1
|
Sukhan ZP, Cho Y, Hossen S, Lee WK, Kho KH. Identification and Characterization of Hdh-FMRF2 Gene in Pacific Abalone and Its Possible Role in Reproduction and Larva Development. Biomolecules 2023; 13:109. [PMID: 36671494 PMCID: PMC9856054 DOI: 10.3390/biom13010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
FMRFamide-related peptides are neuropeptides involved in a wide range of biological processes, including reproduction and larval development. To characterize the involvement of FMRFamide in the reproduction and larval development of Pacific abalone Haliotis discus hannai, an FMRFamide cDNA (Hdh-FMRF2) was cloned from the cerebral ganglion (CG). Fluorescence in situ hybridization and qRT-PCR were performed for functional characterization. The Hdh-FMRF2 cDNA encoded 204 deduced amino acids that contained a putative signal peptide and four FaRP domains. The major population of Hdh-FMRF2 neuronal cell bodies was localized in the cortex of CG. Hdh-FMRF2 mRNA expression was significantly upregulated in CG during the mature stage of gonadal development and effective accumulative temperature (EAT) exposed abalone in both sexes. In the induced spawning event, Hdh-FMRF2 expression was significantly upregulated during spawning in males. However, no upregulation was observed in females, suggesting Hdh-FMRF2 might inhibit gamete release in female abalone. These results revealed Hdh-FMRF2 as a reproduction related peptide. Furthermore, mRNA expression in larval development suggested that this peptide was also involved in larval development during development of Pacific abalone. Collectively, this study provides evidence of possible involvement of an FMRFamide neuropeptide in the reproduction and larval development of Pacific abalone.
Collapse
Affiliation(s)
| | | | | | | | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
2
|
Styfhals R, Zolotarov G, Hulselmans G, Spanier KI, Poovathingal S, Elagoz AM, De Winter S, Deryckere A, Rajewsky N, Ponte G, Fiorito G, Aerts S, Seuntjens E. Cell type diversity in a developing octopus brain. Nat Commun 2022; 13:7392. [PMID: 36450803 PMCID: PMC9712504 DOI: 10.1038/s41467-022-35198-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Octopuses are mollusks that have evolved intricate neural systems comparable with vertebrates in terms of cell number, complexity and size. The brain cell types that control their sophisticated behavioral repertoire are still unknown. Here, we profile the cell diversity of the paralarval Octopus vulgaris brain to build a cell type atlas that comprises mostly neural cells, but also multiple glial subtypes, endothelial cells and fibroblasts. We spatially map cell types to the vertical, subesophageal and optic lobes. Investigation of cell type conservation reveals a shared gene signature between glial cells of mouse, fly and octopus. Genes related to learning and memory are enriched in vertical lobe cells, which show molecular similarities with Kenyon cells in Drosophila. We construct a cell type taxonomy revealing transcriptionally related cell types, which tend to appear in the same brain region. Together, our data sheds light on cell type diversity and evolution in the octopus brain.
Collapse
Affiliation(s)
- Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Grygoriy Zolotarov
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Gert Hulselmans
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Katina I Spanier
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | | | - Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Seppe De Winter
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biological Sciences, Columbia University, New York, US
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stein Aerts
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Sprecher M, Sprecher SG, Spadavecchia C. A pilot investigation of the efficacy and safety of magnesium chloride and ethanol as anesthetics in Loligo vulgaris embryos. Front Physiol 2022; 13:968047. [PMID: 36388114 PMCID: PMC9641376 DOI: 10.3389/fphys.2022.968047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 01/24/2024] Open
Abstract
The inclusion of cephalopods in the legislation related to the use of animals for experimental purposes has been based on the precautionary principle that these animals have the capacity to experience pain, suffering, distress, and lasting harm. Recent studies have expanded this view and supported it. Handling cephalopod mollusks in research is challenging and whenever more invasive procedures are required, sedation and/or anesthesia becomes necessary. Therefore, finding adequate, safe, and effective anesthetics appears mandatory. Several substances have been considered in sedating cephalopods, in some instances applying those utilized for fish. However, species-specific variability requires more detailed studies. Despite long-lasting experience being linked to classic studies on squid giant axons, evidence of action on putative anesthetic substances is scarce for Loligo vulgaris and particularly for their embryos. The aim of the current study was to evaluate effects elicited by immersion of squid embryos in anesthetic solutions and examine whether these forms display a similar reaction to anesthetics as adults do. Different concentrations of ethanol (EtOH; 2, 2.5, and 3%) and magnesium chloride (MgCl2; 1, 1.5, and 1.8%) were tested by adopting a set of indicators aimed at exploring the physiological responses of squid embryos. Forty-two embryos of the common squid Loligo vulgaris (stages 27-28) were assigned to three conditions (EtOH, MgCl2, and controls) and video recorded for 15 min (5 min before, 5 min during, and 5 min after immersion in the anesthetic solutions). In each group, the heart rate, respiratory rate, buoyancy, chromatophore activity, and tentacles/arms responses were assessed to evaluate the embryos' vitality and responsiveness to stimulation. Both substances provoked a decrease in heart and respiratory rates and inhibited buoyancy, chromatophores, and tentacles/arms responses; no adverse effects were observed. EtOH had a faster onset of action and faster recovery than MgCl2, being potentially more adequate as an anesthetic for shorter procedures. Even though MgCl2 caused a longer muscle relaxation, the reversibility was not confirmed for the 1.8% concentration; however, lower concentrations triggered similar results as the ones obtained with the highest EtOH concentrations. We have shown that the late developmental stages of Loligo vulgaris embryos could represent a good model to evaluate anesthetics for cephalopods since they can display similar reactions to anesthetics as adults animals do.
Collapse
Affiliation(s)
- Marta Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Claudia Spadavecchia
- Department of Clinical Veterinary Medicine, Anaesthesiology and Pain Therapy Section, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Zheng L, Cao H, Qiu J, Chi C. Inhibitory Effect of FMRFamide on NO Production During Immune Defense in Sepiella japonica. Front Immunol 2022; 13:825634. [PMID: 35572529 PMCID: PMC9095972 DOI: 10.3389/fimmu.2022.825634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide), specifically existing in invertebrates, plays pivotal roles in various physiological processes. The involvement in neuroendocrine-immune regulation was explored in recent years, and it could modulate nitric oxide (NO) production under immune stress. However, detailed knowledge is still little known. In this study, we identified FMRFamide as an inhibitory factor on NO production in the immune reaction of Sepiella japonica. Firstly, Vibrio harveyi incubation caused significantly upregulated expression of FMRFamide precursor and NO synthase (NOS) in just hatched cuttlefish with quantitative Real-time PCR (qRT-PCR), which indicated that both were likely to be involved in the immune defense. The whole-mount in situ hybridization (ISH) detected FMRFamide precursor and NOS-positive signals appeared colocalization, suggesting that at histological and anatomical levels FMRFamide might interact with NOS. Next, NOS mRNA was highly significantly upregulated at 72 h when FMRFamide precursor mRNA was knocked down effectively with the RNA interference (RNAi) method; the results hinted that FMRFamide was likely to regulate NO production. Continuously, the inflammatory model was constructed in RAW 264.7 cells induced by lipopolysaccharide (LPS), FMRFamide administration resulted in a highly significant reduction of the NO level in dose- and time-response manners. Although the addition of the selected inducible NOS (iNOS) inhibitor had inhibited the NO production induced by LPS, the additional FMRFamide could still furtherly sharpen the process. Collectively, it was concluded that neuropeptide FMRFamide could indeed inhibit NO production to serve as feedback regulation at the late stage of immune response to protect hosts from excessive immune cytotoxicity. The inhibitory effect on NO production could not only be mediated by the NOS pathway but also be implemented through other pathways that needed to be furtherly explored. The results will provide data for comparing the structure and immune function of neuroendocrine-immune system (NEIS) between "advanced" cephalopods and other invertebrates and will provide new information for understanding the NEIS of cephalopods.
Collapse
Affiliation(s)
| | | | | | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
5
|
Senft SL, Kuzirian AM, Hanlon RT. Networks of linked radial muscles could influence dynamic skin patterning of squid chromatophores. J Morphol 2021; 282:1245-1258. [PMID: 33998033 DOI: 10.1002/jmor.21379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/11/2022]
Abstract
The visibility of cephalopod chromatophore organs is regulated dynamically by rosettes of obliquely striated radial muscles that dilate or relax the diameter of a central pigmented sacculus in 100-300 ms. Each of the several dozen muscles has a flared proximal end that adheres tightly to its pigmented sacculus and an extremely elongated distal end which branches into single fibrils that anchor into the dermis. This geometry provides ample opportunity for overlap of the many muscles from neighboring chromatophores. The temporal activity of these muscles has been believed to be patterned exclusively by monosynaptic projections from sets of efferent motor axons originating in the chromatophore lobes of the suboesophageal brain. Based on historical observations that distal radial muscles from some chromatophores appear to extend closely to muscles from other chromatophores, we asked whether radial muscles actually make specialized contacts. Using 3D electron microscopy of Doryteuthis pealeii mantle skin, we discovered tight putatively functional muscle-to-muscle contacts between radial muscles from different chromatophores, including elaborate sets of axonal processes located adjacent to those myo-myo junctions. These detailed ultrastructural findings demonstrate auxiliary anatomical routes for radial muscle activation and suggest plausible mechanisms whereby local physical synchronization and axo-axonic processing in the periphery can contribute to chromatophore pattern dynamics such as "passing cloud."
Collapse
Affiliation(s)
- Stephen L Senft
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Alan M Kuzirian
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Roger T Hanlon
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
6
|
Kotsyuba E, Kalachev A, Kameneva P, Dyachuk V. Distribution of Molecules Related to Neurotransmission in the Nervous System of the Mussel Crenomytilus grayanus. Front Neuroanat 2020; 14:35. [PMID: 32714154 PMCID: PMC7344229 DOI: 10.3389/fnana.2020.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
In bivalves neurotransmitters are involved in a variety of behaviors, but their diversity and distribution in the nervous system of these organisms remains somewhat unclear. Here, we first examined immunohistochemically the distributions of neurons containing different neurotransmitters, neuropeptides, and related enzymes, as well as the proliferative status of neurons in the ganglia of the mussel Crenomytilus grayanus. H-Phe-Met-Arg-Phe-NH2 (FMRFamide), choline acetyltransferase (ChAT), γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH) were found to be expressed by neurons in all the ganglia, whereas serotonin (5-HT) neurons were found only in the cerebropleural and pedal, but not visceral ganglia. Moreover, incubation of living mussels in the presence of a 5-HT precursor (5-HTP) confirmed the absence of 5-HT-containing neurons from the visceral ganglia, indicating that the "serotonin center" of the visceral nervous system is located in the cerebral ganglia. Furthermore, immunostaining of molecules related to neurotransmission together with α-acetylated tubulin demonstrated that this cytoskeletal protein may be a potential pan-neuronal marker in bivalves. Adult mussel neurons do not proliferate, but a population of proliferating PCNA-LIP cells which do not express any of the neurotransmitters examined, perhaps glia cells, was detected in the ganglia. These novel findings suggest that the nervous system of bivalves contains a broad variety of signal molecules most likely involved in the regulation of different physiological and behavioral processes. In addition, proliferating cells may maintain and renew glial cells and neurons throughout the lives of bivalves.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alexander Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Polina Kameneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| |
Collapse
|
7
|
Hernández C, Konno K, Salceda E, Vega R, Zaharenko AJ, Soto E. Sa12b Peptide from Solitary Wasp Inhibits ASIC Currents in Rat Dorsal Root Ganglion Neurons. Toxins (Basel) 2019; 11:toxins11100585. [PMID: 31658776 PMCID: PMC6832649 DOI: 10.3390/toxins11100585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
In this work, we evaluate the effect of two peptides Sa12b (EDVDHVFLRF) and Sh5b (DVDHVFLRF-NH2) on Acid-Sensing Ion Channels (ASIC). These peptides were purified from the venom of solitary wasps Sphex argentatus argentatus and Isodontia harmandi, respectively. Voltage clamp recordings of ASIC currents were performed in whole cell configuration in primary culture of dorsal root ganglion (DRG) neurons from (P7-P10) CII Long-Evans rats. The peptides were applied by preincubation for 25 s (20 s in pH 7.4 solution and 5 s in pH 6.1 solution) or by co-application (5 s in pH 6.1 solution). Sa12b inhibits ASIC current with an IC50 of 81 nM, in a concentration-dependent manner when preincubation application was used. While Sh5b did not show consistent results having both excitatory and inhibitory effects on the maximum ASIC currents, its complex effect suggests that it presents a selective action on some ASIC subunits. Despite the similarity in their sequences, the action of these peptides differs significantly. Sa12b is the first discovered wasp peptide with a significant ASIC inhibitory effect.
Collapse
Affiliation(s)
- Carmen Hernández
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan.
| | - Emilio Salceda
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | | | - Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| |
Collapse
|
8
|
Li M, Wang M, Wang W, Wang L, Liu Z, Sun J, Wang K, Song L. The immunomodulatory function of invertebrate specific neuropeptide FMRFamide in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 88:480-488. [PMID: 30877062 DOI: 10.1016/j.fsi.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
As one of the most important neuropeptides identified only in invertebrates of Mollusca, Annelida and Arthropoda, FMRFamide (Phe-Met-Arg-Phe-NH2) involves in multiple physiological processes, such as mediating cardiac frequency and contraction of somatic and visceral muscles. However, its modulatory role in the immune defense has not been well understood. In the present study, an FMRFamide precursor (designed as CgFMRFamide) was identified in oyster Crassostrea gigas, which could be processed into nineteen FMRFamide peptides. Phylogenetic analysis revealed that CgFMRFamide shared high similarity with other identified FMRFamides in mollusks. The mRNA of CgFMRFamide was mainly concentrated in the tissues of visceral ganglia, hepatopancreas and hemocytes, and a consistent distribution of FMRFamide peptide was confirmed by immunohistochemistry and immunocytochemistry assays. The mRNA expression level of CgFMRFamide in hemocytes was significantly up-regulated after immune stimulation with lipopolysaccharide (LPS). After the concentration of FMRFamide was increased by exogenous injection, the in vivo expressions of pro-inflammatory cytokine CgIL17-5, as well as the apoptosis-related CgCaspase-1 and CgCaspase-3 in hemocytes were promptly increased (p < 0.05), but the concentration of signal molecule nitric oxide (NO) was significantly down-regulated (p < 0.05). Meanwhile, an increased phosphorylation of p38 MAP kinase in hemocytes was also detected after the FMRFamide injection. These results collectively demonstrated that the conserved FMRFamide could not only respond to immune stimulation, but also regulate the expression of immune effectors and apoptosis-related genes, which might be mediated by p38 MAP kinase pathway, thereby effectively involved in clearing pathogens and maintaining homeostasis in oysters.
Collapse
Affiliation(s)
- Meijia Li
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
9
|
Baldascino E, Di Cristina G, Tedesco P, Hobbs C, Shaw TJ, Ponte G, Andrews PLR. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression. Front Physiol 2017; 8:1001. [PMID: 29326594 PMCID: PMC5736919 DOI: 10.3389/fphys.2017.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin-related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake regulation and digestive tract motility control and (ii) the difference in relative gene expression in the gastric ganglion in octopus with relatively high and low parasitic loads and the similarities to changes in the enteric innervation of mammals with digestive tract parasites. Our results provide additional data to the described neurochemical complexity of O. vulgaris gastric ganglion.
Collapse
Affiliation(s)
- Elena Baldascino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Perla Tedesco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| |
Collapse
|
10
|
Burbach JPH, Hellemons AJCGM, Grant P, Pant HC. The homeodomain transcription factor Phox2 in the stellate ganglion of the squid Loligo pealei. Biol Open 2015; 4:954-60. [PMID: 26116657 PMCID: PMC4542286 DOI: 10.1242/bio.012476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Homeodomain transcription factors regulate development of embryos and cellular physiology in adult systems. Paired-type homeodomain genes constitute a subclass that has been particularly implicated in establishment of neuronal identity in the mammalian nervous system. We isolated fragments of eight homeodomain genes of this subclass expressed in the stellate ganglion of the North Atlantic long finned squid Loligo pealei (lp) [Note: Loligo pealei has been officially renamed Doryteuthis pealei. For reasons of uniformity and clarity Loligo pealei (lp) is used here]. Of the most abundant ones, we cloned a full length cDNA which encoded the squid ortholog of the paired-type homeodomain proteins Phox2a/b. The homology of lpPhox2 to invertebrate and mammalian Phox2 was limited to the homeodomain. In contrast to mouse Phox2b, lpPhox2 was unable to transactivate the dopamine beta-hydroxylase (DBH) promoter in a heterologous mammalian transfection system. In vivo, lpPhox2 was expressed in the developing stellate ganglion of stage 27 squid embryos and continued to be expressed in the adult stellate neurons where expression was confined to the giant fiber lobe containing the neurons that form the giant axons. The expression of lpPhox was similarly timed and distributed as the Fmrf gene. Furthermore, the Fmrf upstream region contained putative Phox2a/b binding sites. These results suggest a role of lpPhox2 in the developmental specification of neuronal identity and regulation of neurons of the squid giant axon.
Collapse
Affiliation(s)
- J. Peter H. Burbach
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht 3584CG, The Netherlands
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Anita J. C. G. M. Hellemons
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht 3584CG, The Netherlands
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Philip Grant
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Harish C. Pant
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Zatylny-Gaudin C, Favrel P. Diversity of the RFamide Peptide Family in Mollusks. Front Endocrinol (Lausanne) 2014; 5:178. [PMID: 25386166 PMCID: PMC4208409 DOI: 10.3389/fendo.2014.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/06/2014] [Indexed: 01/25/2023] Open
Abstract
Since the initial characterization of the cardioexcitatory peptide FMRFamide in the bivalve mollusk Macrocallista nimbosa, a great number of FMRFamide-like peptides (FLPs) have been identified in mollusks. FLPs were initially isolated and molecularly characterized in model mollusks using biochemical methods. The development of recombinant technologies and, more recently, of genomics has boosted knowledge on their diversity in various mollusk classes. Today, mollusk FLPs represent approximately 75 distinct RFamide peptides that appear to result from the expression of only five genes: the FMRFamide-related peptide gene, the LFRFamide gene, the luqin gene, the neuropeptide F gene, and the cholecystokinin/sulfakinin gene. FLPs display a complex spatiotemporal pattern of expression in the central and peripheral nervous system. Working as neurotransmitters, neuromodulators, or neurohormones, FLPs are involved in the control of a great variety of biological and physiological processes including cardiovascular regulation, osmoregulation, reproduction, digestion, and feeding behavior. From an evolutionary viewpoint, the major challenge will then logically concern the elucidation of the FLP repertoire of orphan mollusk classes and the way they are functionally related. In this respect, deciphering FLP signaling pathways by characterizing the specific receptors these peptides bind remains another exciting objective.
Collapse
Affiliation(s)
- Celine Zatylny-Gaudin
- Université de Caen Basse-Normandie, Normandie Université, Biology of Aquatic Organisms and Ecosystems (BOREA), Caen, France
- Muséum National d’Histoire Naturelle, Sorbonne Universités, BOREA, Paris, France
- Université Pierre et Marie Curie, BOREA, Paris, France
- UMR 7208 Centre National de la Recherche Scientifique, BOREA, Paris, France
- IRD 207, L’Institut de recherche pour le développement, BOREA, Paris, France
| | - Pascal Favrel
- Université de Caen Basse-Normandie, Normandie Université, Biology of Aquatic Organisms and Ecosystems (BOREA), Caen, France
- Muséum National d’Histoire Naturelle, Sorbonne Universités, BOREA, Paris, France
- Université Pierre et Marie Curie, BOREA, Paris, France
- UMR 7208 Centre National de la Recherche Scientifique, BOREA, Paris, France
- IRD 207, L’Institut de recherche pour le développement, BOREA, Paris, France
- *Correspondence: Pascal Favrel, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, Caen Cedex 5 14032, France e-mail:
| |
Collapse
|