1
|
Hayes W, Keenan C, Wilson J, Onarinde BA. Early detection of dry bubble disease in Agaricus bisporus using volatile compounds. Food Chem 2024; 435:137518. [PMID: 37788541 DOI: 10.1016/j.foodchem.2023.137518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Lecanicillium fungicola is a pathogen of the commercial white button mushroom (Agaricus bisporus) and is the causal agent of dry bubble disease, which can cause severe economic losses to mushroom growers. Volatile compounds were measured by GC/MS techniques over pure cultures of mycelia on agars, over microcosms of growing mushrooms, and over harvested mushrooms to identify compounds that might give an early warning of the disease. The mushroom strain tested was Agaricus bisporus, strain Sylvan A15; either deliberately infected with L. fungicola or water as a control. Over microcosms, the appearance of β-copaene, β-cubebene, and α-cedrene coincided with, but did not precede, the earliest visual signs of the disease. Mushrooms with dry bubble symptoms also had high levels of β-barbatene and an unknown diterpene (UK 1821). Over some harvested mushroom sets, high levels of cis-α-bisabolene developed as a defence reaction to infection.
Collapse
Affiliation(s)
- William Hayes
- National Centre for Food Manufacturing, University of Lincoln, 2 Peppermint Way, Holbeach, Lincs, PE12 7FJ, United Kingdom.
| | - Cathy Keenan
- BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jude Wilson
- MBio, Monaghan Mushrooms Group, Tyholland, Co. Monaghan, Ireland.
| | - Bukola Adenike Onarinde
- National Centre for Food Manufacturing, University of Lincoln, 2 Peppermint Way, Holbeach, Lincs, PE12 7FJ, United Kingdom.
| |
Collapse
|
2
|
Derrick CJ, Santos-Ledo A, Eley L, Paramita IA, Henderson DJ, Chaudhry B. Sequential action of JNK genes establishes the embryonic left-right axis. Development 2022; 149:274898. [PMID: 35352808 PMCID: PMC9148569 DOI: 10.1242/dev.200136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
The establishment of the left-right axis is crucial for the placement, morphogenesis and function of internal organs. Left-right specification is proposed to be dependent on cilia-driven fluid flow in the embryonic node. Planar cell polarity (PCP) signalling is crucial for patterning of nodal cilia, yet downstream effectors driving this process remain elusive. We have examined the role of the JNK gene family, a proposed downstream component of PCP signalling, in the development and function of the zebrafish node. We show jnk1 and jnk2 specify length of nodal cilia, generate flow in the node and restrict southpaw to the left lateral plate mesoderm. Moreover, loss of asymmetric southpaw expression does not result in disturbances to asymmetric organ placement, supporting a model in which nodal flow may be dispensable for organ laterality. Later, jnk3 is required to restrict pitx2c expression to the left side and permit correct endodermal organ placement. This work uncovers multiple roles for the JNK gene family acting at different points during left-right axis establishment. It highlights extensive redundancy and indicates JNK activity is distinct from the PCP signalling pathway.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Isabela Andhika Paramita
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
3
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
4
|
Xue R, Yang D, Han Y, Deng Q, Wang X, Liu X, Zhao J. 14-3-3ζ and 14-3-3ε are involved in innate immune responses in Pacific abalone (Haliotis discus hannai). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104176. [PMID: 34153282 DOI: 10.1016/j.dci.2021.104176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins play important roles in various cellular processes by binding to different ligands, but little is known about these proteins in mollusks. In this study, two 14-3-3 cDNAs were identified from the Pacific abalone Haliotis discus hannai (designated 14-3-3ζ and 14-3-3ε), possessing 59.40% identity with each other. Both genes were predominantly expressed in the gills of unchallenged abalones, and their mRNA signals could also be detected in several other tissues, including the mantle, hepatopancreas and ovary. However, after Vibrio harveyi challenge, hemocytes were induced significantly (p < 0.01). Meanwhile, phagocytosis was inhibited, but apoptosis, reactive oxygen species formation, and caspase 3 expression were significantly induced (p < 0.01), and they were all suppressed with 14-3-3ζ knockdown (p < 0.01). The differences were that silencing 14-3-3ε reverted the decline in the phagocytic rate derived from bacterial infection, while ROS formation was not influenced significantly. In addition, the expression levels of several antimicrobial peptide and proinflammatory cytokine genes were also decreased with the silencing of 14-3-3 genes. However, with the knockdown of 14-3-3ζ, the expression of 14-3-3ε was further significantly increased (p < 0.01), and vice versa. Overall, our results suggested that 14-3-3ζ and 14-3-3ε should play important roles in innate immunity against V. harveyi infection.
Collapse
Affiliation(s)
- Rui Xue
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai Shandong, 264003, PR China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai Shandong, 264003, PR China.
| | - Yijing Han
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qinyou Deng
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiangquan Liu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai Shandong, 264003, PR China.
| |
Collapse
|
5
|
The Surprising Story of Fusicoccin: A Wilt-Inducing Phytotoxin, a Tool in Plant Physiology and a 14-3-3-Targeted Drug. Biomolecules 2021; 11:biom11091393. [PMID: 34572605 PMCID: PMC8470340 DOI: 10.3390/biom11091393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fusicoccin is the α glucoside of a carbotricyclic diterpene, produced by the fungus Phomopsis amygdali (previously classified as Fusicoccum amygdali), the causal agent of almond and peach canker disease. A great interest in this molecule started when it was discovered that it brought about an irreversible stomata opening of higher plants, thereby inducing the wilting of their leaves. Since then, several studies were carried out to elucidate its biological activity, biosynthesis, structure, structure-activity relationships and mode of action. After sixty years of research and more than 1800 published articles, FC is still the most studied phytotoxin and one of the few whose mechanism of action has been elucidated in detail. The ability of FC to stimulate several fundamental plant processes depends on its ability to activate the plasma membrane H+-ATPase, induced by eliciting the association of 14-3-3 proteins, a class of regulatory molecules widespread in eukaryotes. This discovery renewed interest in FC and prompted more recent studies aimed to ascertain the ability of the toxin to influence the interaction between 14-3-3 proteins and their numerous client proteins in animals, involved in the regulation of basic cellular processes and in the etiology of different diseases, including cancer. This review covers the different aspects of FC research partially treated in different previous reviews, starting from its discovery in 1964, with the aim to outline the extraordinary pathway which led this very uncommon diterpenoid to evolve from a phytotoxin into a tool in plant physiology and eventually into a 14-3-3-targeted drug.
Collapse
|
6
|
Onjiko RM, Nemes P, Moody SA. Altering metabolite distribution at Xenopus cleavage stages affects left-right gene expression asymmetries. Genesis 2021; 59:e23418. [PMID: 33826226 DOI: 10.1002/dvg.23418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The left-right (L-R) axis of most bilateral animals is established during gastrulation when a transient ciliated structure creates a directional flow of signaling molecules that establish asymmetric gene expression in the lateral plate mesoderm. However, in some animals, an earlier differential distribution of molecules and cell division patterns initiate or at least influence L-R patterning. Using single-cell high-resolution mass spectrometry, we previously reported a limited number of small molecule (metabolite) concentration differences between left and right dorsal-animal blastomeres of the eight-cell Xenopus embryo. Herein, we examined whether altering the distribution of some of these molecules influenced early events in L-R patterning. Using lineage tracing, we found that injecting right-enriched metabolites into the left cell caused its descendant cells to disperse in patterns that varied from those in control gastrulae; this did not occur when left-enriched metabolites were injected into the right cell. At later stages, injecting left-enriched metabolites into the right cell perturbed the expression of genes known to: (a) be required for the formation of the gastrocoel roof plate (foxj1); (b) lead to the asymmetric expression of Nodal (dand5/coco); or (c) result from asymmetrical nodal expression (pitx2). Despite these perturbations in gene expression, we did not observe heterotaxy in heart or gut looping at tadpole stages. These studies indicate that altering metabolite distribution at cleavage stages at the concentrations tested in this study impacts the earliest steps of L-R gene expression that then can be compensated for during organogenesis.
Collapse
Affiliation(s)
- Rosemary M Onjiko
- Department of Chemistry, The George Washington University, Washington, District of Columbia
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, District of Columbia.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
7
|
Malerba M, Cerana R. Possible Role of Peroxynitrite in the Responses Induced by Fusicoccin in Plant Cultured Cells. PLANTS 2021; 10:plants10010182. [PMID: 33478108 PMCID: PMC7835932 DOI: 10.3390/plants10010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 01/22/2023]
Abstract
Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO−) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO− scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO− in the FC-induced responses. In particular, ONOO− seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria.
Collapse
Affiliation(s)
- Massimo Malerba
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy;
| | - Raffaella Cerana
- Dipartimento di Scienze dell’Ambiente e della Terra, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
- Correspondence: ; Tel.: +39-0264482932
| |
Collapse
|
8
|
Affiliation(s)
- Junko Ohkanda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| |
Collapse
|
9
|
Proteome of larval metamorphosis induced by epinephrine in the Fujian oyster Crassostrea angulata. BMC Genomics 2020; 21:675. [PMID: 32993483 PMCID: PMC7525975 DOI: 10.1186/s12864-020-07066-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Background The Fujian oyster Crassostrea angulata is an economically important species that has typical settlement and metamorphosis stages. The development of the oyster involves complex morphological and physiological changes, the molecular mechanisms of which are as yet unclear. Results In this study, changes in proteins were investigated during larval settlement and metamorphosis of Crassostrea angulata using epinephrine induction. Protein abundance and identity were characterized using label-free quantitative proteomics, tandem mass spectrometry (MS/ MS), and Mascot methods. The results showed that more than 50% (764 out of 1471) of the quantified proteins were characterized as differentially expressed. Notably, more than two-thirds of the differentially expressed proteins were down-regulated in epinephrine-induced larvae. The results showed that “metabolic process” was closely related to the development of settlement and metamorphosis; 5 × 10− 4 M epinephrine induced direct metamorphosis of larvae and was non-toxic. Calmodulin and MAPK pathways were involved in the regulation of settlement of the oyster. Expression levels of immune-related proteins increased during metamorphosis. Hepatic lectin-like proteins, cadherins, calmodulin, calreticulin, and cytoskeletal proteins were involved in metamorphosis. The nervous system may be remodeled in larval metamorphosis induced by epinephrine. Expression levels of proteins that were enriched in the epinephrine signaling pathway may reflect the developmental stage of the larvae, that may reflect whether or not larvae were directly involved in metamorphosis when the larvae were treated with epinephrine. Conclusion The study provides insight into proteins that function in energy metabolism, immune responses, settlement and metamorphosis, and shell formation in C. angulata. The results contribute valuable information for further research on larval settlement and metamorphosis. Graphical abstract ![]()
Collapse
|
10
|
Kundu A, Shelar S, Ghosh AP, Ballestas M, Kirkman R, Nam H, Brinkley GJ, Karki S, Mobley JA, Bae S, Varambally S, Sudarshan S. 14-3-3 proteins protect AMPK-phosphorylated ten-eleven translocation-2 (TET2) from PP2A-mediated dephosphorylation. J Biol Chem 2020; 295:1754-1766. [PMID: 31901078 PMCID: PMC7008385 DOI: 10.1074/jbc.ra119.011089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 11/06/2022] Open
Abstract
Ten-eleven translocation-2 (TET2) is a member of the methylcytosine dioxygenase family of enzymes and has been implicated in cancer and aging because of its role as a global epigenetic modifier. TET2 has a large N-terminal domain and a catalytic C-terminal region. Previous reports have demonstrated that the TET2 catalytic domain remains active independently of the N-terminal domain. As such, the function of the N terminus of this large protein remains poorly characterized. Here, using yeast two-hybrid screening, co-immunoprecipitation, and several biochemical assays, we found that several isoforms of the 14-3-3 family of proteins bind TET2. 14-3-3 proteins bound TET2 when it was phosphorylated at Ser-99. In particular, we observed that AMP-activated protein kinase-mediated phosphorylation at Ser-99 promotes TET2 stability and increases global DNA 5-hydroxymethylcytosine levels. The interaction of 14-3-3 proteins with TET2 protected the Ser-99 phosphorylation, and disruption of this interaction both reduced TET2 phosphorylation and decreased TET2 stability. Furthermore, we noted that protein phosphatase 2A can interact with TET2 and dephosphorylate Ser-99. Collectively, these results provide detailed insights into the role of the TET2 N-terminal domain in TET2 regulation. Moreover, they reveal the dynamic nature of TET2 protein regulation that could have therapeutic implications for disease states resulting from reduced TET2 levels or activity.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - Sandeep Shelar
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - Arindam P Ghosh
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - Mary Ballestas
- Department of Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Richard Kirkman
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - Hyeyoung Nam
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | | | - Suman Karki
- Department of Urology, University of Alabama, Birmingham, Alabama 35294
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Sejong Bae
- Department of Medicine, University of Alabama, Birmingham, Alabama 35294
| | | | - Sunil Sudarshan
- Department of Urology, University of Alabama, Birmingham, Alabama 35294; Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35233.
| |
Collapse
|
11
|
Davis LK. Intelligent Design of 14-3-3 Docking Proteins Utilizing Synthetic Evolution Artificial Intelligence (SYN-AI). ACS OMEGA 2019; 4:18948-18960. [PMID: 31763516 PMCID: PMC6868599 DOI: 10.1021/acsomega.8b03100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/10/2019] [Indexed: 05/13/2023]
Abstract
The ability to write DNA code from scratch will allow for the discovery of new and interesting chemistries as well as allowing the rewiring of cell signal pathways. Herein, we have utilized synthetic evolution artificial intelligence (SYN-AI) to intelligently design a set of 14-3-3 docking genes. SYN-AI engineers synthetic genes utilizing a parental gene as an evolution template. Wherein, evolution is fast-forwarded by transforming template gene sequences to DNA secondary and tertiary codes based upon gene hierarchical structural levels. The DNA secondary code allows identification of genomic building blocks across an orthologous sequence space comprising multiple genomes. Where, the DNA tertiary code allows engineering of supersecondary structures. SYN-AI constructed a library of 10 million genes that was reduced to three structurally functional 14-3-3 docking genes by applying natural selection protocols. Synthetic protein identity was verified utilizing Clustal Omega sequence alignments and Phylogeny.fr phylogenetic analysis. Wherein, we were able to confirm the three-dimensional structure utilizing I-TASSER and protein-ligand interactions utilizing COACH and Cofactor. The conservation of allosteric communications was confirmed utilizing elastic and anisotropic network models. Whereby, we utilized elNemo and ANM2.1 to confirm conservation of the 14-3-3 ζ amphipathic groove. Notably, to the best of our knowledge, we report the first 14-3-3 docking genes to be written from scratch.
Collapse
Affiliation(s)
- Leroy K. Davis
- Prairie
View A&M University, Cooperative Agricultural Research Center (CARC), 700 University Drive, Prairie
View, Texas 77446-0518, United States
- Gene
Evolution Project, LLC, Baton Rouge, Louisiana 70835, United States
| |
Collapse
|
12
|
Chhetri BK, Lavoie S, Sweeney-Jones AM, Kubanek J. Recent trends in the structural revision of natural products. Nat Prod Rep 2019; 35:514-531. [PMID: 29623331 DOI: 10.1039/c8np00011e] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 2012 to 2017 This article reviews recent reports on the structural revision of natural products. Through a critical assessment of the original and revised published structures, the article addresses why each structure was targeted for revision, discusses the techniques and key discrepancies that led to the proposal of the revised structure, and offers measures that may have been taken during the original structure determination to prevent error. With the revised structures in hand, weaknesses of original proposals are assessed, providing a better understanding on the logic behind structure determination.
Collapse
Affiliation(s)
- Bhuwan Khatri Chhetri
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
13
|
Popov IK, Hiatt SM, Whalen S, Keren B, Ruivenkamp C, van Haeringen A, Chen MJ, Cooper GM, Korf BR, Chang C. A YWHAZ Variant Associated With Cardiofaciocutaneous Syndrome Activates the RAF-ERK Pathway. Front Physiol 2019; 10:388. [PMID: 31024343 PMCID: PMC6465419 DOI: 10.3389/fphys.2019.00388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is a genetic disorder characterized by distinctive facial features, congenital heart defects, and skin abnormalities. Several germline gain-of-function mutations in the RAS/RAF/MEK/ERK pathway are associated with the disease, including KRAS, BRAF, MEK1, and MEK2. CFC syndrome thus belongs to a group of disorders known as RASopathies, which are all caused by pathogenic mutations in various genes encoding components of the RAS pathway. We recently identified novel variants in YWHAZ, a 14-3-3 family member, in individuals with a phenotype consistent with CFC that may potentially be deleterious and disease-causing. In the current study, we take advantage of the vertebrate model Xenopus laevis to analyze the functional consequence of a particular YWHAZ variant, S230W, and investigate the molecular mechanisms underlying its activity. We show that compared with wild type YWHAZ, the S230W variant induces severe embryonic defects when ectopically expressed in early Xenopus embryos. The S230W variant also rescues the defects induced by a dominant negative FGF receptor more efficiently and enhances Raf-stimulated Erk phosphorylation to a higher level than wild type YWHAZ. Although neither YWHAZ nor the variant promotes membrane recruitment of Raf proteins, the variant binds to more Raf and escapes phosphorylation by casein kinase 1a. Our data provide strong support to the hypothesis that the S230W variant of YWHAZ is a gain-of-function mutation in the RAS-ERK pathway and may underlie a CFC phenotype.
Collapse
Affiliation(s)
- Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Sandra Whalen
- UF de Génétique Clinique, Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Paris, France
| | - Boris Keren
- UF de Génétique Clinique, Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Paris, France
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Mei-Jan Chen
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bruce R Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Camoni L, Visconti S, Aducci P, Marra M. From plant physiology to pharmacology: fusicoccin leaves the leaves. PLANTA 2019; 249:49-57. [PMID: 30467630 DOI: 10.1007/s00425-018-3051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
This review highlights 50 years of research on the fungal diterpene fusicoccin, during which the molecule went from a tool in plant physiology research to a pharmacological agent in treating animal diseases. Fusicoccin is a phytotoxic glycosylated diterpene produced by the fungus Phomopsis amygdali, a pathogen of almond and peach plants. Widespread interest in this molecule started when it was discovered that it is capable of causing stomate opening in all higher plants, thereby inducing wilting of leaves. Thereafter, FC became, and still is, a tool in plant physiology, due to its ability to influence a number of fundamental processes, which are dependent on the activation of the plasma membrane H+-ATPase. Molecular studies carried out in the last 20 years clarified details of the mechanism of proton pump stimulation, which involves the fusicoccin-mediated irreversible stabilization of the complex between the H+-ATPase and activatory 14-3-3 proteins. More recently, FC has been shown to influence cellular processes involving 14-3-3 binding to client proteins both in plants and animals. In this review, we report the milestones achieved in more than 50 years of research in plants and highlight recent advances in animals that have allowed this diterpene to be used as a 14-3-3 targeted drug.
Collapse
Affiliation(s)
- Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy.
| | - Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Patrizia Aducci
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
15
|
Inoue T, Higuchi Y, Yoneyama T, Lin B, Nunomura K, Honma Y, Kato N. Semisynthesis and biological evaluation of a cotylenin A mimic derived from fusicoccin A. Bioorg Med Chem Lett 2018; 28:646-650. [PMID: 29398541 DOI: 10.1016/j.bmcl.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 01/12/2023]
Abstract
In an effort to overcome the unavailability of cotylenin A (CN A), an anticancer agent and a stabilizer of protein-protein interactions (PPIs) mediated by 14-3-3 proteins, ISIR-050 was designed as a CN A mimic. The synthesis was accomplished via a semisynthetic approach starting from fusicoccin A. ISIR-050 showed interferon-α (IFNα)-dependent growth inhibitory activity and a PPI stabilization effect similar to those of CN A. The biochemical analysis suggested that ISIR-050 and CN A induce the same pharmacological response to IFNα-treated cancer cells and that 14-3-3 proteins play a role in the mode of action.
Collapse
Affiliation(s)
- Takatsugu Inoue
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| | - Toru Yoneyama
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Bangzhong Lin
- Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuto Nunomura
- Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Honma
- Cancer Center, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
16
|
Cheng C, Wang Y, Chai F, Li S, Xin H, Liang Z. Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response. BMC Genomics 2018; 19:579. [PMID: 30068289 PMCID: PMC6090852 DOI: 10.1186/s12864-018-4955-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/23/2018] [Indexed: 11/11/2022] Open
Abstract
Background The 14–3-3 family of ubiquitous proteins in eukaryotes plays important roles in the regulation of various plant biological processes. However, less information is known about this family in grape fruit. Results To investigate the characteristics and functions of 14–3-3 in grape, a total of 11 14–3-3 proteins were identified. Phylogenetic analysis of 14–3-3 proteins in grape (VviGRFs) with homologous proteins in Arabidopsis showed that these proteins were classified into two groups, namely, epsilon and non-epsilon groups. Epsilon group members commonly contained more introns and motifs than non-epsilon group, and some intron positions were found to be conserved between Vitis and Arabidopsis 14–3-3 genes. RNA-seq and qRT-PCR results indicated that VviGRF genes may be involved in the regulation of grape development and berry ripening. Moreover, six VviGRFs exhibited significantly up- or down-regulated expression in response to cold and heat stresses, thereby revealing their potential roles in the regulation of abiotic stress responses. Conclusions This work provides fundamental knowledge for further studies about the biological roles of VviGRFs in grape development and abiotic stress response. The present result will also be beneficial for understanding their molecular mechanisms and improving grape agricultural traits in the future. Electronic supplementary material The online version of this article (10.1186/s12864-018-4955-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, People's Republic of China.,Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fengmei Chai
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, People's Republic of China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China. .,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
17
|
Shen M, Di G, Li M, Fu J, Dai Q, Miao X, Huang M, You W, Ke C. Proteomics Studies on the three Larval Stages of Development and Metamorphosis of Babylonia areolata. Sci Rep 2018; 8:6269. [PMID: 29674673 PMCID: PMC5908917 DOI: 10.1038/s41598-018-24645-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
The ivory shell, Babylonia areolata, is a commercially important aquaculture species in the southeast coast of mainland China. The middle veliger stage, later veliger stage, and juvenile stage are distinct larval stages in B. areolata development. In this study, we used label-free quantification proteomics analysis of the three developmental stages of B. areolata. We identified a total of 5,583 proteins, of which 1,419 proteins expression level showed significant differential expression. The results of gene ontology enrichment analysis showed that the number of proteins involved in metabolic and cellular processes were the most abundant. Those proteins mostly had functions such as binding, catalytic activity and transporter activity. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the number of proteins involved in the ribosome, carbon metabolism, and lysosome pathways were the most abundant, indicating that protein synthesis and the immune response were active during the three stages of development. This is the first study to use proteomics and real-time PCR to study the early developmental stages of B. areolata, which could provide relevant data on gastropod development. Our results provide insights into the novel aspects of protein function in shell formation, body torsion, changes in feeding habits, attachment and metamorphosis, immune-related activities in B. areolata larvae.
Collapse
Affiliation(s)
- Minghui Shen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Hainan Academy of Ocean and Fisheries Sciences, Haikou, 570206, China
| | - Guilan Di
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China. .,College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Min Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jingqiang Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Qi Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiulian Miao
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
18
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
19
|
Di G, Kong X, Miao X, Zhang Y, Huang M, Gu Y, You W, Zhang J, Ke C. Proteomic analysis of trochophore and veliger larvae development in the small abalone Haliotis diversicolor. BMC Genomics 2017; 18:809. [PMID: 29058591 PMCID: PMC5651566 DOI: 10.1186/s12864-017-4203-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/08/2017] [Indexed: 12/19/2022] Open
Abstract
Background Haliotis diversicolor is commercially important species. The trochophore and veliger are distinct larval stages in gastropod development. Their development involves complex morphological and physiological changes. We studied protein changes during the embryonic development of H. diversicolor using two dimensional electrophoresis (2-DE) and label-free methods, tandem mass spectrometry (MS/ MS), and Mascot for protein identification. Results A total of 150 2-DE gel spots were identified. Protein spots showed upregulation of 15 proteins and downregulation of 28 proteins as H. diversicolor developed from trochophore to veliger larvae. Trochophore and veliger larvae were compared using a label-free quantitative proteomic approach. A total of 526 proteins were identified from both samples, and 104 proteins were differentially expressed (> 1.5 fold). Compared with trochophore larvae, veliger larvae had 55 proteins upregulated and 49 proteins downregulated. These differentially expressed proteins were involved in shell formation, energy metabolism, cellular and stress response processes, protein synthesis and folding, cell cycle, and cell fate determination. Compared with the 5 protein (fructose-bisphosphate aldolase, 14–3-3ε, profilin, actin-depolymerizing factor (ADF)/cofilin) and calreticulin) expression patterns, the mRNA expression exhibited similar patterns except gene of fructose-bisphosphate aldolase. Conclusion Our results provide insight into novel aspects of protein function in shell formation, torsion, and nervous system development, and muscle system differentiation in H. diversicolor larvae. “Quality control” proteins were identified to be involved in abalone larval development. Electronic supplementary material The online version of this article (10.1186/s12864-017-4203-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.,State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xiulian Miao
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Yifang Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China
| | - Yuting Gu
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China.
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China.
| |
Collapse
|
20
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
21
|
Trulioff A, Ermakov A, Malashichev Y. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases. Genes (Basel) 2017; 8:genes8020048. [PMID: 28125008 PMCID: PMC5333037 DOI: 10.3390/genes8020048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.
Collapse
Affiliation(s)
- Andrey Trulioff
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
| | - Alexander Ermakov
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| | - Yegor Malashichev
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| |
Collapse
|
22
|
Sindelka R, Sidova M, Abaffy P, Kubista M. Asymmetric Localization and Distribution of Factors Determining Cell Fate During Early Development of Xenopus laevis. Results Probl Cell Differ 2017; 61:229-241. [PMID: 28409307 DOI: 10.1007/978-3-319-53150-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Asymmetric division is a property of eukaryotic cells that is fundamental to the formation of higher life forms. Despite its importance, the mechanism behind it remains elusive. Asymmetry in the cell is induced by polarization of cell fate determinants that become unevenly distributed among progeny cells. So far dozens of determinants have been identified. Xenopus laevis is an ideal system to study asymmetric cell division during early development, because of the huge size of its oocytes and early-stage blastomeres. Here, we present the current knowledge about localization and distribution of cell fate determinants along the three body axes: animal-vegetal, dorsal-ventral, and left-right. Uneven distribution of cell fate determinants during early development specifies the formation of the embryonic body plan.
Collapse
Affiliation(s)
- Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic-Biocev, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Monika Sidova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic-Biocev, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic-Biocev, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic-Biocev, Prumyslova 595, 252 50, Vestec, Czech Republic.
- TATAA Biocenter AB, Odinsgatan 28, 411 03, Göteborg, Sweden.
| |
Collapse
|
23
|
McDowell GS, Lemire JM, Paré JF, Cammarata G, Lowery LA, Levin M. Conserved roles for cytoskeletal components in determining laterality. Integr Biol (Camb) 2016; 8:267-86. [PMID: 26928161 DOI: 10.1039/c5ib00281h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consistently-biased left-right (LR) patterning is required for the proper placement of organs including the heart and viscera. The LR axis is especially fascinating as an example of multi-scale pattern formation, since here chiral events at the subcellular level are integrated and amplified into asymmetric transcriptional cascades and ultimately into the anatomical patterning of the entire body. In contrast to the other two body axes, there is considerable controversy about the earliest mechanisms of embryonic laterality. Many molecular components of asymmetry have not been widely tested among phyla with diverse bodyplans, and it is unknown whether parallel (redundant) pathways may exist that could reverse abnormal asymmetry states at specific checkpoints in development. To address conservation of the early steps of LR patterning, we used the Xenopus laevis (frog) embryo to functionally test a number of protein targets known to direct asymmetry in plants, fruit fly, and rodent. Using the same reagents that randomize asymmetry in Arabidopsis, Drosophila, and mouse embryos, we show that manipulation of the microtubule and actin cytoskeleton immediately post-fertilization, but not later, results in laterality defects in Xenopus embryos. Moreover, we observed organ-specific randomization effects and a striking dissociation of organ situs from effects on the expression of left side control genes, which parallel data from Drosophila and mouse. Remarkably, some early manipulations that disrupt laterality of transcriptional asymmetry determinants can be subsequently "rescued" by the embryo, resulting in normal organ situs. These data reveal the existence of novel corrective mechanisms, demonstrate that asymmetric expression of Nodal is not a definitive marker of laterality, and suggest the existence of amplification pathways that connect early cytoskeletal processes to control of organ situs bypassing Nodal. Counter to alternative models of symmetry breaking during neurulation (via ciliary structures absent in many phyla), our data suggest a widely-conserved role for the cytoskeleton in regulating left-right axis formation immediately after fertilization of the egg. The novel mechanisms that rescue organ situs, even after incorrect expression of genes previously considered to be left-side master regulators, suggest LR patterning as a new context in which to explore multi-scale redundancy and integration of patterning from the subcellular structure to the entire bodyplan.
Collapse
Affiliation(s)
- Gary S McDowell
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA. and Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Joan M Lemire
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.
| | - Jean-Francois Paré
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.
| | | | | | - Michael Levin
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.
| |
Collapse
|
24
|
Chen M, Chou WKW, Toyomasu T, Cane DE, Christianson DW. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase. ACS Chem Biol 2016; 11:889-99. [PMID: 26734760 PMCID: PMC4833508 DOI: 10.1021/acschembio.5b00960] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.
Collapse
Affiliation(s)
- Mengbin Chen
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Wayne K. W. Chou
- Department of Chemistry, Brown University, Box H, Providence, Rhode Island, 02912, United States
| | - Tomonobu Toyomasu
- Department of Bioresource Engineering, Faculty of Agriculture, Yamagata University, Wakaba-cho 1-23, Tsuruoka, Yamagata, Japan
| | - David E. Cane
- Department of Chemistry, Brown University, Box H, Providence, Rhode Island, 02912, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, United States
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
25
|
Tang Y, Xue Y, Du G, Wang J, Liu J, Sun B, Li XN, Yao G, Luo Z, Zhang Y. Structural Revisions of a Class of Natural Products: Scaffolds of Aglycon Analogues of Fusicoccins and Cotylenins Isolated from Fungi. Angew Chem Int Ed Engl 2016; 55:4069-73. [PMID: 26916098 DOI: 10.1002/anie.201600313] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 01/22/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Tang
- Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Guang Du
- Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Bin Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Chinese Academy of Sciences; Kunming China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| |
Collapse
|
26
|
Tang Y, Xue Y, Du G, Wang J, Liu J, Sun B, Li XN, Yao G, Luo Z, Zhang Y. Structural Revisions of a Class of Natural Products: Scaffolds of Aglycon Analogues of Fusicoccins and Cotylenins Isolated from Fungi. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ying Tang
- Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Guang Du
- Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Bin Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Chinese Academy of Sciences; Kunming China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| |
Collapse
|
27
|
Trulioff AS, Malashichev YB, Ermakov AS. Artificial inversion of the left–right visceral asymmetry in vertebrates: Conceptual approaches and experimental solutions. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415060090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Blum M, Schweickert A, Vick P, Wright CVE, Danilchik MV. Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol 2014; 393:109-23. [PMID: 24972089 PMCID: PMC4481729 DOI: 10.1016/j.ydbio.2014.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Asymmetric development of the vertebrate embryo has fascinated embryologists for over a century. Much has been learned since the asymmetric Nodal signaling cascade in the left lateral plate mesoderm was detected, and began to be unraveled over the past decade or two. When and how symmetry is initially broken, however, has remained a matter of debate. Two essentially mutually exclusive models prevail. Cilia-driven leftward flow of extracellular fluids occurs in mammalian, fish and amphibian embryos. A great deal of experimental evidence indicates that this flow is indeed required for symmetry breaking. An alternative model has argued, however, that flow simply acts as an amplification step for early asymmetric cues generated by ion flux during the first cleavage divisions. In this review we critically evaluate the experimental basis of both models. Although a number of open questions persist, the available evidence is best compatible with flow-based symmetry breakage as the archetypical mode of symmetry breakage.
Collapse
Affiliation(s)
- Martin Blum
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany.
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-0494, USA
| | - Michael V Danilchik
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
29
|
Arens J, Bergs D, Mewes M, Merz J, Schembecker G, Schulz F. Heterologous fermentation of a diterpene from Alternaria brassisicola.. Mycology 2014; 5:207-219. [PMID: 25379342 PMCID: PMC4205885 DOI: 10.1080/21501203.2014.917735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 03/22/2014] [Indexed: 12/11/2022] Open
Abstract
A variety of different applications render terpenes and terpenoids attractive research targets. A promising but so far insufficiently explored family of terpenoids are the fusicoccanes that comprise a characteristic 5-8-5 fused tricyclic ring system. Besides herbicidal effects, these compounds also show apoptotic and anti-tumour effects on mammalian cells. The access to fusicoccanes from natural sources is scarce. Recently, we introduced a metabolically engineered Saccharomyces cerevisiae strain to enable the heterologous fermentation of the shared fusicoccane-diterpenoid precursor, fusicocca-2,10(14)-diene. Here, we show experiments towards the identification of bottlenecks in this process. The suppression of biosynthetic by-products via medium optimisation was found to be an important aspect. In addition, the fermentation process seems to be improved under oxygen limitation conditions. Under fed-batch conditions, the fermentation yield was reproducibly increased to approximately 20 mg/L. Furthermore, the impact of the properties of the terpene synthase on the fermentation yield is discussed, and the preliminary studies on the engineering of this key enzyme are presented.
Collapse
Affiliation(s)
- Julia Arens
- Department for Chemistry and Biochemistry, Ruhr University Bochum, 44780Bochum, Germany
| | - Dominik Bergs
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227Dortmund, Germany
| | - Mirja Mewes
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44221Dortmund, Germany
| | - Juliane Merz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227Dortmund, Germany
| | - Gerhard Schembecker
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227Dortmund, Germany
| | - Frank Schulz
- Department for Chemistry and Biochemistry, Ruhr University Bochum, 44780Bochum, Germany
| |
Collapse
|
30
|
Tingler M, Ott T, Tözser J, Kurz S, Getwan M, Tisler M, Schweickert A, Blum M. Symmetry breakage in the frog Xenopus
: Role of Rab11 and the ventral-right blastomere. Genesis 2014; 52:588-99. [DOI: 10.1002/dvg.22766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/12/2014] [Accepted: 02/25/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Melanie Tingler
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Tim Ott
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Janos Tözser
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Sabrina Kurz
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Maike Getwan
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Matthias Tisler
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| |
Collapse
|
31
|
Vandenberg LN, Lemire JM, Levin M. It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry. Commun Integr Biol 2013; 6:e27155. [PMID: 24505508 PMCID: PMC3912007 DOI: 10.4161/cib.27155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023] Open
Abstract
For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton's role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA ; Current affiliation: Department of Public Health; Division of Environmental Health Sciences; University of Massachusetts, Amherst; Amherst, MA USA
| | - Joan M Lemire
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| | - Michael Levin
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| |
Collapse
|
32
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|
33
|
Camoni L, Visconti S, Aducci P. The phytotoxin fusicoccin, a selective stabilizer of 14-3-3 interactions? IUBMB Life 2013; 65:513-7. [DOI: 10.1002/iub.1167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/28/2013] [Indexed: 11/10/2022]
|
34
|
Fusicoccin a, a phytotoxic carbotricyclic diterpene glucoside of fungal origin, reduces proliferation and invasion of glioblastoma cells by targeting multiple tyrosine kinases. Transl Oncol 2013; 6:112-23. [PMID: 23544164 DOI: 10.1593/tlo.12409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly cancer that possesses an intrinsic resistance to pro-apoptotic insults, such as conventional chemotherapy and radiotherapy, and diffusely invades the brain parenchyma, which renders it elusive to total surgical resection. We found that fusicoccin A, a fungal metabolite from Fusicoccum amygdali, decreased the proliferation and migration of human GBM cell lines in vitro, including several cell lines that exhibit varying degrees of resistance to pro-apoptotic stimuli. The data demonstrate that fusicoccin A inhibits GBM cell proliferation by decreasing growth rates and increasing the duration of cell division and also decreases two-dimensional (measured by quantitative video microscopy) and three-dimensional (measured by Boyden chamber assays) migration. These effects of fusicoccin A treatment translated into structural changes in actin cytoskeletal organization and a loss of GBM cell adhesion. Therefore, fusicoccin A exerts cytostatic effects but low cytotoxic effects (as demonstrated by flow cytometry). These cytostatic effects can partly be explained by the fact that fusicoccin inhibits the activities of a dozen kinases, including focal adhesion kinase (FAK), that have been implicated in cell proliferation and migration. Overexpression of FAK, a nonreceptor protein tyrosine kinase, directly correlates with the invasive phenotype of aggressive human gliomas because FAK promotes cell proliferation and migration. Fusicoccin A led to the down-regulation of FAK tyrosine phosphorylation, which occurred in both normoxic and hypoxic GBM cell culture conditions. In conclusion, the current study identifies a novel compound that could be used as a chemical template for generating cytostatic compounds designed to combat GBM.
Collapse
|
35
|
Vandenberg LN, Lemire JM, Levin M. Serotonin has early, cilia-independent roles in Xenopus left-right patterning. Dis Model Mech 2013; 6:261-8. [PMID: 22899856 PMCID: PMC3529356 DOI: 10.1242/dmm.010256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022] Open
Abstract
Consistent left-right (LR) patterning of the heart and viscera is a crucial part of normal embryogenesis. Because errors of laterality form a common class of birth defects, it is important to understand the molecular mechanisms and stage at which LR asymmetry is initiated. Frog embryos are a system uniquely suited to analysis of the mechanisms involved in orientation of the LR axis because of the many genetic and pharmacological tools available for use and the fate-map and accessibility of early blastomeres. Two major models exist for the origin of LR asymmetry and both implicate pre-nervous serotonergic signaling. In the first, the charged serotonin molecule is instructive for LR patterning; it is redistributed asymmetrically along the LR axis and signals intracellularly on the right side at cleavage stages. A second model suggests that serotonin is a permissive factor required to specify the dorsal region of the embryo containing chiral cilia that generate asymmetric fluid flow during neurulation, a much later process. We performed theory-neutral experiments designed to distinguish between these models. The results uniformly support a role for serotonin in the cleavage-stage embryo, long before the appearance of cilia, in ventral right blastomeres that do not contribute to the ciliated organ.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Joan M. Lemire
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
36
|
de Boer AH, de Vries-van Leeuwen IJ. Fusicoccanes: diterpenes with surprising biological functions. TRENDS IN PLANT SCIENCE 2012; 17:360-8. [PMID: 22465041 DOI: 10.1016/j.tplants.2012.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 05/25/2023]
Abstract
Fusicoccin is the best-studied member of a class of diterpenes sharing a 5-8-5 ring structure, called fusicoccanes. Fusicoccin was and still is a 'tool in plant physiology', targeting the main engine of plasma membrane transport, the P-type H(+)-ATPase, assisted by members of the 14-3-3 family. The key position of 14-3-3 proteins in cell biology, combined with a broader specificity of other fusicoccanes as shown by crystallography studies, make fusicoccanes a versatile tool in plant and animal biology. In this review, we examine recent evidence that fusicoccanes act on animal cells, describe the discovery of the fungal biosynthetic pathway and emphasize that lower (liverworts) and higher plants produce fusicoccanes with intriguing biological activities.
Collapse
Affiliation(s)
- Albertus H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
37
|
Ottmann C, van der Hoorn RAL, Kaiser M. The impact of plant-pathogen studies on medicinal drug discovery. Chem Soc Rev 2012; 41:3168-78. [PMID: 22293617 DOI: 10.1039/c2cs15301g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pharmaceutical industry is reliant on a constant supply of new chemical entities and molecular targets for disease intervention. In this tutorial review, we want to illustrate that basic research studies on the biological function of natural products involved in plant-pathogen interactions can serve as an inspiring source for the identification of new bioactive entities as well as of strategies on how to achieve small molecule manipulation of biological systems. An application of findings from plant-pathogen interaction studies might therefore display a significant impact on drug discovery.
Collapse
Affiliation(s)
- Christian Ottmann
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany.
| | | | | |
Collapse
|
38
|
Vandenberg LN. Laterality defects are influenced by timing of treatments and animal model. Differentiation 2012; 83:26-37. [PMID: 22099174 PMCID: PMC3222854 DOI: 10.1016/j.diff.2011.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/13/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
The timing of when the embryonic left-right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, Medford MA 02155
| |
Collapse
|
39
|
Vandenberg LN, Pennarola BW, Levin M. Low frequency vibrations disrupt left-right patterning in the Xenopus embryo. PLoS One 2011; 6:e23306. [PMID: 21826245 PMCID: PMC3149648 DOI: 10.1371/journal.pone.0023306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022] Open
Abstract
The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Brian W. Pennarola
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Johnson C, Tinti M, Wood NT, Campbell DG, Toth R, Dubois F, Geraghty KM, Wong BHC, Brown LJ, Tyler J, Gernez A, Chen S, Synowsky S, MacKintosh C. Visualization and biochemical analyses of the emerging mammalian 14-3-3-phosphoproteome. Mol Cell Proteomics 2011; 10:M110.005751. [PMID: 21725060 PMCID: PMC3205853 DOI: 10.1074/mcp.m110.005751] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease.
Collapse
Affiliation(s)
- Catherine Johnson
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The phytotoxin fusicoccin promotes platelet aggregation via 14-3-3–glycoprotein Ib-IX-V interaction1. Biochem J 2011; 436:429-36. [DOI: 10.1042/bj20102037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fungal toxin fusicoccin induces plant wilting by affecting ion transport across the plasma membrane of plant cell. The activity of this toxin is so far unknown in humans. In the present study we show that fusicoccin is able to affect the platelet aggregation process. The toxin associates with platelet intracellular binding sites and induces aggregation in platelet-rich plasma in a dose-dependent manner. We identified the adhesion receptor glycoprotein Ib-IX-V as fusicoccin target. The toxin promotes the binding of the regulatory 14-3-3 proteins to glycoprotein Ibα and hampers that to glycoprotein Ibβ subunit. As a result, platelet adhesion to von Willebrand factor is stimulated, leading to platelet spreading and integrin αIIbβ3 activation. We anticipate the present study to be a starting point for future therapeutic use of fusicoccin in genetic bleeding diseases characterized by qualitative or quantitative abnormalities of the platelet membrane-adhesion receptors. Furthermore, the present study also sets the stage for future work to determine the potential pharmacological application of fusicoccin as a drug directed to other 14-3-3–target complexes.
Collapse
|
42
|
Burian A, Hejnowicz Z. Fusicoccin affects cortical microtubule orientation in the isolated epidermis of sunflower hypocotyls. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:201-208. [PMID: 21143742 DOI: 10.1111/j.1438-8677.2010.00339.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Epidermal peels isolated from sunflower hypocotyls provide a convenient model to study the relationship between cortical microtubule orientation and strain rate. Extension of peels can be modulated using chemical treatment and mechanical stress, i.e., by adding a chemical to the incubation medium and applying a load exceeding the yield threshold for irreversible (plastic) strain. In this study, peels were pre-incubated for ca. 12 h (long-term pre-incubation) or for 1 h (short-term pre-incubation). In the long-term pre-incubated peels, fusicoccin applied to the medium neither enhanced the rate of longitudinal plastic strain of loaded peels, nor affected microtubule orientation. However, fusicoccin increased the strain rate of short-term, pre-incubated peels and affected microtubule orientation in both extending (loaded) and non-extending (unloaded) peels. Without fusicoccin, microtubule orientation was generally longitudinal or steep, whereas in fusicoccin-treated unloaded peels it was transverse and oblique microtubules in peel portions corresponding to the apical part of the hypocotyl. Although the frequency of transverse orientation was increased through loading, there was no strong correlation between the rate of fusicoccin-induced strain and microtubule orientation. It is hypothesized that the insensitivity of long-term pre-incubated peels to fusicoccin with respect to strain rate is due to a lack of active plasma membrane H(+) -ATPases. Thus, the sensitivity of short-term, pre-incubated, unloaded (non-extending) peels to fusicoccin, with respect to microtubule orientation, indicates that orientation might be affected by electric currents resulting from fusicoccin stimulation of H(+) -ATPases.
Collapse
Affiliation(s)
- A Burian
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Katowice, Poland.
| | | |
Collapse
|
43
|
Vandenberg LN, Levin M. Far from solved: a perspective on what we know about early mechanisms of left-right asymmetry. Dev Dyn 2010; 239:3131-46. [PMID: 21031419 PMCID: PMC10468760 DOI: 10.1002/dvdy.22450] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Consistent laterality is a crucial aspect of embryonic development, physiology, and behavior. While strides have been made in understanding unilaterally expressed genes and the asymmetries of organogenesis, early mechanisms are still poorly understood. One popular model centers on the structure and function of motile cilia and subsequent chiral extracellular fluid flow during gastrulation. Alternative models focus on intracellular roles of the cytoskeleton in driving asymmetries of physiological signals or asymmetric chromatid segregation, at much earlier stages. All three models trace the origin of asymmetry back to the chirality of cytoskeletal organizing centers, but significant controversy exists about how this intracellular chirality is amplified onto cell fields. Analysis of specific predictions of each model and crucial recent data on new mutants suggest that ciliary function may not be a broadly conserved, initiating event in left-right patterning. Many questions about embryonic left-right asymmetry remain open, offering fascinating avenues for further research in cell, developmental, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Biology Department, and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Biology Department, and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
44
|
de Vries-van Leeuwen IJ, Kortekaas-Thijssen C, Nzigou Mandouckou JA, Kas S, Evidente A, de Boer AH. Fusicoccin-A selectively induces apoptosis in tumor cells after interferon-α priming. Cancer Lett 2010; 293:198-206. [DOI: 10.1016/j.canlet.2010.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 11/17/2022]
|
45
|
Stevens J, Ermakov A, Braganca J, Hilton H, Underhill P, Bhattacharya S, Brown NA, Norris DP. Analysis of the asymmetrically expressed Ablim1 locus reveals existence of a lateral plate Nodal-independent left sided signal and an early, left-right independent role for nodal flow. BMC DEVELOPMENTAL BIOLOGY 2010; 10:54. [PMID: 20487527 PMCID: PMC2885315 DOI: 10.1186/1471-213x-10-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 05/20/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Vertebrates show clear asymmetry in left-right (L-R) patterning of their organs and associated vasculature. During mammalian development a cilia driven leftwards flow of liquid leads to the left-sided expression of Nodal, which in turn activates asymmetric expression of the transcription factor Pitx2. While Pitx2 asymmetry drives many aspects of asymmetric morphogenesis, it is clear from published data that additional asymmetrically expressed loci must exist. RESULTS A L-R expression screen identified the cytoskeletally-associated gene, actin binding lim protein 1 (Ablim1), as asymmetrically expressed in both the node and left lateral plate mesoderm (LPM). LPM expression closely mirrors that of Nodal. Significantly, Ablim1 LPM asymmetry was detected in the absence of detectable Nodal. In the node, Ablim1 was initially expressed symmetrically across the entire structure, resolving to give a peri-nodal ring at the headfold stage in a flow and Pkd2-dependent manner. The peri-nodal ring of Ablim1 expression became asymmetric by the mid-headfold stage, showing stronger right than left-sided expression. Node asymmetry became more apparent as development proceeded; expression retreated in an anticlockwise direction, disappearing first from the left anterior node. Indeed, at early somite stages Ablim1 shows a unique asymmetric expression pattern, in the left lateral plate and to the right side of the node. CONCLUSION Left LPM Ablim1 is expressed in the absence of detectable LPM Nodal, clearly revealing existence of a Pitx2 and Nodal-independent left-sided signal in mammals. At the node, a previously unrecognised action of early nodal flow and Pkd2 activity, within the pit of the node, influences gene expression in a symmetric manner. Subsequent Ablim1 expression in the peri-nodal ring reveals a very early indication of L-R asymmetry. Ablim1 expression analysis at the node acts as an indicator of nodal flow. Together these results make Ablim1 a candidate for controlling aspects of L-R identity and patterning.
Collapse
Affiliation(s)
- Jonathan Stevens
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The pharmacology has been further investigated of the two transport systems mediating potassium (rubidium) (K(+)(Rb(+))) release from the guard cell vacuole, responsible, respectively, for the resting efflux and abscisic acid (ABA)-induced transient stimulation of efflux, and for the transient stimulation induced by hypotonic treatment. Here, the effects of fusicoccin and of butyrate-induced cytoplasmic acidification on (86)Rb efflux were measured in isolated guard cells of Commelina communis. Fusicoccin (10 microM) inhibited the resting efflux at the tonoplast and the ABA-induced transient, but had no effect on the hypotonic transient. All three processes were inhibited by cytoplasmic acidification. Fusicoccin did not inhibit efflux at the plasmalemma. As the hypotonic response is inhibited by cytoplasmic acidification but not by fusicoccin, the effect of fusicoccin on the resting efflux and ABA response must be direct, and not the result of fusicoccin-induced cytoplasmic acidification. The collected tonoplast efflux properties resemble those of TPC1 (two-pore channel) rather than TPK1 (two-pore K channel). The flux and TPC1 are both activated by Ca(2+), but inhibited by phenylarsine oxide and by cytoplasmic acidification. The flux is inhibited by fusicoccin. TPC1 is inhibited by 14-3-3 proteins and has the C-terminal sequence STSDT, a type III binding site for 14-3-3 proteins, of the kind involved in fusicoccin binding.
Collapse
Affiliation(s)
- Enid A C MacRobbie
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | |
Collapse
|
47
|
Davis FP, Sali A. The overlap of small molecule and protein binding sites within families of protein structures. PLoS Comput Biol 2010; 6:e1000668. [PMID: 20140189 PMCID: PMC2816688 DOI: 10.1371/journal.pcbi.1000668] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/31/2009] [Indexed: 02/03/2023] Open
Abstract
Protein–protein interactions are challenging targets for modulation by small molecules. Here, we propose an approach that harnesses the increasing structural coverage of protein complexes to identify small molecules that may target protein interactions. Specifically, we identify ligand and protein binding sites that overlap upon alignment of homologous proteins. Of the 2,619 protein structure families observed to bind proteins, 1,028 also bind small molecules (250–1000 Da), and 197 exhibit a statistically significant (p<0.01) overlap between ligand and protein binding positions. These “bi-functional positions”, which bind both ligands and proteins, are particularly enriched in tyrosine and tryptophan residues, similar to “energetic hotspots” described previously, and are significantly less conserved than mono-functional and solvent exposed positions. Homology transfer identifies ligands whose binding sites overlap at least 20% of the protein interface for 35% of domain–domain and 45% of domain–peptide mediated interactions. The analysis recovered known small-molecule modulators of protein interactions as well as predicted new interaction targets based on the sequence similarity of ligand binding sites. We illustrate the predictive utility of the method by suggesting structural mechanisms for the effects of sanglifehrin A on HIV virion production, bepridil on the cellular entry of anthrax edema factor, and fusicoccin on vertebrate developmental pathways. The results, available at http://pibase.janelia.org, represent a comprehensive collection of structurally characterized modulators of protein interactions, and suggest that homologous structures are a useful resource for the rational design of interaction modulators. Proteins function through their interactions with other biological molecules, including other proteins. Often times, these interactions underlie cellular processes that go awry in disease. Therefore, modulating these interactions with small molecules is an active area of research for new drugs to treat diseases and new chemical tools to dissect cellular interaction networks. However, targeting protein–protein interactions has proven to be more challenging than the typical drug targets found on individual proteins. Here, we present a computational approach that aims to help in this challenge by identifying regions of protein–protein interfaces that may be amenable to targeting by small molecules. Through a comprehensive analysis of all known protein structures, we identify closely related proteins that in one case bind a protein and in another case bind a small molecule. We find that a significant number of protein–protein interactions occur through surface regions that bind small molecules in related proteins. These “bi-functional” positions, which can bind both proteins and ligands, will serve as an additional piece of structural information that can aid experimentalists in developing small molecules that modulate protein interactions.
Collapse
Affiliation(s)
- Fred P. Davis
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, United States of America
- * E-mail: (FPD); (AS)
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (FPD); (AS)
| |
Collapse
|
48
|
Wanna W, Rexroad CE, Yao J. Identification of a functional splice variant of 14-3-3E1 in rainbow trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:70-80. [PMID: 19590924 DOI: 10.1007/s10126-009-9201-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/02/2009] [Indexed: 05/28/2023]
Abstract
The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. In this study, we report the identification and characterization of a new isoform of the rainbow trout 14-3-3E1 gene generated by alternative splicing. The new isoform contains an insertion of 48 nucleotides (from intron 5) in the coding region of 14-3-3E1 which results in the introduction of a premature stop codon between exon 5 and exon 6. Thus, the alternatively spliced form of 14-3-3E1 (14-3-3E1DeltaC17) lacks 17 amino acid residues at the C terminus encoded by the last exon (exon 6). Reverse-transcription polymerase chain reaction analysis revealed that the wild-type 14-3-3E1 (14-3-3E1wt) is ubiquitously expressed, while 14-3-3E1DeltaC17 shows tissue-specific as well as stage-specific expression during ovarian development and early embryogenesis. Analysis by yeast two-hybrid system demonstrated that 14-3-3E1Delta17 interacts with a number of proteins including ATP synthase, ankyrin repeat domain 13b, cytochrome c subunit VIa, cytochrome c subunit VIb, 60S ribosomal protein L34, solute carrier family 17 member 6 (SLC17A6), troponin I, and an unknown protein. Although all of these proteins except for SLC17A6 also interact with 14-3-3E1wt, 14-3-3E1Delta17 appears to have higher binding affinity with these proteins than 14-3-3E1wt. These findings suggest that alternative splicing affects the function and tissue-specific expression of 14-3-3E1.
Collapse
Affiliation(s)
- Warapond Wanna
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
49
|
Toyomasu T, Tsukahara M, Kenmoku H, Anada M, Nitta H, Ohkanda J, Mitsuhashi W, Sassa T, Kato N. Transannular Proton Transfer in the Cyclization of Geranylgeranyl Diphosphate to Fusicoccadiene, a Biosynthetic Intermediate of Fusicoccins. Org Lett 2009; 11:3044-7. [DOI: 10.1021/ol901063s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomonobu Toyomasu
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Mai Tsukahara
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Hiromichi Kenmoku
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Masahide Anada
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Hajime Nitta
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Junko Ohkanda
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Wataru Mitsuhashi
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Takeshi Sassa
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Nobuo Kato
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan, and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
50
|
Blum M, Beyer T, Weber T, Vick P, Andre P, Bitzer E, Schweickert A. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev Dyn 2009; 238:1215-25. [DOI: 10.1002/dvdy.21855] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|