1
|
Das P, Murthy S, Abbas E, White K, Arya R. The Hox Gene, abdominal A controls timely mitotic entry of neural stem cell and their growth during CNS development in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611161. [PMID: 39282366 PMCID: PMC11398374 DOI: 10.1101/2024.09.04.611161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The size of a cell is important for its function and physiology. Interestingly, size variation can be easily observed in clonally derived embryonic and hematopoietic stem cells. Here, we investigated the regulation of stem cell growth and its association with cell fate. We observed heterogeneous sizes of neuroblasts or neural stem cells (NSCs) in the Drosophila ventral nerve cord (VNC). Specifically, thoracic NSCs were larger than those in the abdominal region of the VNC. Our research uncovered a significant role of the Hox gene abdominal A (abdA) in the regulation of abdominal NSC growth. Developmental expression of AbdA retards their growth and delays mitotic entry compared to thoracic NSCs. The targeted loss of abdA enhanced their growth and caused an earlier entry into mitosis with a faster cycling rate. Furthermore, ectopic expression of abdA reduced the size of thoracic NSCs and delayed their entry into mitosis. We suggest that abdA plays an instructive role in regulating NSC size and exit from quiescence. This study demonstrates for the first time the involvement of abdA in NSC fate determination by regulating their growth, entry into mitosis and proliferation rate, and thus their potential to make appropriate number of progeny for CNS patterning.
Collapse
Affiliation(s)
- Papri Das
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005
| | | | - Eshan Abbas
- ADP Road, Christianpatty, Nagaon, Assam- 782003, India
| | - Kristin White
- MGH/Harvard Medical School,CBRC, Bldg 149, 13th St, Charlestown, MA 02129
| | - Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005
| |
Collapse
|
2
|
An H, Yu Y, Ren X, Zeng M, Bai Y, Liu T, Zheng H, Sang R, Zhang F, Cai Y, Xi Y. Pipsqueak family genes dan/danr antagonize nuclear Pros to prevent neural stem cell aging in Drosophila larval brains. Front Mol Neurosci 2023; 16:1160222. [PMID: 37266371 PMCID: PMC10231327 DOI: 10.3389/fnmol.2023.1160222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Neural stem cell aging is a fundamental question in neurogenesis. Premature nuclear Pros is considered as an indicator of early neural stem cell aging in Drosophila. The underlying mechanism of how neural stem cells prevent premature nuclear Pros remains largely unknown. Here we identified that two pipsqueak family genes, distal antenna (dan) and distal antenna-related (danr), promote the proliferation of neural stem cells (also called neuroblasts, NBs) in third instar larval brains. In the absence of Dan and Danr (dan/danr), the NBs produce fewer daughter cells with smaller lineage sizes. The larval brain NBs in dan/danr clones show premature accumulation of nuclear Prospero (Pros), which usually appears in the terminating NBs at early pupal stage. The premature nuclear Pros leads to NBs cell cycle defects and NB identities loss. Removal of Pros from dan/danr MARCM clones prevents lineage size shrinkage and rescues the loss of NB markers. We propose that the timing of nuclear Pros is after the downregulation of dan/danr in the wt terminating NBs. dan/danr and nuclear Pros are mutually exclusive in NBs. In addition, dan/danr are also required for the late temporal regulator, Grainyhead (Grh), in third instar larval brains. Our study uncovers the novel function of dan/danr in NBs cell fate maintenance. dan/danr antagonize nuclear Pros to prevent NBs aging in Drosophila larval brains.
Collapse
Affiliation(s)
- Huanping An
- Key Laboratory of Clinical Molecular Biology of Hanzhong City, Hanzhong Vocational and Technical College, Hanzhong, China
- Department of Teaching and Medical Administration, 3201 Hospital, Xi’an Jiaotong University Health Science Center, Hanzhong, China
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- The Women’s Hospital, Institutes of Genetics, School of Medicine Zhejiang University, Hangzhou, China
| | - Yue Yu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Xuming Ren
- Key Laboratory of Clinical Molecular Biology of Hanzhong City, Hanzhong Vocational and Technical College, Hanzhong, China
| | - Minghua Zeng
- Key Laboratory of Clinical Molecular Biology of Hanzhong City, Hanzhong Vocational and Technical College, Hanzhong, China
| | - Yu Bai
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Tao Liu
- Department of Teaching and Medical Administration, 3201 Hospital, Xi’an Jiaotong University Health Science Center, Hanzhong, China
| | - Huimei Zheng
- The Women’s Hospital, Institutes of Genetics, School of Medicine Zhejiang University, Hangzhou, China
| | - Rong Sang
- The Women’s Hospital, Institutes of Genetics, School of Medicine Zhejiang University, Hangzhou, China
| | - Fan Zhang
- The Women’s Hospital, Institutes of Genetics, School of Medicine Zhejiang University, Hangzhou, China
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yongmei Xi
- The Women’s Hospital, Institutes of Genetics, School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Transcriptional and epigenetic regulation of temporal patterning in neural progenitors. Dev Biol 2021; 481:116-128. [PMID: 34666024 DOI: 10.1016/j.ydbio.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
During development, neural progenitors undergo temporal patterning as they age to sequentially generate differently fated progeny. Temporal patterning of neural progenitors is relatively well-studied in Drosophila. Temporal cascades of transcription factors or opposing temporal gradients of RNA-binding proteins are expressed in neural progenitors as they age to control the fates of the progeny. The temporal progression is mostly driven by intrinsic mechanisms including cross-regulations between temporal genes, but environmental cues also play important roles in certain transitions. Vertebrate neural progenitors demonstrate greater plasticity in response to extrinsic cues. Recent studies suggest that vertebrate neural progenitors are also temporally patterned by a combination of transcriptional and post-transcriptional mechanisms in response to extracellular signaling to regulate neural fate specification. In this review, we summarize recent advances in the study of temporal patterning of neural progenitors in Drosophila and vertebrates. We also discuss the involvement of epigenetic mechanisms, specifically the Polycomb group complexes and ATP-dependent chromatin remodeling complexes, in the temporal patterning of neural progenitors.
Collapse
|
4
|
Abstract
Arthropod segmentation and vertebrate somitogenesis are leading fields in the experimental and theoretical interrogation of developmental patterning. However, despite the sophistication of current research, basic conceptual issues remain unresolved. These include: (i) the mechanistic origins of spatial organization within the segment addition zone (SAZ); (ii) the mechanistic origins of segment polarization; (iii) the mechanistic origins of axial variation; and (iv) the evolutionary origins of simultaneous patterning. Here, I explore these problems using coarse-grained models of cross-regulating dynamical processes. In the morphogenetic framework of a row of cells undergoing axial elongation, I simulate interactions between an 'oscillator', a 'switch' and up to three 'timers', successfully reproducing essential patterning behaviours of segmenting systems. By comparing the output of these largely cell-autonomous models to variants that incorporate positional information, I find that scaling relationships, wave patterns and patterning dynamics all depend on whether the SAZ is regulated by temporal or spatial information. I also identify three mechanisms for polarizing oscillator output, all of which functionally implicate the oscillator frequency profile. Finally, I demonstrate significant dynamical and regulatory continuity between sequential and simultaneous modes of segmentation. I discuss these results in the context of the experimental literature.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, 210 Longwood Ave, Boston, MA 02115, USA
- Trinity College Cambridge, University of Cambridge, Trinity Street, Cambridge CB2 1TQ, UK
| |
Collapse
|
5
|
Maurange C. Temporal patterning in neural progenitors: from Drosophila development to childhood cancers. Dis Model Mech 2020; 13:dmm044883. [PMID: 32816915 PMCID: PMC7390627 DOI: 10.1242/dmm.044883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developing central nervous system (CNS) is particularly prone to malignant transformation, but the underlying mechanisms remain unresolved. However, periods of tumor susceptibility appear to correlate with windows of increased proliferation, which are often observed during embryonic and fetal stages and reflect stereotypical changes in the proliferative properties of neural progenitors. The temporal mechanisms underlying these proliferation patterns are still unclear in mammals. In Drosophila, two decades of work have revealed a network of sequentially expressed transcription factors and RNA-binding proteins that compose a neural progenitor-intrinsic temporal patterning system. Temporal patterning controls both the identity of the post-mitotic progeny of neural progenitors, according to the order in which they arose, and the proliferative properties of neural progenitors along development. In addition, in Drosophila, temporal patterning delineates early windows of cancer susceptibility and is aberrantly regulated in developmental tumors to govern cellular hierarchy as well as the metabolic and proliferative heterogeneity of tumor cells. Whereas recent studies have shown that similar genetic programs unfold during both fetal development and pediatric brain tumors, I discuss, in this Review, how the concept of temporal patterning that was pioneered in Drosophila could help to understand the mechanisms of initiation and progression of CNS tumors in children.
Collapse
Affiliation(s)
- Cédric Maurange
- Aix Marseille University, CNRS, IBDM, Equipe Labellisée LIGUE Contre le Cancer, Marseille 13009, France
| |
Collapse
|
6
|
Myasnikova E, Spirov A. Gene regulatory networks in Drosophila early embryonic development as a model for the study of the temporal identity of neuroblasts. Biosystems 2020; 197:104192. [PMID: 32619531 DOI: 10.1016/j.biosystems.2020.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/30/2020] [Accepted: 06/21/2020] [Indexed: 11/27/2022]
Abstract
Genes belonging to the "gap" and "gap-like" family constitute the best-studied gene regulatory networks (GRNs) in Drosophila embryogenesis. Gap genes are a core of two subnetworks controlling embryonic segmentation: (hunchback, hb; Krüppel, Kr; giant, gt; and knirps, kni) and (hb; Kr; pou-domain, pdm; and, probably, castor, cas). Of particular interest is that (hb, Kr, pdm, cas) also specifies the temporal identity of stem cells, neuroblasts, in Drosophila neurogenesis. This GRN controls the sequential differentiation of neuroblasts during the asymmetric cell division. In the last decades, modeling of the patterning of gene ensemble (hb, Kr, gt, kni) in segmentation was in the center of attention. We show that our previously published and extensively studied model at a certain level of external factors is able to reproduce temporal patterns of (hb, Kr, pdm, cas) in neurogenesis with minor evolutionary explicable modifications. This result testifies in favor of a hypothesis that the similarity of two gene ensembles active in segmentation and neurogenesis is a result of co-option of the network architecture in evolution from the common ancestral form. By means of the model dynamical analysis, it is shown that the establishment of the robust patterns in both systems could be explained in terms of the action of attractors in the gap gene dynamical system. We formulate the common principles underlying the robustness of both GRNs in segmentation and neurogenesis due to the similar functional organization of the gene ensembles as having the same evolutionary origin.
Collapse
Affiliation(s)
- Ekaterina Myasnikova
- Peter the Great Saint-Petersburg Polytechnical University, 29 Politekhnicheskaya str, St. Petersburg, 195251, Russia.
| | - Alexander Spirov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, 44 Thorez Pr, St.Petersburg, 194223, Russia; Computer Science and CEWIT, SUNY Stony Brook, Stony Brook, 1500 Stony Brook Road, Stony Brook, 11794, NY, USA
| |
Collapse
|
7
|
Sizemore Blevins A, Bassett DS. Reorderability of node-filtered order complexes. Phys Rev E 2020; 101:052311. [PMID: 32575295 DOI: 10.1103/physreve.101.052311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Growing graphs describe a multitude of developing processes from maturing brains to expanding vocabularies to burgeoning public transit systems. Each of these growing processes likely adheres to proliferation rules that establish an effective order of node and connection emergence. When followed, such proliferation rules allow the system to properly develop along a predetermined trajectory. But rules are rarely followed. Here we ask what topological changes in the growing graph trajectories might occur after the specific but basic perturbation of permuting the node emergence order. Specifically, we harness applied topological methods to determine which of six growing graph models exhibit topology that is robust to randomizing node order, termed global reorderability, and robust to temporally local node swaps, termed local reorderability. We find that the six graph models fall upon a spectrum of both local and global reorderability, and furthermore we provide theoretical connections between robustness to node pair ordering and robustness to arbitrary node orderings. Finally, we discuss real-world applications of reorderability analyses and suggest possibilities for designing reorderable networks.
Collapse
Affiliation(s)
- Ann Sizemore Blevins
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| |
Collapse
|
8
|
Abstract
The cerebellum is a pivotal centre for the integration and processing of motor and sensory information. Its extended development into the postnatal period makes this structure vulnerable to a variety of pathologies, including neoplasia. These properties have prompted intensive investigations that reveal not only developmental mechanisms in common with other regions of the neuraxis but also unique strategies to generate neuronal diversity. How the phenotypically distinct cell types of the cerebellum emerge rests on understanding how gene expression differences arise in a spatially and temporally coordinated manner from initially homogeneous cell populations. Increasingly sophisticated fate mapping approaches, culminating in genetic-induced fate mapping, have furthered the understanding of lineage relationships between early- versus later-born cells. Tracing the developmental histories of cells in this way coupled with analysis of gene expression patterns has provided insight into the developmental genetic programmes that instruct cellular heterogeneity. A limitation to date has been the bulk analysis of cells, which blurs lineage relationships and obscures gene expression differences between cells that underpin the cellular taxonomy of the cerebellum. This review emphasises recent discoveries, focusing mainly on single-cell sequencing in mouse and parallel human studies that elucidate neural progenitor developmental trajectories with unprecedented resolution. Complementary functional studies of neural repair after cerebellar injury are challenging assumptions about the stability of postnatal cellular identities. The result is a wealth of new information about the developmental mechanisms that generate cerebellar neural diversity, with implications for human evolution.
Collapse
Affiliation(s)
- Max J. van Essen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samuel Nayler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Esther B. E. Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Analysis of Complete Neuroblast Cell Lineages in the Drosophila Embryonic Brain via DiI Labeling. Methods Mol Biol 2019. [PMID: 31552652 DOI: 10.1007/978-1-4939-9732-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proper functioning of the brain relies on an enormous diversity of neural cells generated by neural stem cell-like neuroblasts (NBs). Each of the about 100 NBs in each side of brain generates a nearly invariant and unique cell lineage, consisting of specific neural cell types that develop in defined time periods. In this chapter we describe a method that labels entire NB lineages in the embryonic brain. Clonal DiI labeling allows us to follow the development of an NB lineage starting from the neuroectodermal precursor cell up to the fully developed cell clone in the first larval instar brain. We also show how to ablate individual cells within an NB clone, which reveals information about the temporal succession in which daughter cells are generated. Finally, we describe how to combine clonal DiI labeling with fluorescent antibody staining that permits relating protein expression to individual cells within a labeled NB lineage. These protocols make it feasible to uncover precise lineage relationships between a brain NB and its daughter cells, and to assign gene expression to individual clonal cells. Such lineage-based information is a critical key for understanding the cellular and molecular mechanisms that underlie specification of cell fates in spatial and temporal dimension in the embryonic brain.
Collapse
|
10
|
Meng JL, Marshall ZD, Lobb-Rabe M, Heckscher ES. How prolonged expression of Hunchback, a temporal transcription factor, re-wires locomotor circuits. eLife 2019; 8:46089. [PMID: 31502540 PMCID: PMC6754208 DOI: 10.7554/elife.46089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
How circuits assemble starting from stem cells is a fundamental question in developmental neurobiology. We test the hypothesis that, in neuronal stem cells, temporal transcription factors predictably control neuronal terminal features and circuit assembly. Using the Drosophila motor system, we manipulate expression of the classic temporal transcription factor Hunchback (Hb) specifically in the NB7-1 stem cell, which produces U motor neurons (MNs), and then we monitor dendrite morphology and neuromuscular synaptic partnerships. We find that prolonged expression of Hb leads to transient specification of U MN identity, and that embryonic molecular markers do not accurately predict U MN terminal features. Nonetheless, our data show Hb acts as a potent regulator of neuromuscular wiring decisions. These data introduce important refinements to current models, show that molecular information acts early in neurogenesis as a switch to control motor circuit wiring, and provide novel insight into the relationship between stem cell and circuit.
Collapse
Affiliation(s)
- Julia L Meng
- Department of Molecular Genetics and Cell Biology, Grossman Institute for Neuroscience, Program in Cell and Molecular Biology, University of Chicago, Chicago, United States.,Program in Cell and Molecular Biology, University of Chicago, Chicago, United States
| | - Zarion D Marshall
- Department of Molecular Genetics and Cell Biology, Grossman Institute for Neuroscience, Program in Cell and Molecular Biology, University of Chicago, Chicago, United States
| | - Meike Lobb-Rabe
- Department of Molecular Genetics and Cell Biology, Grossman Institute for Neuroscience, Program in Cell and Molecular Biology, University of Chicago, Chicago, United States.,Program in Cell and Molecular Biology, University of Chicago, Chicago, United States
| | - Ellie S Heckscher
- Department of Molecular Genetics and Cell Biology, Grossman Institute for Neuroscience, Program in Cell and Molecular Biology, University of Chicago, Chicago, United States
| |
Collapse
|
11
|
Robertson FL, Marqués-Torrejón MA, Morrison GM, Pollard SM. Experimental models and tools to tackle glioblastoma. Dis Model Mech 2019; 12:dmm040386. [PMID: 31519690 PMCID: PMC6765190 DOI: 10.1242/dmm.040386] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers. Despite increasing knowledge of the genetic and epigenetic changes that underlie tumour initiation and growth, the prognosis for GBM patients remains dismal. Genome analysis has failed to lead to success in the clinic. Fresh approaches are needed that can stimulate new discoveries across all levels: cell-intrinsic mechanisms (transcriptional/epigenetic and metabolic), cell-cell signalling, niche and microenvironment, systemic signals, immune regulation, and tissue-level physical forces. GBMs are inherently extremely challenging: tumour detection occurs too late, and cells infiltrate widely, hiding in quiescent states behind the blood-brain barrier. The complexity of the brain tissue also provides varied and complex microenvironments that direct cancer cell fates. Phenotypic heterogeneity is therefore superimposed onto pervasive genetic heterogeneity. Despite this bleak outlook, there are reasons for optimism. A myriad of complementary, and increasingly sophisticated, experimental approaches can now be used across the research pipeline, from simple reductionist models devised to delineate molecular and cellular mechanisms, to complex animal models required for preclinical testing of new therapeutic approaches. No single model can cover the breadth of unresolved questions. This Review therefore aims to guide investigators in choosing the right model for their question. We also discuss the recent convergence of two key technologies: human stem cell and cancer stem cell culture, as well as CRISPR/Cas tools for precise genome manipulations. New functional genetic approaches in tailored models will likely fuel new discoveries, new target identification and new therapeutic strategies to tackle GBM.
Collapse
Affiliation(s)
- Faye L Robertson
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Maria-Angeles Marqués-Torrejón
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Gillian M Morrison
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
12
|
Spirov AV, Myasnikova EM. Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts. Mol Biol 2019. [DOI: 10.1134/s0026893319020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Bertacchi M, Parisot J, Studer M. The pleiotropic transcriptional regulator COUP-TFI plays multiple roles in neural development and disease. Brain Res 2018; 1705:75-94. [PMID: 29709504 DOI: 10.1016/j.brainres.2018.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
Abstract
Transcription factors are expressed in a dynamic fashion both in time and space during brain development, and exert their roles by activating a cascade of multiple target genes. This implies that understanding the precise function of a transcription factor becomes a challenging task. In this review, we will focus on COUP-TFI (or NR2F1), a nuclear receptor belonging to the superfamily of the steroid/thyroid hormone receptors, and considered to be one of the major transcriptional regulators orchestrating cortical arealization, cell-type specification and maturation. Recent data have unraveled the multi-faceted functions of COUP-TFI in the development of several mouse brain structures, including the neocortex, hippocampus and ganglionic eminences. Despite NR2F1 mutations and deletions in humans have been linked to a complex neurodevelopmental disease mainly associated to optic atrophy and intellectual disability, its role during the formation of the retina and optic nerve remains unclear. In light of its major influence in cortical development, we predict that its haploinsufficiency might be the cause of other cognitive diseases, not identified so far. Mouse models offer a unique opportunity of dissecting COUP-TFI function in different regions during brain assembly; hence, the importance of comparing and discussing common points linking mouse models to human patients' symptoms.
Collapse
Affiliation(s)
- Michele Bertacchi
- Université Côte d'Azur, CNRS, Inserm, iBV - Institut de Biologie Valrose, 06108 Nice, France.
| | - Josephine Parisot
- Université Côte d'Azur, CNRS, Inserm, iBV - Institut de Biologie Valrose, 06108 Nice, France
| | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, iBV - Institut de Biologie Valrose, 06108 Nice, France.
| |
Collapse
|
14
|
Gaburro J, Bhatti A, Harper J, Jeanne I, Dearnley M, Green D, Nahavandi S, Paradkar PN, Duchemin JB. Neurotropism and behavioral changes associated with Zika infection in the vector Aedes aegypti. Emerg Microbes Infect 2018; 7:68. [PMID: 29691362 PMCID: PMC5915379 DOI: 10.1038/s41426-018-0069-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
Abstract
Understanding Zika virus infection dynamics is essential, as its recent emergence revealed possible devastating neuropathologies in humans, thus causing a major threat to public health worldwide. Recent research allowed breakthrough in our understanding of the virus and host pathogenesis; however, little is known on its impact on its main vector, Aedes aegypti. Here we show how Zika virus targets Aedes aegypti’s neurons and induces changes in its behavior. Results are compared to dengue virus, another flavivirus, which triggers a different pattern of behavioral changes. We used microelectrode array technology to record electrical spiking activity of mosquito primary neurons post infections and discovered that only Zika virus causes an increase in spiking activity of the neuronal network. Confocal microscopy also revealed an increase in synapse connections for Zika virus-infected neuronal networks. Interestingly, the results also showed that mosquito responds to infection by overexpressing glutamate regulatory genes while maintaining virus levels. This neuro-excitation, possibly via glutamate, could contribute to the observed behavioral changes in Zika virus-infected Aedes aegypti females. This study reveals the importance of virus-vector interaction in arbovirus neurotropism, in humans and vector. However, it appears that the consequences differ in the two hosts, with neuropathology in human host, while behavioral changes in the mosquito vector that may be advantageous to the virus.
Collapse
Affiliation(s)
- Julie Gaburro
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia.,Deakin University, Institute for Intelligent Systems Research and Innovation (IISRI), Geelong, Australia
| | - Asim Bhatti
- Deakin University, Institute for Intelligent Systems Research and Innovation (IISRI), Geelong, Australia
| | - Jenni Harper
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | | | - Megan Dearnley
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Diane Green
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Saeid Nahavandi
- Deakin University, Institute for Intelligent Systems Research and Innovation (IISRI), Geelong, Australia
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia.
| |
Collapse
|
15
|
Stem Cell-Intrinsic, Seven-up-Triggered Temporal Factor Gradients Diversify Intermediate Neural Progenitors. Curr Biol 2017; 27:1303-1313. [PMID: 28434858 DOI: 10.1016/j.cub.2017.03.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/08/2017] [Accepted: 03/21/2017] [Indexed: 01/07/2023]
Abstract
Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.
Collapse
|
16
|
Layden MJ, Johnston H, Amiel AR, Havrilak J, Steinworth B, Chock T, Röttinger E, Martindale MQ. MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biol 2016; 14:61. [PMID: 27480076 PMCID: PMC4968017 DOI: 10.1186/s12915-016-0282-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background The nerve net of Nematostella is generated using a conserved cascade of neurogenic transcription factors. For example, NvashA, a homolog of the achaete-scute family of basic helix-loop-helix transcription factors, is necessary and sufficient to specify a subset of embryonic neurons. However, positive regulators required for the expression of neurogenic transcription factors remain poorly understood. Results We show that treatment with the MEK/MAPK inhibitor U0126 severely reduces the expression of known neurogenic genes, Nvath-like, NvsoxB(2), and NvashA, and known markers of differentiated neurons, suggesting that MAPK signaling is necessary for neural development. Interestingly, ectopic NvashA fails to rescue the expression of neural markers in U0126-treated animals. Double fluorescence in situ hybridization and transgenic analysis confirmed that NvashA targets represent both unique and overlapping populations of neurons. Finally, we used a genome-wide microarray to identify additional patterning genes downstream of MAPK that might contribute to neurogenesis. We identified 18 likely neural transcription factors, and surprisingly identified ~40 signaling genes and transcription factors that are expressed in either the aboral domain or animal pole that gives rise to the endomesoderm at late blastula stages. Conclusions Together, our data suggest that MAPK is a key early regulator of neurogenesis, and that it is likely required at multiple steps. Initially, MAPK promotes neurogenesis by positively regulating expression of NvsoxB(2), Nvath-like, and NvashA. However, we also found that MAPK is necessary for the activity of the neurogenic transcription factor NvashA. Our forward molecular approach provided insight about the mechanisms of embryonic neurogenesis. For instance, NvashA suppression of Nvath-like suggests that inhibition of progenitor identity is an active process in newly born neurons, and we show that downstream targets of NvashA reflect multiple neural subtypes rather than a uniform neural fate. Lastly, analysis of the MAPK targets in the early embryo suggests that MAPK signaling is critical not only to neurogenesis, but also endomesoderm formation and aboral patterning. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0282-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| | - Hereroa Johnston
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Aldine R Amiel
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Jamie Havrilak
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Bailey Steinworth
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Taylor Chock
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Eric Röttinger
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA.
| |
Collapse
|
17
|
Greaney MR, Privorotskiy AE, D'Elia KP, Schoppik D. Extraocular motoneuron pools develop along a dorsoventral axis in zebrafish, Danio rerio. J Comp Neurol 2016; 525:65-78. [PMID: 27197595 PMCID: PMC5116274 DOI: 10.1002/cne.24042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/24/2022]
Abstract
Both spatial and temporal cues determine the fate of immature neurons. A major challenge at the interface of developmental and systems neuroscience is to relate this spatiotemporal trajectory of maturation to circuit-level functional organization. This study examined the development of two extraocular motor nuclei (nIII and nIV), structures in which a motoneuron's identity, or choice of muscle partner, defines its behavioral role. We used retro-orbital dye fills, in combination with fluorescent markers for motoneuron location and birthdate, to probe spatial and temporal organization of the oculomotor (nIII) and trochlear (nIV) nuclei in the larval zebrafish. We describe a dorsoventral organization of the four nIII motoneuron pools, in which inferior and medial rectus motoneurons occupy dorsal nIII, while inferior oblique and superior rectus motoneurons occupy distinct divisions of ventral nIII. Dorsal nIII motoneurons are, moreover, born before motoneurons of ventral nIII and nIV. The order of neurogenesis can therefore account for the dorsoventral organization of nIII and may play a primary role in determining motoneuron identity. We propose that the temporal development of extraocular motoneurons plays a key role in assembling a functional oculomotor circuit. J. Comp. Neurol. 525:65-78, 2017. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie R Greaney
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute New York University Langone School of Medicine, New York, New York, USA
| | - Ann E Privorotskiy
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute New York University Langone School of Medicine, New York, New York, USA
| | - Kristen P D'Elia
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute New York University Langone School of Medicine, New York, New York, USA
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute New York University Langone School of Medicine, New York, New York, USA
| |
Collapse
|
18
|
Webb AB, Oates AC. Timing by rhythms: Daily clocks and developmental rulers. Dev Growth Differ 2016; 58:43-58. [PMID: 26542934 PMCID: PMC4832293 DOI: 10.1111/dgd.12242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 01/10/2023]
Abstract
Biological rhythms are widespread, allowing organisms to temporally organize their behavior and metabolism in advantageous ways. Such proper timing of molecular and cellular events is critical to their development and health. This is best understood in the case of the circadian clock that orchestrates the daily sleep/wake cycle of organisms. Temporal rhythms can also be used for spatial organization, if information from an oscillating system can be recorded within the tissue in a manner that leaves a permanent periodic pattern. One example of this is the "segmentation clock" used by the vertebrate embryo to rhythmically and sequentially subdivide its elongating body axis. The segmentation clock moves with the elongation of the embryo, such that its period sets the segment length as the tissue grows outward. Although the study of this system is still relatively young compared to the circadian clock, outlines of molecular, cellular, and tissue-level regulatory mechanisms of timing have emerged. The question remains, however, is it truly a clock? Here we seek to introduce the segmentation clock to a wider audience of chronobiologists, focusing on the role and control of timing in the system. We compare and contrast the segmentation clock with the circadian clock, and propose that the segmentation clock is actually an oscillatory ruler, with a primary function to measure embryonic space.
Collapse
Affiliation(s)
- Alexis B Webb
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Andrew C Oates
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
- University College London, Gower Street, London, UK
| |
Collapse
|
19
|
Li Q, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity. PLoS Genet 2016; 12:e1005780. [PMID: 26765103 PMCID: PMC4713227 DOI: 10.1371/journal.pgen.1005780] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Abigail Maciejewski
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alicia T. Brandt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dominik Reinhold
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Mathematics and Computer Science, Clark University, Worcester, Massachusetts, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
20
|
Berndt AJE, Tang JCY, Ridyard MS, Lian T, Keatings K, Allan DW. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons. PLoS Genet 2015; 11:e1005754. [PMID: 26713626 PMCID: PMC4694770 DOI: 10.1371/journal.pgen.1005754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022] Open
Abstract
Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE) that binds BMP-activated pMad, and a homeodomain-response element (HD-RE) that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp), as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP signaling directly activates FMRFa gene expression through an atypical gene regulatory mechanism.
Collapse
Affiliation(s)
- Anthony J. E. Berndt
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan C. Y. Tang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States America
| | - Marc S. Ridyard
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen Keatings
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas W. Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
21
|
Enriquez J, Venkatasubramanian L, Baek M, Peterson M, Aghayeva U, Mann RS. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 2015; 86:955-970. [PMID: 25959734 DOI: 10.1016/j.neuron.2015.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/12/2015] [Accepted: 04/04/2015] [Indexed: 11/27/2022]
Abstract
How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA.
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Myungin Baek
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Meredith Peterson
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Ulkar Aghayeva
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
22
|
Allan DW, Thor S. Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:505-28. [PMID: 25855098 PMCID: PMC4672696 DOI: 10.1002/wdev.191] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
The broad range of tissue and cellular diversity of animals is generated to a large extent by the hierarchical deployment of sequence-specific transcription factors and co-factors (collectively referred to as TF's herein) during development. Our understanding of these developmental processes has been facilitated by the recognition that the activities of many TF's can be meaningfully described by a few functional categories that usefully convey a sense for how the TF's function, and also provides a sense for the regulatory organization of the developmental processes in which they participate. Here, we draw on examples from studies in Caenorhabditis elegans, Drosophila melanogaster, and vertebrates to discuss how the terms spatial selector, temporal selector, tissue/cell type selector, terminal selector and combinatorial code may be usefully applied to categorize the activities of TF's at critical steps of nervous system construction. While we believe that these functional categories are useful for understanding the organizational principles by which TF's direct nervous system construction, we however caution against the assumption that a TF's function can be solely or fully defined by any single functional category. Indeed, most TF's play diverse roles within different functional categories, and their roles can blur the lines we draw between these categories. Regardless, it is our belief that the concepts discussed here are helpful in clarifying the regulatory complexities of nervous system development, and hope they prove useful when interpreting mutant phenotypes, designing future experiments, and programming specific neuronal cell types for use in therapies. WIREs Dev Biol 2015, 4:505–528. doi: 10.1002/wdev.191 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Douglas W Allan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| |
Collapse
|
23
|
Dias J, Alekseenko Z, Applequist J, Ericson J. Tgfβ Signaling Regulates Temporal Neurogenesis and Potency of Neural Stem Cells in the CNS. Neuron 2014; 84:927-39. [DOI: 10.1016/j.neuron.2014.10.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 01/31/2023]
|
24
|
Wernet MF, Huberman AD, Desplan C. So many pieces, one puzzle: cell type specification and visual circuitry in flies and mice. Genes Dev 2014; 28:2565-84. [PMID: 25452270 PMCID: PMC4248288 DOI: 10.1101/gad.248245.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The visual system is a powerful model for probing the development, connectivity, and function of neural circuits. Two genetically tractable species, mice and flies, are together providing a great deal of understanding of these processes. Current efforts focus on integrating knowledge gained from three cross-fostering fields of research: (1) understanding how the fates of different cell types are specified during development, (2) revealing the synaptic connections between identified cell types ("connectomics") by high-resolution three-dimensional circuit anatomy, and (3) causal testing of how identified circuit elements contribute to visual perception and behavior. Here we discuss representative examples from fly and mouse models to illustrate the ongoing success of this tripartite strategy, focusing on the ways it is enhancing our understanding of visual processing and other sensory systems.
Collapse
Affiliation(s)
- Mathias F Wernet
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA; New York University Abu Dhabi, Saadiyat Island, Abu Dhabi 129188, United Arab Emirates; Department of Biology, New York University, New York, New York 10003, USA
| | - Andrew D Huberman
- Department of Neurosciences, Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Claude Desplan
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi 129188, United Arab Emirates; Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
25
|
Findlay Q, Yap KK, Bergner AJ, Young HM, Stamp LA. Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon. Am J Physiol Gastrointest Liver Physiol 2014; 307:G741-8. [PMID: 25125684 DOI: 10.1152/ajpgi.00225.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is important to identify the source of stem/progenitor cells that is best at colonizing the bowel and generating neurons following transplantation. The aim of this study was to compare the ability of central nervous system (CNS) progenitors and ENS progenitors to colonize the colon and differentiate into neurons. Genetically labeled CNS- and ENS-derived progenitors were cocultured with aneural explants of embryonic mouse colon for 1 or 2.5 wk to assess their migratory, proliferative, and differentiation capacities, and survival, in the embryonic gut environment. Both progenitor cell populations were transplanted in the postnatal colon of mice in vivo for 4 wk before they were analyzed for migration and differentiation using immunohistochemistry. ENS-derived progenitors migrated further than CNS-derived cells in both embryonic and postnatal gut environments. ENS-derived progenitors also gave rise to more neurons than their CNS-derived counterparts. Furthermore, neurons derived from ENS progenitors clustered together in ganglia, whereas CNS-derived neurons were mostly solitary. We conclude that, within the gut environment, ENS-derived progenitors show superior migration, proliferation, and neuronal differentiation compared with CNS progenitors.
Collapse
Affiliation(s)
- Quan Findlay
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Kiryu K Yap
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Baumgardt M, Karlsson D, Salmani BY, Bivik C, MacDonald RB, Gunnar E, Thor S. Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade. Dev Cell 2014; 30:192-208. [PMID: 25073156 DOI: 10.1016/j.devcel.2014.06.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/11/2014] [Accepted: 06/25/2014] [Indexed: 02/06/2023]
Abstract
During central nervous system (CNS) development, progenitors typically divide asymmetrically, renewing themselves while budding off daughter cells with more limited proliferative potential. Variation in daughter cell proliferation has a profound impact on CNS development and evolution, but the underlying mechanisms remain poorly understood. We find that Drosophila embryonic neural progenitors (neuroblasts) undergo a programmed daughter proliferation mode switch, from generating daughters that divide once (type I) to generating neurons directly (type 0). This typeI>0 switch is triggered by activation of Dacapo (mammalian p21(CIP1)/p27(KIP1)/p57(Kip2)) expression in neuroblasts. In the thoracic region, Dacapo expression is activated by the temporal cascade (castor) and the Hox gene Antennapedia. In addition, castor, Antennapedia, and the late temporal gene grainyhead act combinatorially to control the precise timing of neuroblast cell-cycle exit by repressing Cyclin E and E2f. This reveals a logical principle underlying progenitor and daughter cell proliferation control in the Drosophila CNS.
Collapse
Affiliation(s)
- Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Daniel Karlsson
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Behzad Y Salmani
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Caroline Bivik
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Ryan B MacDonald
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Erika Gunnar
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden.
| |
Collapse
|
27
|
Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 2014; 15:615-27. [DOI: 10.1038/nrn3767] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Lanet E, Maurange C. Building a brain under nutritional restriction: insights on sparing and plasticity from Drosophila studies. Front Physiol 2014; 5:117. [PMID: 24723892 PMCID: PMC3972452 DOI: 10.3389/fphys.2014.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
While the growth of the developing brain is known to be well-protected compared to other organs in the face of nutrient restriction (NR), careful analysis has revealed a range of structural alterations and long-term neurological defects. Yet, despite intensive studies, little is known about the basic principles that govern brain development under nutrient deprivation. For over 20 years, Drosophila has proved to be a useful model for investigating how a functional nervous system develops from a restricted number of neural stem cells (NSCs). Recently, a few studies have started to uncover molecular mechanisms as well as region-specific adaptive strategies that preserve brain functionality and neuronal repertoire under NR, while modulating neuron numbers. Here, we review the developmental constraints that condition the response of the developing brain to NR. We then analyze the recent Drosophila work to highlight key principles that drive sparing and plasticity in different regions of the central nervous system (CNS). As simple animal models start to build a more integrated picture, understanding how the developing brain copes with NR could help in defining strategies to limit damage and improve brain recovery after birth.
Collapse
Affiliation(s)
- Elodie Lanet
- Aix Marseille Université, CNRS, IBDM UMR 7288 Marseille, France
| | - Cédric Maurange
- Aix Marseille Université, CNRS, IBDM UMR 7288 Marseille, France
| |
Collapse
|
29
|
Yang JS, Awasaki T, Yu HH, He Y, Ding P, Kao JC, Lee T. Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex. J Comp Neurol 2014; 521:2645-Spc1. [PMID: 23696496 DOI: 10.1002/cne.23339] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/29/2013] [Indexed: 12/11/2022]
Abstract
The Drosophila central brain develops from a fixed number of neuroblasts. Each neuroblast makes a clone of neurons that exhibit common trajectories. Here we identified 15 distinct clones that carry larval-born neurons innervating the Drosophila central complex (CX), which consists of four midline structures including the protocerebral bridge (PB), fan-shaped body (FB), ellipsoid body (EB), and noduli (NO). Clonal analysis revealed that the small-field CX neurons, which establish intricate projections across different CX substructures, exist in four isomorphic groups that respectively derive from four complex posterior asense-negative lineages. In terms of the region-characteristic large-field CX neurons, we found that two lineages make PB neurons, 10 lineages produce FB neurons, three lineages generate EB neurons, and two lineages yield NO neurons. The diverse FB developmental origins reflect the discrete input pathways for different FB subcompartments. Clonal analysis enlightens both development and anatomy of the insect locomotor control center.
Collapse
Affiliation(s)
- Jacob S Yang
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA, USA
| | - Takeshi Awasaki
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA, USA
| | - Hung-Hsiang Yu
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA, USA
| | - Yisheng He
- Department of Neurobiology, University of Massachusetts, 364 Plantation Street, Worcester, MA, USA
| | - Peng Ding
- Department of Neurobiology, University of Massachusetts, 364 Plantation Street, Worcester, MA, USA
| | - Jui-Chun Kao
- Department of Neurobiology, University of Massachusetts, 364 Plantation Street, Worcester, MA, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA, USA.,Department of Neurobiology, University of Massachusetts, 364 Plantation Street, Worcester, MA, USA
| |
Collapse
|
30
|
Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Ménard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 2014; 80:442-57. [PMID: 24139044 DOI: 10.1016/j.neuron.2013.09.032] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
Long-term ex vivo live imaging combined with unbiased sampling of cycling precursors shows that macaque outer subventricular zone (OSVZ) includes four distinct basal radial glial (bRG) cell morphotypes, bearing apical and/or basal processes in addition to nonpolar intermediate progenitors (IPs). Each of the five precursor types exhibits extensive self-renewal and proliferative capacities as well as the ability to directly generate neurons, albeit with different frequencies. Cell-cycle parameters exhibited an unusual stage-specific regulation with short cell-cycle duration and increased rates of proliferative divisions during supragranular layer production at late corticogenesis. State transition analysis of an extensive clonal database reveals bidirectional transitions between OSVZ precursor types as well as stage-specific differences in their progeny and topology of the lineage relationships. These results explore rodent-primate differences and show that primate cortical neurons are generated through complex lineages by a mosaic of precursors, thereby providing an innovative framework for understanding specific features of primate corticogenesis.
Collapse
Affiliation(s)
- Marion Betizeau
- Stem Cell and Brain Research Institute, INSERM U846, 18 Avenue Doyen Lepine, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kraft KF, Urbach R. Analysis of complete neuroblast cell lineages in the Drosophila embryonic brain via DiI labeling. Methods Mol Biol 2014; 1082:37-56. [PMID: 24048925 DOI: 10.1007/978-1-62703-655-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proper functioning of the brain relies on an enormous diversity of neural cells generated by neural stem cell-like neuroblasts (NBs). Each of the about 100 NBs in each side of brain generates a nearly invariant and unique cell lineage, consisting of specific neural cell types that develop in defined time periods. In this chapter we describe a method that labels entire NB lineages in the embryonic brain. Clonal DiI labeling allows us to follow the development of a NB lineage starting from the neuroectodermal precursor cell up to the fully developed cell clone in the first larval instar brain. We also show how to ablate individual cells within a NB clone, which reveals information about the temporal succession in which daughter cells are generated. Finally, we describe how to combine clonal DiI labeling with fluorescent antibody staining that permits relating protein expression to individual cells within a labeled NB lineage. These protocols make it feasible to uncover precise lineage relationships between a brain NB and its daughter cells, and to assign gene expression to individual clonal cells. Such lineage-based information is a critical key for understanding the cellular and molecular mechanisms that underlie specification of cell fates in spatial and temporal dimension in the embryonic brain.
Collapse
|
32
|
Abstract
The extra H-bond in a bipyridyl-functionalized hydrazone rotary switch slows down its Z→E isomerization rate by 2 orders of magnitude (k = (3.5 ± 0.2) × 10(-6) s(-1)). The coordination of Zn(2+) with the bipyridyl subgroup simultaneously 'unlocks' this H-bond and accelerates the isomerization rate by at least 6 orders of magnitude (k > 6.9 s(-1)). This coordination-regulated kinetic control could open the way to molecular timers that can be used in guiding temporal events.
Collapse
Affiliation(s)
- Xin Su
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | | |
Collapse
|
33
|
Roossien DH, Lamoureux P, Van Vactor D, Miller KE. Drosophila growth cones advance by forward translocation of the neuronal cytoskeletal meshwork in vivo. PLoS One 2013; 8:e80136. [PMID: 24244629 PMCID: PMC3823856 DOI: 10.1371/journal.pone.0080136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/30/2013] [Indexed: 12/29/2022] Open
Abstract
In vitro studies conducted in Aplysia and chick sensory neurons indicate that in addition to microtubule assembly, long microtubules in the C-domain of the growth cone move forward as a coherent bundle during axonal elongation. Nonetheless, whether this mode of microtubule translocation contributes to growth cone motility in vivo is unknown. To address this question, we turned to the model system Drosophila. Using docked mitochondria as fiduciary markers for the translocation of long microtubules, we first examined motion along the axon to test if the pattern of axonal elongation is conserved between Drosophila and other species in vitro. When Drosophila neurons were cultured on Drosophila extracellular matrix proteins collected from the Drosophila Kc167 cell line, docked mitochondria moved in a pattern indicative of bulk microtubule translocation, similar to that observed in chick sensory neurons grown on laminin. To investigate whether the C-domain is stationary or advances in vivo, we tracked the movement of mitochondria during elongation of the aCC motor neuron in stage 16 Drosophila embryos. We found docked mitochondria moved forward along the axon shaft and in the growth cone C-domain. This work confirms that the physical mechanism of growth cone advance is similar between Drosophila and vertebrate neurons and suggests forward translocation of the microtubule meshwork in the axon underlies the advance of the growth cone C-domain in vivo. These results highlight the need for incorporating en masse microtubule translocation, in addition to assembly, into models of axonal elongation.
Collapse
Affiliation(s)
- Douglas H. Roossien
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kyle E. Miller
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 2013; 498:456-62. [PMID: 23783517 PMCID: PMC3701960 DOI: 10.1038/nature12319] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 05/24/2013] [Indexed: 01/17/2023]
Abstract
In the Drosophila optic lobes, the medulla processes visual information coming from inner photoreceptors R7 and R8 and from lamina neurons. It contains ~40,000 neurons belonging to over 70 different types. We describe how precise temporal patterning of neural progenitors generates these different neural types. Five transcription factors--Homothorax, Eyeless, Sloppy-paired, Dichaete and Tailless--are sequentially expressed in a temporal cascade in each of the medulla neuroblasts as they age. Loss of either Eyeless, Sloppy-paired or Dichaete blocks further progression of the temporal sequence. We provide evidence that this temporal sequence in neuroblasts, together with Notch-dependent binary fate choice, controls the diversification of the neuronal progeny. Although a temporal sequence of transcription factors had been identified in Drosophila embryonic neuroblasts, our work illustrates the generality of this strategy, with different sequences of transcription factors being used in different contexts.
Collapse
|
35
|
|
36
|
Kumamoto T, Toma KI, Gunadi, McKenna WL, Kasukawa T, Katzman S, Chen B, Hanashima C. Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep 2013; 3:931-45. [PMID: 23523356 DOI: 10.1016/j.celrep.2013.02.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/08/2012] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
The specification of neuronal subtypes in the cerebral cortex proceeds in a temporal manner; however, the regulation of the transitions between the sequentially generated subtypes is poorly understood. Here, we report that the forkhead box transcription factor Foxg1 coordinates the production of neocortical projection neurons through the global repression of a default gene program. The delayed activation of Foxg1 was necessary and sufficient to induce deep-layer neurogenesis, followed by a sequential wave of upper-layer neurogenesis. A genome-wide analysis revealed that Foxg1 binds to mammalian-specific noncoding sequences to repress over 12 transcription factors expressed in early progenitors, including Ebf2/3, Dmrt3, Dmrta1, and Eya2. These findings reveal an unexpected prolonged competence of progenitors to initiate corticogenesis at a progressed stage during development and identify Foxg1 as a critical initiator of neocorticogenesis through spatiotemporal repression, a system that balances the production of nonradially and radially migrating glutamatergic subtypes during mammalian cortical expansion.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Drosophila neural progenitor cells are competent to give rise to certain neuronal cell types only during a limited period of time. Kohwi et al. link the termination of early competence to changes in subnuclear organization of chromatin.
Collapse
Affiliation(s)
- Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.
| | | | | |
Collapse
|
38
|
Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system. Cell Rep 2013; 3:587-94. [PMID: 23478023 PMCID: PMC3617362 DOI: 10.1016/j.celrep.2013.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/17/2022] Open
Abstract
Systemic signals provided by nutrients and hormones are known to coordinate the growth and proliferation of different organs during development. However, within the brain, it is unclear how these signals influence neural progenitor divisions and neuronal diversity. Here, in the Drosophila visual system, we identify two developmental phases with different sensitivities to dietary nutrients. During early larval stages, nutrients regulate the size of the neural progenitor pool via insulin/PI3K/TOR-dependent symmetric neuroepithelial divisions. During late larval stages, neural proliferation becomes insensitive to dietary nutrients, and the steroid hormone ecdysone acts on Delta/Notch signaling to promote the switch from symmetric mitoses to asymmetric neurogenic divisions. This mechanism accounts for why sustained undernourishment during visual system development restricts neuronal numbers while protecting neuronal diversity. These studies reveal an adaptive mechanism that helps to retain a functional visual system over a range of different brain sizes in the face of suboptimal nutrition.
Collapse
|
39
|
Schrode N, Xenopoulos P, Piliszek A, Frankenberg S, Plusa B, Hadjantonakis AK. Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis 2013; 51:219-33. [PMID: 23349011 DOI: 10.1002/dvg.22368] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 01/06/2023]
Abstract
The preimplantation period of mouse early embryonic development is devoted to the specification of two extraembryonic tissues and their spatial segregation from the pluripotent epiblast. During this period two cell fate decisions are made while cells gradually lose their totipotency. The first fate decision involves the segregation of the extraembryonic trophectoderm (TE) lineage from the inner cell mass (ICM); the second occurs within the ICM and involves the segregation of the extraembryonic primitive endoderm (PrE) lineage from the pluripotent epiblast (EPI) lineage, which eventually gives rise to the embryo proper. Multiple determinants, such as differential cellular properties, signaling cues and the activity of transcriptional regulators, influence lineage choice in the early embryo. Here, we provide an overview of our current understanding of the mechanisms governing these cell fate decisions ensuring proper lineage allocation and segregation, while at the same time providing the embryo with an inherent flexibility to adjust when perturbed.
Collapse
Affiliation(s)
- Nadine Schrode
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ikaros promotes early-born neuronal fates in the cerebral cortex. Proc Natl Acad Sci U S A 2013; 110:E716-25. [PMID: 23382203 DOI: 10.1073/pnas.1215707110] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During cerebral cortex development, a series of projection neuron types is generated in a fixed temporal order. In Drosophila neuroblasts, the transcription factor hunchback encodes first-born identity within neural lineages. One of its mammalian homologs, Ikaros, was recently reported to play an equivalent role in retinal progenitor cells, raising the question as to whether Ikaros/Hunchback proteins could be general factors regulating the development of early-born fates throughout the nervous system. Ikaros is also expressed in progenitor cells of the mouse cerebral cortex, and this expression is highest during the early stages of neurogenesis and thereafter decreases over time. Transgenic mice with sustained Ikaros expression in cortical progenitor cells and neurons have developmental defects, including displaced progenitor cells within the cortical plate, increased early neural differentiation, and disrupted cortical lamination. Sustained Ikaros expression results in a prolonged period of generation of deep layer neurons into the stages when, normally, only late-born upper layer neurons are generated, as well as a delayed production of late-born neurons. Consequently, more early-born and fewer late-born neurons are present in the cortex of these mice at birth. This phenotype was observed in all parts of the cortex, including those with minimal structural defects, demonstrating that it is not secondary to abnormalities in cortical morphogenesis. These data suggest that Ikaros plays a similar role in regulating early temporal fates in the mammalian cerebral cortex as Ikaros/Hunchback proteins do in the Drosophila nerve cord.
Collapse
|
41
|
Abstract
Drosophila has recently become a powerful model system to understand the mechanisms of temporal patterning of neural progenitors called neuroblasts (NBs). Two different temporal sequences of transcription factors (TFs) have been found to be sequentially expressed in NBs of two different systems: the Hunchback, Krüppel, Pdm1/Pdm2, Castor, and Grainyhead sequence in the Drosophila ventral nerve cord; and the Homothorax, Klumpfuss, Eyeless, Sloppy-paired, Dichaete, and Tailless sequence that patterns medulla NBs. In addition, the intermediate neural progenitors of type II NB lineages are patterned by a different sequence: Dichaete, Grainyhead, and Eyeless. These three examples suggest that temporal patterning of neural precursors by sequences of TFs is a common theme to generate neural diversity. Cross-regulations, including negative feedback regulation and positive feedforward regulation among the temporal factors, can facilitate the progression of the sequence. However, there are many remaining questions to understand the mechanism of temporal transitions. The temporal sequence progression is intimately linked to the progressive restriction of NB competence, and eventually determines the end of neurogenesis. Temporal identity has to be integrated with spatial identity information, as well as with the Notch-dependent binary fate choices, in order to generate specific neuron fates.
Collapse
Affiliation(s)
- Xin Li
- Department of Biology, New York University, New York, New York, USA
| | | | | |
Collapse
|
42
|
Suzuki IK, Hirata T. Neocortical neurogenesis is not really “neo”: A new evolutionary model derived from a comparative study of chick pallial development. Dev Growth Differ 2012; 55:173-87. [DOI: 10.1111/dgd.12020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ikuo K. Suzuki
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Yata 1111; Mishima; 411-8540; Japan
| | - Tatsumi Hirata
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Yata 1111; Mishima; 411-8540; Japan
| |
Collapse
|
43
|
Lin S, Kao CF, Yu HH, Huang Y, Lee T. Lineage analysis of Drosophila lateral antennal lobe neurons reveals notch-dependent binary temporal fate decisions. PLoS Biol 2012. [PMID: 23185131 PMCID: PMC3502534 DOI: 10.1371/journal.pbio.1001425] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A high-resolution neuronal lineage analysis in the Drosophila antennal lobe reveals the complexity of lineage development and Notch signaling in cell fate specification. Binary cell fate decisions allow the production of distinct sister neurons from an intermediate precursor. Neurons are further diversified based on the birth order of intermediate precursors. Here we examined the interplay between binary cell fate and birth-order-dependent temporal fate in the Drosophila lateral antennal lobe (lAL) neuronal lineage. Single-cell mapping of the lAL lineage by twin-spot mosaic analysis with repressible cell markers (ts-MARCM) revealed that projection neurons (PNs) and local interneurons (LNs) are made in pairs through binary fate decisions. Forty-five types of PNs innervating distinct brain regions arise in a stereotyped sequence; however, the PNs with similar morphologies are not necessarily born in a contiguous window. The LNs are morphologically less diverse than the PNs, and the sequential morphogenetic changes in the two pairs occur independently. Sanpodo-dependent Notch activity promotes and patterns the LN fates. By contrast, Notch diversifies PN temporal fates in a Sanpodo-dispensable manner. These pleiotropic Notch actions underlie the differential temporal fate specification of twin neurons produced by common precursors within a lineage, possibly by modulating postmitotic neurons' responses to Notch-independent transcriptional cascades. The Drosophila brain develops from a limited number of neural stem cells that produce a series of ganglion mother cells (GMCs) that divide once to produce a pair of neurons in a defined order, termed a neuronal lineage. Here, we provide a detailed lineage map for the neurons derived from the Drosophila lateral antennal lobe (lAL) neuroblast. The lAL lineage consists of two distinct hemilineages, generated through differential Notch signaling in the two GMC daughters, to produce one projection neuron (PN) paired with a local interneuron (LN). Both hemilineages yield distinct cell types in the same sequence, although the temporal identity (birth-order-dependent fate) changes are regulated independently between projection neurons and local interneurons, such that a series of analogous local interneurons may co-derive with different projection neurons and vice versa. We also find that Notch signaling can transform a class of nonantennal lobe projection neurons into antennal lobe projection neurons. These findings suggest that Notch signaling not only modulates temporal fate but itself plays a role in the distinction of antennal lobe versus nonantennal lobe neurons.
Collapse
Affiliation(s)
- Suewei Lin
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chih-Fei Kao
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hung-Hsiang Yu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Yaling Huang
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Tzumin Lee
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Wu YC, Chen CH, Mercer A, Sokol NS. Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev Cell 2012; 23:202-9. [PMID: 22814608 DOI: 10.1016/j.devcel.2012.05.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022]
Abstract
Many neural lineages display a temporal pattern, but the mechanisms controlling the ordered production of neuronal subtypes remain unclear. Here, we show that Drosophila let-7 and miR-125, cotranscribed from the let-7-Complex (let-7-C) locus, regulate the transcription factor chinmo to control temporal cell fate in the mushroom body (MB) lineage. We find that let-7-C is activated in postmitotic neurons born during the larval-to-pupal transition, when transitions among three MB subtypes occur. Loss or increase of let-7-C delays or accelerates these transitions, respectively, and leads to cell fate transformations. Consistent with our identification of let-7 and miR-125 sites in a recently identified ∼6 kb extension of the chinmo 3' UTR, Chinmo is elevated in let-7-C mutant MBs. In addition, we show that let-7-C acts upstream of chinmo and that let-7-C phenotypes are caused by elevated chinmo. Thus, these heterochronic miRNAs, originally identified in C. elegans, underlie progenitor cell multipotency during the development of diverse bilateria.
Collapse
Affiliation(s)
- Yen-Chi Wu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
45
|
Rodriguez M, Choi J, Park S, Sockanathan S. Gde2 regulates cortical neuronal identity by controlling the timing of cortical progenitor differentiation. Development 2012; 139:3870-9. [PMID: 22951639 DOI: 10.1242/dev.081083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian cortex is a multilaminar structure consisting of specialized layer-specific neurons that form complex circuits throughout the brain and spinal cord. These neurons are generated in a defined sequence dictated by their birthdate such that early-born neurons settle in deep cortical layers whereas late-born neurons populate more superficial layers. Cortical neuronal birthdate is partly controlled by an intrinsic clock-type mechanism; however, the role of extrinsic factors in the temporal control of cell-cycle exit is less clear. Here, we show that Gde2, a six-transmembrane protein that induces spinal neuronal differentiation, is expressed in the developing cortex throughout cortical neurogenesis. In the absence of Gde2, cortical progenitors fail to exit the cell cycle on time, remain cycling, accumulate and exit the cell cycle en masse towards the end of the neurogenic period. These dynamic changes in cell-cycle progression cause deficits and delays in deep-layer neuronal differentiation and robust increases in superficial neuronal numbers. Gde2(-/-) cortices show elevated levels of Notch signaling coincident with when progenitors fail to differentiate, suggesting that abnormal Notch activation retains cells in a proliferative phase that biases them to superficial fates. However, no change in Notch signaling is observed at the time of increased cell-cycle exit. These observations define a key role for Gde2 in controlling cortical neuronal fates by regulating the timing of neurogenesis, and show that loss of Gde2 uncovers additional mechanisms that trigger remaining neuronal progenitors to differentiate at the end of the neurogenic period.
Collapse
Affiliation(s)
- Marianeli Rodriguez
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, PCTB1004, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
46
|
Brierley DJ, Rathore K, VijayRaghavan K, Williams DW. Developmental origins and architecture of Drosophila leg motoneurons. J Comp Neurol 2012; 520:1629-49. [PMID: 22120935 DOI: 10.1002/cne.23003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Motoneurons are key points of convergence within motor networks, acting as the "output channels" that directly control sets of muscles to maintain posture and generate movement. Here we use genetic mosaic techniques to reveal the origins and architecture of the leg motoneurons of Drosophila. We show that a small number of leg motoneurons are born in the embryo but most are generated during larval life. These postembryonic leg motoneurons are produced by five neuroblasts per hemineuromere, and each lineage generates stereotyped lineage-specific projection patterns. Two of these postembryonic neuroblasts generate solely motoneurons that are the bulk of the leg motoneurons. Within the largest lineage, lineage 15, we see distinct birth-order differences in projection patterns. A comparison of the central projections of leg motoneurons and the muscles they innervate reveals a stereotyped architecture and the existence of a myotopic map. Timeline analysis of axonal outgrowth reveals that leg motoneurons reach their sites of terminal arborization in the leg at the time when their dendrites are elaborating their subtype-specific shapes. Our findings provide a comprehensive description of the origin, development, and architecture of leg motoneurons that will aid future studies exploring the link between the assembly and organization of connectivity within the leg motor system of Drosophila.
Collapse
Affiliation(s)
- D J Brierley
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | | | | | | |
Collapse
|
47
|
Kunz T, Kraft KF, Technau GM, Urbach R. Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages. Development 2012; 139:2510-22. [DOI: 10.1242/dev.077883] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Key to understanding the mechanisms that underlie the specification of divergent cell types in the brain is knowledge about the neurectodermal origin and lineages of their stem cells. Here, we focus on the origin and embryonic development of the four neuroblasts (NBs) per hemisphere in Drosophila that give rise to the mushroom bodies (MBs), which are central brain structures essential for olfactory learning and memory. We show that these MBNBs originate from a single field of proneural gene expression within a specific mitotic domain of procephalic neuroectoderm, and that Notch signaling is not needed for their formation. Subsequently, each MBNB occupies a distinct position in the developing MB cortex and expresses a specific combination of transcription factors by which they are individually identifiable in the brain NB map. During embryonic development each MBNB generates an individual cell lineage comprising different numbers of neurons, including intrinsic γ-neurons and various types of non-intrinsic neurons that do not contribute to the MB neuropil. This contrasts with the postembryonic phase of MBNB development during which they have been shown to produce identical populations of intrinsic neurons. We show that different neuron types are produced in a lineage-specific temporal order and that neuron numbers are regulated by differential mitotic activity of the MBNBs. Finally, we demonstrate that γ-neuron axonal outgrowth and spatiotemporal innervation of the MB lobes follows a lineage-specific mode. The MBNBs are the first stem cells of the Drosophila CNS for which the origin and complete cell lineages have been determined.
Collapse
Affiliation(s)
- Thomas Kunz
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | | | | | - Rolf Urbach
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| |
Collapse
|
48
|
Suzuki IK, Hirata T. Evolutionary conservation of neocortical neurogenetic program in the mammals and birds. BIOARCHITECTURE 2012; 2:124-9. [PMID: 22960728 PMCID: PMC3675072 DOI: 10.4161/bioa.21032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The unique innovation of the layered neocortex in mammalian evolution is believed to facilitate adaptive radiation of mammalian species to various ecological environments by furnishing high information processing ability. There are no transitional states from the non-mammalian simple brain to the mammalian multilayered neocortex, and thus it is totally a mystery so far how this brain structure has been acquired during evolution. In our recent study, we found the evidence showing that the evolutionary origin of the neocortical neuron subtypes predates the actual emergence of layer structure. Our comparative developmental analysis of the chick pallium, homologous to the mammalian neocortex, revealed that mammals and avians fundamentally share the neocortical neuron subtypes and their production mechanisms, suggesting that their common ancestor already possessed a similar neuronal repertory. We further demonstrated that the neocortical layer-specific neuron subtypes are arranged as mediolaterally separated domains in the chick, but not as layers in the mammalian neocortex. These animal group-specific neuronal arrangements are accomplished by spatial modulation of the neurogenetic program, suggesting an evolutionary hypothesis that the regulatory changes in the neurogenetic program innovated the mammalian specific layered neocortex.
Collapse
Affiliation(s)
- Ikuo K Suzuki
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Mishima, Japan
| | - Tatsumi Hirata
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Mishima, Japan
| |
Collapse
|
49
|
Kao CF, Yu HH, He Y, Kao JC, Lee T. Hierarchical deployment of factors regulating temporal fate in a diverse neuronal lineage of the Drosophila central brain. Neuron 2012; 73:677-84. [PMID: 22365543 DOI: 10.1016/j.neuron.2011.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2011] [Indexed: 10/28/2022]
Abstract
The anterodorsal projection neuron lineage of Drosophila melanogaster produces 40 neuronal types in a stereotypic order. Here we take advantage of this complete lineage sequence to examine the role of known temporal fating factors, including Chinmo and the Hb/Kr/Pdm/Cas transcriptional cascade, within this diverse central brain lineage. Kr mutation affects the temporal fate of the neuroblast (NB) itself, causing a single fate to be skipped, whereas Chinmo null only elicits fate transformation of NB progeny without altering cell counts. Notably, Chinmo operates in two separate windows to prevent fate transformation (into the subsequent Chinmo-indenpendent fate) within each window. By contrast, Hb/Pdm/Cas play no detectable role, indicating that Kr either acts outside of the cascade identified in the ventral nerve cord or that redundancy exists at the level of fating factors. Therefore, hierarchical fating mechanisms operate within the lineage to generate neuronal diversity in an unprecedented fashion.
Collapse
Affiliation(s)
- Chih-Fei Kao
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
50
|
Generation of multiple classes of V0 neurons in zebrafish spinal cord: progenitor heterogeneity and temporal control of neuronal diversity. J Neurosci 2012; 32:1771-83. [PMID: 22302816 DOI: 10.1523/jneurosci.5500-11.2012] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The developing spinal cord is subdivided into distinct progenitor domains, each of which gives rise to different types of neurons. However, the developmental mechanisms responsible for generating neuronal diversity within a domain are not well understood. Here, we have studied zebrafish V0 neurons, those that derive from the p0 progenitor domain, to address this question. We find that all V0 neurons have commissural axons, but they can be divided into excitatory and inhibitory classes. V0 excitatory neurons (V0-e) can be further categorized into three groups based on their axonal trajectories; V0-eA (ascending), V0-eB (bifurcating), and V0-eD (descending) neurons. By using time-lapse imaging of p0 progenitors and their progeny, we show that inhibitory and excitatory neurons are produced from different progenitors. We also demonstrate that V0-eA neurons are produced from distinct progenitors, while V0-eB and V0-eD neurons are produced from common progenitors. We then use birth-date analysis to reveal that V0-eA, V0-eB, and V0-eD neurons arise in this order. By perturbing Notch signaling and accelerating neuronal differentiation, we predictably alter the generation of early born V0-e neurons at the expense of later born ones. These results suggest that multiple types of V0 neurons are produced by two distinct mechanisms; from heterogeneous p0 progenitors and from the same p0 progenitor, but in a time-dependent manner.
Collapse
|