1
|
Flores K, Yadav SS, Katz AA, Seger R. The Nuclear Translocation of Mitogen-Activated Protein Kinases: Molecular Mechanisms and Use as Novel Therapeutic Target. Neuroendocrinology 2019; 108:121-131. [PMID: 30261516 DOI: 10.1159/000494085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascades are central signaling pathways that play a central role in the regulation of most stimulated cellular processes including proliferation, differentiation, stress response and apoptosis. Currently 4 such cascades are known, each termed by its downstream MAPK components: the extracellular signal-regulated kinase 1/2 (ERK1/2), cJun-N-terminal kinase (JNK), p38 and ERK5. One of the hallmarks of these cascades is the stimulated nuclear translocation of their MAPK components using distinct mechanisms. ERK1/2 are shuttled into the nucleus by importin7, JNK and p38 by a dimer of importin3 with either importin9 or importin7, and ERK5 by importin-α/β. Dysregulation of these cascades often results in diseases, including cancer and inflammation, as well as developmental and neurological disorders. Much effort has been invested over the years in developing inhibitors to the MAPK cascades to combat these diseases. Although some inhibitors are already in clinical use or clinical trials, their effects are hampered by development of resistance or adverse side-effects. Recently, our group developed 2 myristoylated peptides: EPE peptide, which inhibits the interaction of ERK1/2 with importin7, and PERY peptide, which prevents JNK/p38 interaction with either importin7 or importin9. These peptides block the nuclear translocation of their corresponding kinases, resulting in prevention of several cancers, while the PERY peptide also inhibits inflammation-induced diseases. These peptides provide a proof of concept for the use of the nuclear translocation of MAPKs as therapeutic targets for cancer and/or inflammation.
Collapse
Affiliation(s)
- Karen Flores
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suresh Singh Yadav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot,
| |
Collapse
|
2
|
Importin-7 mediates memory consolidation through regulation of nuclear translocation of training-activated MAPK in Drosophila. Proc Natl Acad Sci U S A 2016; 113:3072-7. [PMID: 26929354 DOI: 10.1073/pnas.1520401113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Translocation of signaling molecules, MAPK in particular, from the cytosol to nucleus represents a universal key element in initiating the gene program that determines memory consolidation. Translocation mechanisms and their behavioral impact, however, remain to be determined. Here, we report that a highly conserved nuclear transporter, Drosophila importin-7 (DIM-7), regulates import of training-activated MAPK for consolidation of long-term memory (LTM). We show that silencing DIM-7 functions results in impaired LTM, whereas overexpression of DIM-7 enhances LTM. This DIM-7-dependent regulation of LTM is confined to a consolidation time window and in mushroom body neurons. Image data show that bidirectional alteration in DIM-7 expression results in proportional changes in the intensity of training-activated MAPK accumulated within the nuclei of mushroom body neurons during LTM consolidation. Such DIM-7-regulated nuclear accumulation of activated MAPK is observed only in the training specified for LTM induction and determines the amplitude, but not the time course, of memory consolidation.
Collapse
|
3
|
Sopko R, Lin YB, Makhijani K, Alexander B, Perrimon N, Brückner K. A systems-level interrogation identifies regulators of Drosophila blood cell number and survival. PLoS Genet 2015; 11:e1005056. [PMID: 25749252 PMCID: PMC4352040 DOI: 10.1371/journal.pgen.1005056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/05/2015] [Indexed: 12/12/2022] Open
Abstract
In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - You Bin Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
4
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
5
|
Abstract
Classic nuclear shuttling is mediated by an importin-α∙β heterodimer that binds to cargoes containing a nuclear localization signal, and shuttles most nuclear proteins immediately after their translation. Aside from this canonical mechanism, kariopheryn-βs or β-like importins operate by binding to non-canonical nuclear localization signals to mediate translocation without the assistance of importin-α. The mechanism by which these components operate is much less understood and is currently under investigation. Recently, several β-like importins have been implicated in the stimulated nuclear translocation of signaling proteins. Here, we propose that this group of importins might be responsible for the swift nuclear shuttling of many proteins following various stimuli.
Collapse
|
6
|
Liu ZC, Geisbrecht ER. "Importin" signaling roles for import proteins: the function of Drosophila importin-7 (DIM-7) in muscle-tendon signaling. Cell Adh Migr 2012; 6:4-12. [PMID: 22647935 DOI: 10.4161/cam.19774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of a mature myotendinous junction (MTJ) between a muscle and its site of attachment is a highly regulated process that involves myofiber migration, cell-cell signaling, and culminates with the stable adhesion between the adjacent muscle-tendon cells. Improper establishment or maintenance of muscle-tendon attachment sites results in a decrease in force generation during muscle contraction and progressive muscular dystrophies in vertebrate models. Many studies have demonstrated the important role of the integrins and integrin-associated proteins in the formation and maintenance of the MTJ. We recently demonstrated that moleskin (msk), the gene that encodes for Drosophila importin-7 (DIM-7), is required for the proper formation of muscle-tendon adhesion sites in the developing embryo. Further studies demonstrated an enrichment of DIM-7 to the ends of muscles where the muscles attach to their target tendon cells. Genetic analysis supports a model whereby msk is required in the muscle and signals via the secreted epidermal growth factor receptor (Egfr) ligand Vein to regulate tendon cell maturation. These data demonstrate a novel role for the canonical nuclear import protein DIM-7 in establishment of the MTJ.
Collapse
Affiliation(s)
- Ze Cindy Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO, USA
| | | |
Collapse
|
7
|
Stultz BG, Park SY, Mortin MA, Kennison JA, Hursh DA. Hox proteins coordinate peripodial decapentaplegic expression to direct adult head morphogenesis in Drosophila. Dev Biol 2012; 369:362-76. [PMID: 22824425 DOI: 10.1016/j.ydbio.2012.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/29/2012] [Accepted: 07/12/2012] [Indexed: 02/04/2023]
Abstract
The Drosophila BMP, decapentaplegic (dpp), controls morphogenesis of the ventral adult head through expression limited to the lateral peripodial epithelium of the eye-antennal disc by a 3.5 kb enhancer in the 5' end of the gene. We recovered a 15 bp deletion mutation within this enhancer that identified a homeotic (Hox) response element that is a direct target of labial and the homeotic cofactors homothorax and extradenticle. Expression of labial and homothorax are required for dpp expression in the peripodial epithelium, while the Hox gene Deformed represses labial in this location, thus limiting its expression and indirectly that of dpp to the lateral side of the disc. The expression of these homeodomain genes is in turn regulated by the dpp pathway, as dpp signalling is required for labial expression but represses homothorax. This Hox-BMP regulatory network is limited to the peripodial epithelium of the eye-antennal disc, yet is crucial to the morphogenesis of the head, which fate maps suggest arises primarily from the disc proper, not the peripodial epithelium. Thus Hox/BMP interactions in the peripodial epithelium of the eye-antennal disc contribute inductively to the shape of the external form of the adult Drosophila head.
Collapse
Affiliation(s)
- Brian G Stultz
- Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
8
|
Moleskin is essential for the formation of the myotendinous junction in Drosophila. Dev Biol 2011; 359:176-89. [PMID: 21925492 DOI: 10.1016/j.ydbio.2011.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/07/2011] [Accepted: 08/02/2011] [Indexed: 02/04/2023]
Abstract
It is the precise connectivity between skeletal muscles and their corresponding tendon cells to form a functional myotendinous junction (MTJ) that allows for the force generation required for muscle contraction and organismal movement. The Drosophila MTJ is composed of secreted extracellular matrix (ECM) proteins deposited between integrin-mediated hemi-adherens junctions on the surface of muscle and tendon cells. In this paper, we have identified a novel, cytoplasmic role for the canonical nuclear import protein Moleskin (Msk) in Drosophila embryonic somatic muscle attachment. Msk protein is enriched at muscle attachment sites in late embryogenesis and msk mutant embryos exhibit a failure in muscle-tendon cell attachment. Although the muscle-tendon attachment sites are reduced in size, components of the integrin complexes and ECM proteins are properly localized in msk mutant embryos. However, msk mutants fail to localize phosphorylated focal adhesion kinase (pFAK) to the sites of muscle-tendon cell junctions. In addition, the tendon cell specific proteins Stripe (Sr) and activated mitogen-activated protein kinase (MAPK) are reduced in msk mutant embryos. Our rescue experiments demonstrate that Msk is required in the muscle cell, but not in the tendon cells. Moreover, muscle attachment defects due to loss of Msk are rescued by an activated form of MAPK or the secreted epidermal growth factor receptor (Egfr) ligand Vein. Taken together, these findings provide strong evidence that Msk signals non-autonomously through the Vein-Egfr signaling pathway for late tendon cell late differentiation and/or maintenance.
Collapse
|
9
|
Majumdar N, Paez GL, Inamdar SM, D'Rozario M, Marenda DR. MAP kinase phosphorylation is dispensable for cell division, but required for cell growth in Drosophila. Fly (Austin) 2010; 4:204-12. [PMID: 20495373 DOI: 10.4161/fly.4.3.12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Proper activation of the Ras/MAPK pathway is broadly required during development, and in many cases, signal transduction downstream of the receptor is linear. Thus, different mechanisms exist to properly regulate the large number of specific developmental outputs that are required by the activation of this pathway. Previously, we have reported a regulated cytoplasmic sequestration of phosphorylated MAPK (pMAPK) in developing Drosophila compound eyes and wings "called MAPK Cytoplasmic Hold". In the developing wing, we have shown that cytoplasmic hold promotes the differentiation of wing vein tissue, while pMAPK nuclear translocation regulates growth and division. We had also suggested that the Ras pathway signals for inducing cell growth and cell division split upstream of the nuclear translocation of MAPK itself. Here, we further refine the role of MAPK in Drosophila. We report evidence that suggests, for the first time, that the phosphorylation of MAPK is itself another step in the regulation of cell growth and division in both Drosophila wing and eye cells. We show that inhibition of MAPK phosphorylation, or pMAPK nuclear translocation, is sufficient to block cell growth, but not cell division. These data suggest that non-phosphorylated MAPK is sufficient to induce cell division, but not cell growth, once inside the nucleus of the cell.
Collapse
Affiliation(s)
- Neena Majumdar
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
10
|
Importin-beta11 regulates synaptic phosphorylated mothers against decapentaplegic, and thereby influences synaptic development and function at the Drosophila neuromuscular junction. J Neurosci 2010; 30:5253-68. [PMID: 20392948 DOI: 10.1523/jneurosci.3739-09.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Importin proteins act both at the nuclear pore to promote substrate entry and in the cytosol during signal trafficking. Here, we describe mutations in the Drosophila gene importin-beta11, which has not previously been analyzed genetically. Mutants of importin-beta11 died as late pupae from neuronal defects, and neuronal importin-beta11 was present not only at nuclear pores but also in the cytosol and at synapses. Neurons lacking importin-beta11 were viable and properly differentiated but exhibited discrete defects. Synaptic transmission was defective in adult photoreceptors and at larval neuromuscular junctions (NMJs). Mutant photoreceptor axons formed grossly normal projections and synaptic terminals in the brain, but synaptic arbors on larval muscles were smaller while still containing appropriate synaptic components. Bone morphogenic protein (BMP) signaling was the apparent cause of the observed NMJ defects. Importin-beta11 interacted genetically with the BMP pathway, and at mutant synaptic boutons, a key component of this pathway, phosphorylated mothers against decapentaplegic (pMAD), was reduced. Neuronal expression of an importin-beta11 transgene rescued this phenotype as well as the other observed neuromuscular phenotypes. Despite the loss of synaptic pMAD, pMAD persisted in motor neuron nuclei, suggesting a specific impairment in the local function of pMAD. Restoring levels of pMAD to mutant terminals via expression of constitutively active type I BMP receptors or by reducing retrograde transport in motor neurons also restored synaptic strength and morphology. Thus, importin-beta11 function interacts with the BMP pathway to regulate a pool of pMAD that must be present at the presynapse for its proper development and function.
Collapse
|
11
|
Smith ER, Cai KQ, Smedberg JL, Ribeiro MM, Rula ME, Slater C, Godwin AK, Xu XX. Nuclear entry of activated MAPK is restricted in primary ovarian and mammary epithelial cells. PLoS One 2010; 5:e9295. [PMID: 20174585 PMCID: PMC2823791 DOI: 10.1371/journal.pone.0009295] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/27/2010] [Indexed: 11/19/2022] Open
Abstract
Background The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway. Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily to modulate transcription. Principal Findings Here, however, we observe that in primary cultures of breast and ovarian epithelial cells, phosphorylation and activation of ERK1/2 are disassociated from nuclear translocalization and transcription of downstream targets, such as c-Fos, suggesting that nuclear translocation is limited in primary cells. Accordingly, in import assays in vitro, primary cells showed a lower import activity for ERK1/2 than cancer cells, in which activated MAPK readily translocated into the nucleus and activated c-Fos expression. Primary cells express lower levels of nuclear pore complex proteins and the nuclear transport factors, importin B1 and importin 7, which may explain the limiting ERK1/2 import found in primary cells. Additionally, reduction in expression of nucleoporin 153 by siRNA targeting reduced ERK1/2 nuclear activity in cancer cells. Conclusion ERK1/2 activation is dissociated from nuclear entry, which is a rate limiting step in primary cells and in vivo, and the restriction of nuclear entry is disrupted in transformed cells by the increased expression of nuclear pores and/or nuclear transport factors.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
The nuclear transport machinery as a regulator of Drosophila development. Semin Cell Dev Biol 2009; 20:582-9. [DOI: 10.1016/j.semcdb.2009.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/13/2009] [Accepted: 02/22/2009] [Indexed: 12/19/2022]
|
13
|
Yang DH, Smith ER, Cai KQ, Xu XX. C-Fos elimination compensates for disabled-2 requirement in mouse extraembryonic endoderm development. Dev Dyn 2009; 238:514-23. [PMID: 19191218 DOI: 10.1002/dvdy.21856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Disabled-2 (Dab2) is expressed in primitive endoderm cells as they are differentiating from the inner cell mass and dab2 deficiency in mice results in lethality at E5.5-E6.5 due to the disorganization of the endoderm layers. Here we show that Dab2 suppresses c-Fos expression in endoderm cells. A morphological normal primitive endoderm layer was observed in putative E5.5 dab2 (-/-):c-fos (-/-) embryos, indicating that the primitive endoderm defect due to the loss of Dab2 is rescued by deletion of the c-fos gene. The lethality of the double knockout embryos was delayed until E9.5-E10.5 and the defective embryos failed to undergo organogenesis. We conclude that Dab2 plays a role in epithelial organization by suppression of c-Fos expression and suggest that unsuppressed c-Fos can lead to disruption of primitive endoderm epithelial organization, yet an additional dab2 function is required for later organogenesis.
Collapse
Affiliation(s)
- Dong-Hua Yang
- Ovarian Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
14
|
Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics 2008; 180:2095-110. [PMID: 18832354 DOI: 10.1534/genetics.108.093302] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Atonal is a Drosophila proneural protein required for the proper formation of the R8 photoreceptor cell, the founding photoreceptor cell in the developing retina. Proper expression and refinement of the Atonal protein is essential for the proper formation of the Drosophila adult eye. In vertebrates, expression of transcription factors orthologous to Drosophila Atonal (MATH5/Atoh7, XATH5, and ATH5) and their progressive restriction are also involved in specifying the retinal ganglion cell, the founding neural cell type in the mammalian retina. Thus, identifying factors that are involved in regulating the expression of Atonal during development are important to fully understand how retinal neurogenesis is accomplished. We have performed a chemical mutagenesis screen for autosomal dominant enhancers of a loss-of-function atonal eye phenotype. We report here the identification of five genes required for proper Atonal expression, three of which are novel regulators of Atonal expression in the Drosophila retina. We characterize the role of the daughterless, kismet, and roughened eye genes on atonal transcriptional regulation in the developing retina and show that each gene regulates atonal transcription differently within the context of retinal development. Our results provide additional insights into the regulation of Atonal expression in the developing Drosophila retina.
Collapse
|
15
|
Quan Y, Ji ZL, Wang X, Tartakoff AM, Tao T. Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol Cell Proteomics 2008; 7:1254-69. [PMID: 18353765 DOI: 10.1074/mcp.m700511-mcp200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In eukaryotes, karyopherin beta superfamily proteins mediate nucleocytoplasmic transport of macromolecules. We investigated the evolutionary and transcriptional patterns of these proteins using bioinformatics approaches. No obvious homologs were found in prokaryotes, but an extensive set of beta-karyopherin proteins was found in yeast. Among 14 beta-karyopherins of Saccharomyces cerevisiae, eight corresponded to their human orthologs directly without diversification, two were lost, and the remaining four proteins exhibited gene duplications by different mechanisms. We also identified beta-karyopherin orthologs in Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Xenopus tropicalis, Gallus gallus, and Mus musculus. beta-Karyopherins were ubiquitously but nonuniformly expressed in distinct cells and tissues. In yeast and mice, the titer of some beta-karyopherin transcripts appeared to be regulated both during the cell cycle and during development. Further virtual analysis of promoter binding elements suggested that the transcription factors SP1, NRF-2, HEN-1, RREB-1, and nuclear factor Y regulate expression of most beta-karyopherin genes. These findings emphasize new mechanisms in functional diversification of beta-karyopherins and regulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Yu Quan
- School of Life Sciences and Key Laboratory for Cell Biology and Tumor Cell Engineering, the Ministry of Education of China, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | |
Collapse
|
16
|
Xu L, Yao X, Chen X, Lu P, Zhang B, Ip YT. Msk is required for nuclear import of TGF-{beta}/BMP-activated Smads. ACTA ACUST UNITED AC 2007; 178:981-94. [PMID: 17785517 PMCID: PMC2064622 DOI: 10.1083/jcb.200703106] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear translocation of Smad proteins is a critical step in signal transduction of transforming growth factor β (TGF-β) and bone morphogenetic proteins (BMPs). Using nuclear accumulation of the Drosophila Smad Mothers against Decapentaplegic (Mad) as the readout, we carried out a whole-genome RNAi screening in Drosophila cells. The screen identified moleskin (msk) as important for the nuclear import of phosphorylated Mad. Genetic evidence in the developing eye imaginal discs also demonstrates the critical functions of msk in regulating phospho-Mad. Moreover, knockdown of importin 7 and 8 (Imp7 and 8), the mammalian orthologues of Msk, markedly impaired nuclear accumulation of Smad1 in response to BMP2 and of Smad2/3 in response to TGF-β. Biochemical studies further suggest that Smads are novel nuclear import substrates of Imp7 and 8. We have thus identified new evolutionarily conserved proteins that are important in the signal transduction of TGF-β and BMP into the nucleus.
Collapse
Affiliation(s)
- Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | |
Collapse
|
17
|
James BP, Bunch TA, Krishnamoorthy S, Perkins LA, Brower DL. Nuclear localization of the ERK MAP kinase mediated by Drosophila alphaPS2betaPS integrin and importin-7. Mol Biol Cell 2007; 18:4190-9. [PMID: 17699602 PMCID: PMC1995703 DOI: 10.1091/mbc.e06-07-0659] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The control of gene expression by the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (ERK) requires its translocation into the nucleus. In Drosophila S2 cells nuclear accumulation of diphospho-ERK (dpERK) is greatly reduced by interfering double-stranded RNA against Drosophila importin-7 (DIM-7) or by the expression of integrin mutants, either during active cell spreading or after stimulation by insulin. In both cases, total ERK phosphorylation (on Westerns) is not significantly affected, and ERK accumulates in a perinuclear ring. Tyrosine phosphorylation of DIM-7 is reduced in cells expressing integrin mutants, indicating a mechanistic link between these components. DIM-7 and integrins localize to the same actin-containing peripheral regions in spreading cells, but DIM-7 is not concentrated in paxillin-positive focal contacts or stable focal adhesions. The Corkscrew (SHP-2) tyrosine phosphatase binds DIM-7, and Corkscrew is required for the cortical localization of DIM-7. These data suggest a model in which ERK phosphorylation must be spatially coupled to integrin-mediated DIM-7 activation to make a complex that can be imported efficiently. Moreover, dpERK nuclear import can be restored in DIM-7-deficient cells by Xenopus Importin-7, demonstrating that ERK import is an evolutionarily conserved function of this protein.
Collapse
Affiliation(s)
- Brian P. James
- *Department of Molecular and Cellular Biology, Center for Insect Science, and Department of Biochemistry and Molecular Biophysics, Arizona Cancer Center, Tucson, AZ 85724; and
| | - Thomas A. Bunch
- *Department of Molecular and Cellular Biology, Center for Insect Science, and Department of Biochemistry and Molecular Biophysics, Arizona Cancer Center, Tucson, AZ 85724; and
| | - Srinivasan Krishnamoorthy
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Lizabeth A. Perkins
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Danny L. Brower
- *Department of Molecular and Cellular Biology, Center for Insect Science, and Department of Biochemistry and Molecular Biophysics, Arizona Cancer Center, Tucson, AZ 85724; and
| |
Collapse
|
18
|
Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo. BMC Cell Biol 2007; 8:25. [PMID: 17592637 PMCID: PMC1914053 DOI: 10.1186/1471-2121-8-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 06/25/2007] [Indexed: 01/01/2023] Open
Abstract
Background Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Results Proteins that are downstream of the transforming growth factor-β superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFβ superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Conclusion Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-β superfamily to endosomes is important for the regulation of growth factor signaling.
Collapse
|
19
|
Vrailas-Mortimer AD, Majumdar N, Middleton G, Cooke EM, Marenda DR. Delta and Egfr expression are regulated by Importin-7/Moleskin in Drosophila wing development. Dev Biol 2007; 308:534-46. [PMID: 17628519 PMCID: PMC1994573 DOI: 10.1016/j.ydbio.2007.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/08/2007] [Accepted: 06/15/2007] [Indexed: 01/27/2023]
Abstract
Drosophila DIM-7 (encoded by the moleskin gene, msk) is the orthologue of vertebrate Importin-7. Both Importin-7 and Msk/DIM-7 function as nuclear import cofactors, and have been implicated in the control of multiple signal transduction pathways, including the direct nuclear import of the activated (phosphorylated) form of MAP kinase. We performed two genetic deficiency screens to identify deficiencies that similarly modified Msk overexpression phenotypes in both eyes and wings. We identified 11 total deficiencies, one of which removes the Delta locus. In this report, we show that Delta loss-of-function alleles dominantly suppress Msk gain-of-function phenotypes in the developing wing. We find that Msk overexpression increases both Delta protein expression and Delta transcription, though Msk expression alone is not sufficient to activate Delta protein function. We also find that Msk overexpression increases Egfr protein levels, and that msk gene function is required for proper Egfr expression in both developing wings and eyes. These results indicate a novel function for Msk in Egfr expression. We discuss the implications of these data with respect to the integration of Egfr and Delta/Notch signaling, specifically through the control of MAP kinase subcellular localization.
Collapse
|
20
|
Abstract
One of the challenges of modern biology is to understand how cells within a developing organism generate, integrate, and respond to dynamic informational cues. Based on over two decades of intensive research, many parts and subroutines of the responsible signal transduction networks have been identified and functionally characterized. From this work, it has become evident that a complicated interplay between signaling pathways, involving extensive feedback regulation and multiple levels of cross-talk, underlies even the "simplest" developmental decision. Thus a signaling pathway can no longer be thought of as a rigid linear process, but rather must be considered a dynamic, self-interacting, and self-adjusting network. The Epidermal Growth Factor Receptor tyrosine kinase signaling pathway provides a prime vantage point from which to explore emerging principles in developmental signal transduction.
Collapse
Affiliation(s)
- Pavithra Vivekanand
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
21
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
22
|
Pepple KL, Anderson AE, Frankfort BJ, Mardon G. A genetic screen in Drosophila for genes interacting with senseless during neuronal development identifies the importin moleskin. Genetics 2006; 175:125-41. [PMID: 17110483 PMCID: PMC1774993 DOI: 10.1534/genetics.106.065680] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Senseless (Sens) is a conserved transcription factor required for normal development of the Drosophila peripheral nervous system. In the Drosophila retina, sens is necessary and sufficient for differentiation of R8 photoreceptors and interommatidial bristles (IOBs). When Sens is expressed in undifferentiated cells posterior to the morphogenetic furrow, ectopic IOBs are formed. This phenotype was used to identify new members of the sens pathway in a dominant modifier screen. Seven suppressor and three enhancer complementation groups were isolated. Three groups from the screen are the known genes Delta, lilliputian, and moleskin/DIM-7 (msk), while the remaining seven groups represent novel genes with previously undefined functions in neural development. The nuclear import gene msk was identified as a potent suppressor of the ectopic interommatidial bristle phenotype. In addition, msk mutant adult eyes are extremely disrupted with defects in multiple cell types. Reminiscent of the sens mutant phenotype, msk eyes demonstrate reductions in the number of R8 photoreceptors due to an R8 to R2,5 fate switch, providing genetic evidence that Msk is a component of the sens pathway. Interestingly, in msk tissue, the loss of R8 fate occurs earlier than with sens and suggests a previously unidentified stage of R8 development between atonal and sens.
Collapse
Affiliation(s)
- Kathryn L Pepple
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|