP6 from glial cells. Expressing both Dimm and dInR in Dimm negative neurons induced growth of cell bodies, whereas dInR alone did not. We also found that Dimm alone can regulate cell growth depending on specific cell type. This may be explained by the finding that the dInR is a direct target of Dimm. Conditional gene targeting experiments showed that Dimm alone could affect cell growth in certain neuron types during metamorphosis or in the adult stage. Another important finding was that ectopic Dimm inhibits apoptosis of several types of neurons normally destined for programmed cell death (PCD). Taken together our results suggest that Dimm plays multiple transcriptional roles at different developmental stages in a cell type-specific manner. In some cell types ectopic Dimm may act together with resident combinatorial code transcription factors and affect terminal differentiation, as well as act in transcriptional networks that participate in long term maintenance of neurons which might lead to blocked apoptosis.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Zoology, Stockholm University Stockholm, Sweden
| | - Jiangnan Luo
- Department of Zoology, Stockholm University Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University Stockholm, Sweden
| |
Collapse
|
17
|
Pinto-Teixeira F, Konstantinides N, Desplan C. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 2016; 590:2435-2453. [PMID: 27404003 DOI: 10.1002/1873-3468.12298] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.
Collapse
Affiliation(s)
- Filipe Pinto-Teixeira
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Nikolaos Konstantinides
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
18
|
Wang Z, Xu W, Zhu H, Liu Y. A Bayesian Framework to Improve MicroRNA Target Prediction by Incorporating External Information. Cancer Inform 2014; 13:19-25. [PMID: 25452690 PMCID: PMC4238384 DOI: 10.4137/cin.s16348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that play key gene-regulatory roles in diverse biological processes, particularly in cancer development. Therefore, inferring miRNA targets is an essential step to fully understanding the functional properties of miRNA actions in regulating tumorigenesis. Bayesian linear regression modeling has been proposed for identifying the interactions between miRNAs and mRNAs on the basis of the integrated sequence information and matched miRNA and mRNA expression data; however, this approach does not use the full spectrum of available features of putative miRNA targets. In this study, we integrated four important sequence and structural features of miRNA targeting with paired miRNA and mRNA expression data to improve miRNA-target prediction in a Bayesian framework. We have applied this approach to a gene-expression study of liver cancer patients and examined the posterior probability of each miRNA-mRNA interaction being functional in the development of liver cancer. Our method achieved better performance, in terms of the number of true targets identified, than did other methods.
Collapse
Affiliation(s)
- Zixing Wang
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenlong Xu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haifeng Zhu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, USA. ; University of Texas Graduate School of Biomedical Science, Houston, TX, USA
| |
Collapse
|