1
|
Zaraisky AG, Araslanova KR, Shitikov AD, Tereshina MB. Loss of the ability to regenerate body appendages in vertebrates: from side effects of evolutionary innovations to gene loss. Biol Rev Camb Philos Soc 2024; 99:1868-1888. [PMID: 38817123 DOI: 10.1111/brv.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.
Collapse
Affiliation(s)
- Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Alexander D Shitikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| |
Collapse
|
2
|
Michiue T, Tsukano K. Feedback Regulation of Signaling Pathways for Precise Pre-Placodal Ectoderm Formation in Vertebrate Embryos. J Dev Biol 2022; 10:35. [PMID: 36135368 PMCID: PMC9504399 DOI: 10.3390/jdb10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signaling pathways are essential to establish embryonic patterning, including embryonic axis formation. Ectodermal patterning is also governed by a series of morphogens. Four ectodermal regions are thought to be controlled by morphogen gradients, but some perturbations are expected to occur during dynamic morphogenetic movement. Therefore, a mechanism to define areas precisely and reproducibly in embryos, including feedback regulation of signaling pathways, is necessary. In this review, we outline ectoderm pattern formation and signaling pathways involved in the establishment of the pre-placodal ectoderm (PPE). We also provide an example of feedback regulation of signaling pathways for robust formation of the PPE, showing the importance of this regulation.
Collapse
Affiliation(s)
- Tatsuo Michiue
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
3
|
Tsukano K, Yamamoto T, Watanabe T, Michiue T. Xenopus Dusp6 modulates FGF signaling precisely to pattern pre-placodal ectoderm. Dev Biol 2022; 488:81-90. [DOI: 10.1016/j.ydbio.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
|
4
|
Ivanova AS, Tereshina MB, Araslanova KR, Martynova NY, Zaraisky AG. The Secreted Protein Disulfide Isomerase Ag1 Lost by Ancestors of Poorly Regenerating Vertebrates Is Required for Xenopus laevis Tail Regeneration. Front Cell Dev Biol 2021; 9:738940. [PMID: 34676214 PMCID: PMC8523854 DOI: 10.3389/fcell.2021.738940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Warm-blooded vertebrates regenerate lost limbs and their parts in general much worse than fishes and amphibians. We previously hypothesized that this reduction in regenerative capability could be explained in part by the loss of some genes important for the regeneration in ancestors of warm-blooded vertebrates. One of such genes could be ag1, which encodes secreted protein disulfide isomerase of the Agr family. Ag1 is activated during limb and tail regeneration in the frog Xenopus laevis tadpoles and is absent in warm-blooded animals. The essential role of another agr family gene, agr2, in limb regeneration was demonstrated previously in newts. However, agr2, as well as the third member of agr family, agr3, are present in all vertebrates. Therefore, it is important to verify if the activity of ag1 lost by warm-blooded vertebrates is also essential for regeneration in amphibians, which could be a further argument in favor of our hypothesis. Here, we show that in the Xenopus laevis tadpoles in which the expression of ag1 or agr2 was artificially suppressed, regeneration of amputated tail tips was also significantly reduced. Importantly, overexpression of any of these agrs or treatment of tadpoles with any of their recombinant proteins resulted in the restoration of tail regeneration in the refractory period when these processes are severely inhibited in normal development. These findings demonstrate the critical roles of ag1 and agr2 in regeneration in frogs and present indirect evidence that the loss of ag1 in evolution could be one of the prerequisites for the reduction of regenerative ability in warm-blooded vertebrates.
Collapse
Affiliation(s)
- Anastasiya S Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Y Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Parshina EA, Zaraisky AG, Martynova NY. The Role of Maternal pou5f3.3/oct60 Gene in the Regulation of Initial Stages of Tissue Differentiation during Xenopus laevis Embryogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Korotkova DD, Lyubetsky VA, Ivanova AS, Rubanov LI, Seliverstov AV, Zverkov OA, Martynova NY, Nesterenko AM, Tereshina MB, Peshkin L, Zaraisky AG. Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration. Cell Rep 2020; 29:1027-1040.e6. [PMID: 31644900 PMCID: PMC6871517 DOI: 10.1016/j.celrep.2019.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/28/2019] [Accepted: 09/13/2019] [Indexed: 01/28/2023] Open
Abstract
The molecular basis of higher regenerative capacity of cold-blooded animals comparing to warm-blooded ones is poorly understood. Although this difference in regenerative capacities is commonly thought to be a result of restructuring of the same regulatory gene network, we hypothesized that it may be due to loss of some genes essential for regeneration. We describe here a bioinformatic method that allowed us to identify such genes. For investigation in depth we selected one of them encoding transmembrane protein, named “c-Answer.” Using the Xenopus laevis frog as a model cold-blooded animal, we established that c-Answer regulates regeneration of body appendages and telencephalic development through binding to fibroblast growth factor receptors (FGFRs) and P2ry1 receptors and promoting MAPK/ERK and purinergic signaling. This suggests that elimination of c-answer in warm-blooded animals could lead to decreased activity of at least two signaling pathways, which in turn might contribute to changes in mechanisms regulating regeneration and telencephalic development.
Collapse
Affiliation(s)
- Daria D Korotkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Vassily A Lyubetsky
- The Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), 19 Bolshoy Karetny str., Moscow 127051, Russia
| | - Anastasia S Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Lev I Rubanov
- The Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), 19 Bolshoy Karetny str., Moscow 127051, Russia
| | - Alexander V Seliverstov
- The Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), 19 Bolshoy Karetny str., Moscow 127051, Russia
| | - Oleg A Zverkov
- The Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), 19 Bolshoy Karetny str., Moscow 127051, Russia
| | - Natalia Yu Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, Moscow 119991, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia.
| |
Collapse
|
7
|
Tereshina MB, Ivanova AS, Eroshkin FM, Korotkova DD, Nesterenko AM, Bayramov AV, Solovieva EA, Parshina EA, Orlov EE, Martynova NY, Zaraisky AG. Agr2‐interacting Prod1‐like protein Tfp4 from
Xenopus laevis
is necessary for early forebrain and eye development as well as for the tadpole appendage regeneration. Genesis 2019; 57:e23293. [DOI: 10.1002/dvg.23293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Maria B. Tereshina
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Anastasiya S. Ivanova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Fedor M. Eroshkin
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Daria D. Korotkova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Alexey M. Nesterenko
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Andrey V. Bayramov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Elena A. Solovieva
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Elena A. Parshina
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Eugeny E. Orlov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Natalia Y. Martynova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Andrey G. Zaraisky
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| |
Collapse
|
8
|
Ivanova AS, Martynova NY, Komarov PA, Orlov EE, Ermakova GV, Zaraisky AG, Tereshina MB. Obtaining of Agr2 Specific Antibodies and Determination of the Agr2 Protein Distribution Pattern during Early Embryonic Development and Tadpole Regeneration in Xenopus laevis. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Ras-dva small GTPases lost during evolution of amniotes regulate regeneration in anamniotes. Sci Rep 2018; 8:13035. [PMID: 30158598 PMCID: PMC6115384 DOI: 10.1038/s41598-018-30811-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/02/2018] [Indexed: 11/08/2022] Open
Abstract
In contrast to amniotes (reptiles, birds and mammals), anamniotes (fishes and amphibians) can effectively regenerate body appendages such as fins, limbs and tails. Why such a useful capability was progressively lost in amniotes remains unknown. As we have hypothesized recently, one of the reasons for this could be loss of some genes regulating the regeneration in evolution of amniotes. Here, we demonstrate the validity of this hypothesis by showing that genes of small GTPases Ras-dva1 and Ras-dva2, that had been lost in a stepwise manner during evolution of amniotes and disappeared completely in placental mammals, are important for regeneration in anamniotes. Both Ras-dva genes are quickly activated in regenerative wound epithelium and blastema forming in the amputated adult Danio rerio fins and Xenopus laevis tadpoles' tails and hindlimb buds. Down-regulation of any of two Ras-dva genes in fish and frog resulted in a retardation of regeneration accompanied by down-regulation of the regeneration marker genes. On the other hand, Ras-dva over-expression in tadpoles' tails restores regeneration capacity during the refractory period when regeneration is blocked due to natural reasons. Thus our data on Ras-dva genes, which were eliminated in amniotes but play role in anamniotes regeneration regulation, satisfy our hypothesis.
Collapse
|
10
|
Grassme KS, Garza-Garcia A, Delgado JP, Godwin JW, Kumar A, Gates PB, Driscoll PC, Brockes JP. Mechanism of Action of Secreted Newt Anterior Gradient Protein. PLoS One 2016; 11:e0154176. [PMID: 27100463 PMCID: PMC4839744 DOI: 10.1371/journal.pone.0154176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/08/2016] [Indexed: 12/02/2022] Open
Abstract
Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family.
Collapse
Affiliation(s)
- Kathrin S. Grassme
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Acely Garza-Garcia
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Jean-Paul Delgado
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - James W. Godwin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Anoop Kumar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Phillip B. Gates
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul C. Driscoll
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Jeremy P. Brockes
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
11
|
The secreted factor Ag1 missing in higher vertebrates regulates fins regeneration in Danio rerio. Sci Rep 2015; 5:8123. [PMID: 25630240 PMCID: PMC4309956 DOI: 10.1038/srep08123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/06/2015] [Indexed: 11/09/2022] Open
Abstract
Agr family includes three groups of genes, Ag1, Agr2 and Agr3, which encode the thioredoxin domain-containing secreted proteins and have been shown recently to participate in regeneration of the amputated body appendages in amphibians. By contrast, higher vertebrates have only Agr2 and Agr3, but lack Ag1, and have low ability to regenerate the body appendages. Thus, one may hypothesize that loss of Ag1 in evolution could be an important event that led to a decline of the regenerative capacity in higher vertebrates. To test this, we have studied now the expression and role of Ag1 in the regeneration of fins of a representative of another large group of lower vertebrates, the fish Danio rerio. As a result, we have demonstrated that amputation of the Danio fins, like amputation of the body appendages in amphibians, elicits an increase of Ag1 expression in cells of the stump. Furthermore, down-regulation of DAg1 by injections of Vivo-morpholino antisense oligonucleotides resulted in a retardation of the fin regeneration. These data are in a good agreement with the assumption that the loss of Ag1 in higher vertebrates ancestors could lead to the reduction of the regenerative capacity in their modern descendants.
Collapse
|
12
|
Obacz J, Takacova M, Brychtova V, Dobes P, Pastorekova S, Vojtesek B, Hrstka R. The role of AGR2 and AGR3 in cancer: similar but not identical. Eur J Cell Biol 2015; 94:139-47. [PMID: 25666661 DOI: 10.1016/j.ejcb.2015.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
In the past decades, highly related members of the protein disulphide isomerase family, anterior gradient protein AGR2 and AGR3, attracted researchers' attention due to their putative involvement in developmental processes and carcinogenesis. While AGR2 has been widely demonstrated as a metastasis-related protein whose elevated expression predicts worse patient outcome, little is known about AGR3's role in tumour biology. Thus, we aim to confront the issue of AGR3 function in physiology and pathology in the following review by comparing this protein with the better-described homologue AGR2. Relying on available data and in silico analyses, we show that AGR proteins are co-expressed or uncoupled in context-dependent manners in diverse carcinomas and healthy tissues. Further, we discuss plausible roles of both proteins in tumour-associated processes such as differentiation, proliferation, migration, invasion and metastasis. This work brings new hints and stimulates further thoughts on hitherto unresolved conundrum of anterior gradient protein function.
Collapse
Affiliation(s)
- Joanna Obacz
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Martina Takacova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Petr Dobes
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Silvia Pastorekova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
13
|
Giudetti G, Giannaccini M, Biasci D, Mariotti S, Degl'innocenti A, Perrotta M, Barsacchi G, Andreazzoli M. Characterization of the Rx1-dependent transcriptome during early retinal development. Dev Dyn 2014; 243:1352-61. [PMID: 24801179 DOI: 10.1002/dvdy.24145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The transcription factor Rx1, also known as Rax, controls key properties of retinal precursors including migration behavior, proliferation, and maintenance of multipotency. However, Rx1 effector genes are largely unknown. RESULTS To identify genes controlled by Rx1 in early retinal precursors, we compared the transcriptome of Xenopus embryos overexpressing Rx1 to that of embryos in which Rx1 was knocked-down. In particular, we selected 52 genes coherently regulated, i.e., actived in Rx1 gain of function and repressed in Rx1 loss of function experiments, or vice versa. RT-qPCR and in situ hybridization confirmed the trend of regulation predicted by microarray data for the selected genes. Most of the genes upregulated by Rx1 are coexpressed with this transcription factor, while downregulated genes are either not expressed or expressed at very low levels in the early developing retina. Putative direct Rx1 target genes, activated by GR-Rx1 in the absence of protein synthesis, include Ephrin B1 and Sh2d3c, an interactor of ephrinB1 receptor, which represent candidate novel effectors for the migration promoting activity of Rx1. CONCLUSIONS This study identifies previously undescribed Rx1 regulated genes mainly involved in transcription regulation, cell migration/adhesion, and cell proliferation that contribute to delineate the molecular mechanisms underlying Rx1 activities.
Collapse
Affiliation(s)
- Guido Giudetti
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|