1
|
Brumm AS, McCarthy A, Gerri C, Fallesen T, Woods L, McMahon R, Papathanasiou A, Elder K, Snell P, Christie L, Garcia P, Shaikly V, Taranissi M, Serhal P, Odia RA, Vasilic M, Osnato A, Rugg-Gunn PJ, Vallier L, Hill CS, Niakan KK. Initiation and maintenance of the pluripotent epiblast in pre-implantation human development is independent of NODAL signaling. Dev Cell 2025; 60:174-185.e5. [PMID: 39561779 DOI: 10.1016/j.devcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/05/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
The human blastocyst contains the pluripotent epiblast from which human embryonic stem cells (hESCs) can be derived. ACTIVIN/NODAL signaling maintains expression of the transcription factor NANOG and in vitro propagation of hESCs. It is unknown whether this reflects a functional requirement for epiblast development in human embryos. Here, we characterized NODAL signaling activity during pre-implantation human development. We showed that NANOG is an early molecular marker restricted to the nascent human pluripotent epiblast and was initiated prior to the onset of NODAL signaling. We further demonstrated that expression of pluripotency-associated transcription factors NANOG, SOX2, OCT4, and KLF17 were maintained in the epiblast in the absence of NODAL signaling activity. Genome-wide transcriptional analysis showed that NODAL signaling inhibition did not decrease NANOG transcription or impact the wider pluripotency-associated gene regulatory network. These data suggest differences in the signaling requirements regulating pluripotency in the pre-implantation human epiblast compared with existing hESC culture.
Collapse
Affiliation(s)
- A Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Crick Advanced Light Microscopy, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura Woods
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Riley McMahon
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Patricia Garcia
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | - Valerie Shaikly
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | | | - Paul Serhal
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Rabi A Odia
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Mina Vasilic
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Anna Osnato
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Peter J Rugg-Gunn
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
2
|
Srinivas S, Watanabe T. Establishment of early embryonic lineages and the basic body plan. KAUFMAN’S ATLAS OF MOUSE DEVELOPMENT SUPPLEMENT 2025:67-77. [DOI: 10.1016/b978-0-443-23739-3.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential before implantation. Development 2024; 151:dev202377. [PMID: 38752427 PMCID: PMC11190579 DOI: 10.1242/dev.202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Weatherbee BAT, Weberling A, Gantner CW, Iwamoto-Stohl LK, Barnikel Z, Barrie A, Campbell A, Cunningham P, Drezet C, Efstathiou P, Fishel S, Vindel SG, Lockwood M, Oakley R, Pretty C, Chowdhury N, Richardson L, Mania A, Weavers L, Christie L, Elder K, Snell P, Zernicka-Goetz M. Distinct pathways drive anterior hypoblast specification in the implanting human embryo. Nat Cell Biol 2024; 26:353-365. [PMID: 38443567 PMCID: PMC10940163 DOI: 10.1038/s41556-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Center for Stem Cell and Organoid Medicine, Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- All Souls College, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Lisa K Iwamoto-Stohl
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK
| | | | | | | | - Kay Elder
- Bourn Hall Fertility Clinic, Bourn, UK
| | | | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Stem Cells Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential prior to implantation in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576717. [PMID: 38328075 PMCID: PMC10849569 DOI: 10.1101/2024.01.23.576717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bone Morphogenic Protein (BMP) signaling plays an essential and highly conserved role in axial patterning in embryos of many externally developing animal species. However, in mammalian embryos, which develop inside the mother, early development includes an additional stage known as preimplantation. During preimplantation, the epiblast lineage is segregated from the extraembryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling in mouse preimplantation is imprecisely defined. We show that, in contrast to prior reports, BMP signaling (as reported by SMAD1/5/9 phosphorylation) is not detectable until implantation, when it is detected in the primitive endoderm - an extraembryonic lineage. Moreover, preimplantation development appears normal following deletion of maternal and zygotic Smad4, an essential effector of BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extraembryonic cell types drives epiblast morphogenesis post-implantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Current address: Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
Blücher RO, Lim RS, Jarred EG, Ritchie ME, Western PS. FGF-independent MEK1/2 signalling in the developing foetal testis is essential for male germline differentiation in mice. BMC Biol 2023; 21:281. [PMID: 38053127 PMCID: PMC10696798 DOI: 10.1186/s12915-023-01777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Disrupted germline differentiation or compromised testis development can lead to subfertility or infertility and are strongly associated with testis cancer in humans. In mice, SRY and SOX9 induce expression of Fgf9, which promotes Sertoli cell differentiation and testis development. FGF9 is also thought to promote male germline differentiation but the mechanism is unknown. FGFs typically signal through mitogen-activated protein kinases (MAPKs) to phosphorylate ERK1/2 (pERK1/2). We explored whether FGF9 regulates male germline development through MAPK by inhibiting either FGF or MEK1/2 signalling in the foetal testis immediately after gonadal sex determination and testis cord formation, but prior to male germline commitment. RESULTS pERK1/2 was detected in Sertoli cells and inhibition of MEK1/2 reduced Sertoli cell proliferation and organisation and resulted in some germ cells localised outside of the testis cords. While pERK1/2 was not detected in germ cells, inhibition of MEK1/2 after somatic sex determination profoundly disrupted germ cell mitotic arrest, dysregulated a broad range of male germline development genes and prevented the upregulation of key male germline markers, DPPA4 and DNMT3L. In contrast, while FGF inhibition reduced Sertoli cell proliferation, expression of male germline markers was unaffected and germ cells entered mitotic arrest normally. While male germline differentiation was not disrupted by FGF inhibition, a range of stem cell and cancer-associated genes were commonly altered after 24 h of FGF or MEK1/2 inhibition, including genes involved in the maintenance of germline stem cells, Nodal signalling, proliferation, and germline cancer. CONCLUSIONS Together, these data demonstrate a novel role for MEK1/2 signalling during testis development that is essential for male germline differentiation, but indicate a more limited role for FGF signalling. Our data indicate that additional ligands are likely to act through MEK1/2 to promote male germline differentiation and highlight a need for further mechanistic understanding of male germline development.
Collapse
Affiliation(s)
- Rheannon O Blücher
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Rachel S Lim
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
7
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
8
|
Liu L, Oura S, Markham Z, Hamilton JN, Skory RM, Li L, Sakurai M, Wang L, Pinzon-Arteaga CA, Plachta N, Hon GC, Wu J. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 2023; 186:3776-3792.e16. [PMID: 37478861 DOI: 10.1016/j.cell.2023.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Markham
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James N Hamilton
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robin M Skory
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leijie Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Gattiglio M, Protzek M, Schröter C. Population-level antagonism between FGF and BMP signaling steers mesoderm differentiation in embryonic stem cells. Biol Open 2023; 12:bio059941. [PMID: 37530863 PMCID: PMC10445724 DOI: 10.1242/bio.059941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The mesodermal precursor populations for different internal organ systems are specified during gastrulation by the combined activity of extracellular signaling systems such as BMP, Wnt, Nodal and FGF. The BMP, Wnt and Nodal signaling requirements for the differentiation of specific mesoderm subtypes in mammals have been mapped in detail, but how FGF shapes mesodermal cell type diversity is not precisely known. It is also not clear how FGF signaling integrates with the activity of other signaling systems involved in mesoderm differentiation. Here, we address these questions by analyzing the effects of targeted signaling manipulations in differentiating stem cell populations at single-cell resolution. We identify opposing functions of BMP and FGF, and map FGF-dependent and -independent mesodermal lineages. Stimulation with exogenous FGF boosts the expression of endogenous Fgf genes while repressing Bmp ligand genes. This positive autoregulation of FGF signaling, coupled with the repression of BMP signaling, may contribute to the specification of reproducible and coherent cohorts of cells with the same identity via a community effect, both in the embryo and in synthetic embryo-like systems.
Collapse
Affiliation(s)
- Marina Gattiglio
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| | - Michelle Protzek
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| | - Christian Schröter
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| |
Collapse
|
10
|
Cheng T, Xing YY, Liu C, Li YF, Huang Y, Liu X, Zhang YJ, Zhao GQ, Dong Y, Fu XX, Tian YM, Shu LP, Megason SG, Xu PF. Nodal coordinates the anterior-posterior patterning of germ layers and induces head formation in zebrafish explants. Cell Rep 2023; 42:112351. [PMID: 37018074 DOI: 10.1016/j.celrep.2023.112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Much progress has been made toward generating analogs of early embryos, such as gastruloids and embryoids, in vitro. However, methods for how to fully mimic the cell movements of gastrulation and coordinate germ-layer patterning to induce head formation are still lacking. Here, we show that a regional Nodal gradient applied to zebrafish animal pole explant can generate a structure that recapitulates the key cell movements of gastrulation. Using single-cell transcriptome and in situ hybridization analysis, we assess the dynamics of the cell fates and patterning of this structure. The mesendoderm differentiates into the anterior endoderm, prechordal plate, notochord, and tailbud-like cells along an anterior-posterior axis, and an anterior-posterior-patterned head-like structure (HLS) progressively forms during late gastrulation. Among 105 immediate Nodal targets, 14 genes contain axis-induction ability, and 5 of them induce a complete or partial head structure when overexpressed in the ventral side of zebrafish embryos.
Collapse
Affiliation(s)
- Tao Cheng
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Yi Xing
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| | - Cong Liu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun-Fei Li
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Huang
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Liu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying-Jie Zhang
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo-Qin Zhao
- Department of Immunology, Guizhou Medical University, Guiyang 550004, China
| | - Yang Dong
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Xin Fu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Meng Tian
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li-Ping Shu
- Department of Immunology, Guizhou Medical University, Guiyang 550004, China
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Peng-Fei Xu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Zhan X, Jiang L, Wang L, Liu J, Kang S, Liu H, Lin L. A novel angiogenic effect of PCSK9- regulated genes. Gene X 2023; 852:147051. [PMID: 36427678 DOI: 10.1016/j.gene.2022.147051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Since the discovery of the Proprotein Convertase Subtilisin/Kexin Type 9(PCSK9) gene has been involved in regulating low-density lipoprotein metabolism and cardiovascular disease (CVD), many therapeutic strategies directly targeting PCSK9 have been introduced. PCSK9 gain of function (GoF) mutations are associated with autosomal dominant hypercholesterolemia (ADH) and premature atherosclerosis. In contrast, PCSK9 loss of function (LOF) mutations have cardioprotective effects and can lead to familial hypo cholesterol in some instances. However, its potential impacts beyond the typical effects on lipid metabolism have not been elucidated. Therefore the study aimed to identify and verify PCSK9's possible effects beyond its traditional role in lipid metabolism. METHODS The S127R is a PCSK9 gain of function mutation. Firstly, We used the data of the gene expression Omnibus(GEO) database to identify the differentially expressed genes between S127R mutation carriers and ordinary people. Secondly, the identification and analysis of significant genes were performed with various bioinformatics programs. Thirdly, to verify the possible effect and the potential pathways of PCSK9 on angiogenesis, we constructed PCSK9 low and high expression models by transfecting PCSK9-siRNA (small interfering RNA) and PCSK9-plasmid complex into human umbilical vein endothelial cells (HUVECs), respectively. Furthermore, Wound-Healing Assay and Capillary tube formation assay were applied to measure the effect of PCSK9 on angiogenesis. Fourthly, the expression level of VEGFR2 and the significant genes between PCSK9 low and high expression models were verified by quantitative real-time PCR. All data were analysed by GraphPad Prism 8 software. RESULTS 88 DEGs were identified, including 45 up-regulated and 43 down-regulated DEGs. Furthermore, we identified the six genes (MMP9, CASP3, EGR1, NGFR, LEFTY1 and NODAL) as significantly different genes between PCSK9-S127R and Control hiPSC. Further, we found that these significant difference genes were mainly associated with angiogenesis after enrichment analysis. To verify the possible effect of PCSK9 on angiogenesis, we constructed low and high-expression PCSK9 models by transfecting siRNA and PCSK9-plasmid complex into human umbilical vein endothelial cells (HUVECs), respectively. The tubule formation test and Wound healing assays showed that overexpression of PCSK9 had an inhibitory effect on angiogenesis, which could be reversed by decreasing the expression of PCSK9. Moreover, bioinformatics analysis indicated that the six hub genes (MMP9, CASP3, EGR1, NGFR, LEFTY1 and NODAL) might play a vital role in the biological function of PCSK9 in angiogenesis. Real-time quantitative PCR was applied to clarify the expression profiles of these critical genes in overexpression/knockdown PCSK9. Finally, the expression levels of MMP9, Caspase3, LEFTY1, and NODAL were suppressed by overexpression of PCSK9 and could be alleviated by PCSK9 knockdown. Otherwise, EGR1 had the opposite expression trend, and there was no specific trend of NGFR after repeated experiments. CONCLUSION PCSK9 might play an essential role in angiogenesis, unlike its typical role in lipid metabolism, and MMP9, Caspase3, LEFTY1, NODAL, and EGR1 may be involved in the regulation of angiogenesis as critical genes.
Collapse
Affiliation(s)
- Xiaopeng Zhan
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Li Jiang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiwen Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Kang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Haibo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| |
Collapse
|
12
|
Transforming growth factor beta (TGFβ) pathway is essential for hypoblast and epiblast development in ovine post-hatching embryos. Theriogenology 2023; 196:112-120. [PMID: 36413867 DOI: 10.1016/j.theriogenology.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
The developmental failures occurring between blastocyst hatching and implantation in farm ungulates are a major cause of pregnancy losses. At the expanded blastocyst stage, three cell lineages emerge in the embryo: trophoblast, hypoblast and epiblast, the latter being the most vulnerable during post-hatching development. Transforming growth factor beta (TGFβ) signaling pathway is involved in hypoblast and epiblast development; however, previous in vitro functional studies are limited to the expanded blastocyst stage. In this study, we have analyzed the effect of TGFβ inhibition with 10, 20 or 40 μM SB431542 during ovine post-hatching developmental period using a recently developed culture system able to recapitulate major developmental landmarks. We have found a negative effect of TGFβ inhibition on hypoblast and epiblast development that could be partially reverted by Rho-associated protein kinase (ROCK) inhibitor Y-27632. Our findings provide new insights into the molecular networks regulating embryo development beyond the expanded blastocyst and could help to elucidate the causes of early pregnancy losses in farm ungulates.
Collapse
|
13
|
Zhu Q, Ge J, Liu Y, Xu JW, Yan S, Zhou F. Decoding anterior-posterior axis emergence among mouse, monkey, and human embryos. Dev Cell 2023; 58:63-79.e4. [PMID: 36626872 DOI: 10.1016/j.devcel.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Anterior-posterior axis formation regulated by the distal visceral endoderm (DVE) and anterior visceral endoderm (AVE) is essential for peri-implantation embryogenesis. However, the principles of the origin and specialization of DVE and AVE remain elusive. Here, with single-cell transcriptome analysis and pseudotime prediction, we show that DVE and AVE independently originate from the specialized primary endoderm in mouse blastocysts. Along distinct developmental paths, these two lineages, respectively, undergo four representative states with stage-specific transcriptional patterns around implantation. Further comparative analysis shows that AVE, but not DVE, is detected in human and non-human primate embryos, defining differences in polarity formation across species. Moreover, stem cell-assembled human blastoids lack DVE or AVE precursors, implying that additional induction of stem cells with DVE/AVE potential could promote the current embryo-like models and their post-implantation growth. Our work provides insight into understanding of embryonic polarity formation and early mammalian development.
Collapse
Affiliation(s)
- Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jitao Ge
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia-Wen Xu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyi Yan
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
15
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
16
|
Vrij EJ, Scholte op Reimer YS, Fuentes LR, Guerreiro IM, Holzmann V, Aldeguer JF, Sestini G, Koo BK, Kind J, van Blitterswijk CA, Rivron NC. A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression. Development 2022; 149:dev192310. [PMID: 35993866 PMCID: PMC9534490 DOI: 10.1242/dev.192310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2022] [Indexed: 08/17/2023]
Abstract
Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.
Collapse
Affiliation(s)
- Erik J. Vrij
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yvonne S. Scholte op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Laury Roa Fuentes
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Isabel Misteli Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Viktoria Holzmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Javier Frias Aldeguer
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Clemens A. van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Nicolas C. Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
17
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
18
|
Blassberg R, Patel H, Watson T, Gouti M, Metzis V, Delás MJ, Briscoe J. Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nat Cell Biol 2022; 24:633-644. [PMID: 35550614 PMCID: PMC9106585 DOI: 10.1038/s41556-022-00910-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
WNT signalling has multiple roles. It maintains pluripotency of embryonic stem cells, assigns posterior identity in the epiblast and induces mesodermal tissue. Here we provide evidence that these distinct functions are conducted by the transcription factor SOX2, which adopts different modes of chromatin interaction and regulatory element selection depending on its level of expression. At high levels, SOX2 displaces nucleosomes from regulatory elements with high-affinity SOX2 binding sites, recruiting the WNT effector TCF/β-catenin and maintaining pluripotent gene expression. Reducing SOX2 levels destabilizes pluripotency and reconfigures SOX2/TCF/β-catenin occupancy to caudal epiblast expressed genes. These contain low-affinity SOX2 sites and are co-occupied by T/Bra and CDX. The loss of SOX2 allows WNT-induced mesodermal differentiation. These findings define a role for Sox2 levels in dictating the chromatin occupancy of TCF/β-catenin and reveal how context-specific responses to a signal are configured by the level of a transcription factor.
Collapse
Affiliation(s)
| | | | | | - Mina Gouti
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Vicki Metzis
- The Francis Crick Institute, London, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
19
|
Thowfeequ S, Stower MJ, Srinivas S. Epithelial dynamics during early mouse development. Curr Opin Genet Dev 2022; 72:110-117. [PMID: 34929609 PMCID: PMC7615355 DOI: 10.1016/j.gde.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/03/2022]
Abstract
The first epithelia to arise in an organism face the challenge of maintaining the integrity of the newly formed tissue, while exhibiting the behavioral flexibility required for morphogenetic processes to occur effectively. Epithelial cells integrate biochemical and biomechanical cues, both intrinsic and extrinsic, in order to bring about the molecular changes which determine their morphology, behavior and fate. In this review we highlight recent advances in our understanding of the various dynamic processes that the emergent epithelial cells undergo during the first seven days of mouse development and speculate what the future holds in understanding the mechanistic bases for these processes through integrative approaches.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Matthew J Stower
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Shankar Srinivas
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
20
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
21
|
Zhang ML, Jin Y, Zhao LH, Zhang J, Zhou M, Li MS, Yin ZB, Wang ZX, Zhao LX, Li XH, Li RF. Derivation of Porcine Extra-Embryonic Endoderm Cell Lines Reveals Distinct Signaling Pathway and Multipotency States. Int J Mol Sci 2021; 22:ijms222312918. [PMID: 34884722 PMCID: PMC8657774 DOI: 10.3390/ijms222312918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The inner cell mass of the pre-implantation blastocyst consists of the epiblast and hypoblast from which embryonic stem cells (ESCs) and extra-embryonic endoderm (XEN) stem cells, respectively, can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of its in vivo tissue origin. We have developed a novel approach for deriving porcine XEN (pXEN) cells via culturing the blastocysts with a chemical cocktail culture system. The pXEN cells were positive for XEN markers, including Gata4, Gata6, Sox17, and Sall4, but not for pluripotent markers Oct4, Sox2, and Nanog. The pXEN cells also retained the ability to undergo visceral endoderm (VE) and parietal endoderm (PE) differentiation in vitro. The maintenance of pXEN required FGF/MEK+TGFβ signaling pathways. The pXEN cells showed a stable phenotype through more than 50 passages in culture and could be established repeatedly from blastocysts or converted from the naïve-like ESCs established in our lab. These cells provide a new tool for exploring the pathways of porcine embryo development and differentiation and providing further reference to the establishment of porcine ESCs with potency of germline chimerism and gamete development.
Collapse
Affiliation(s)
- Man-Ling Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010020, China; (M.-L.Z.); (J.Z.); (L.-X.Z.)
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
| | - Li-Hua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jia Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010020, China; (M.-L.Z.); (J.Z.); (L.-X.Z.)
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
| | - Mei-Shuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
| | - Zhi-Bao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
| | - Zi-Xin Wang
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China;
| | - Li-Xia Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010020, China; (M.-L.Z.); (J.Z.); (L.-X.Z.)
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China;
| | - Xi-He Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010020, China; (M.-L.Z.); (J.Z.); (L.-X.Z.)
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China;
- Correspondence: (X.-H.L.); (R.-F.L.)
| | - Rong-Feng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (X.-H.L.); (R.-F.L.)
| |
Collapse
|
22
|
Sun-Wada GH, Tabata H, Wada Y. Vacuolar-type proton ATPase is required for maintenance of apicobasal polarity of embryonic visceral endoderm. Sci Rep 2021; 11:19355. [PMID: 34588579 PMCID: PMC8481250 DOI: 10.1038/s41598-021-98952-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
The endocytic compartments keep their interior acidic through the inward flow of protons and anions from the cytosol. Acidification is mediated by a proton pump known as vacuolar-type ATPase (V-ATPase) and transporters conferring anion conductance to the organellar membrane. In this study, we analysed the phenotype of mouse embryos lacking the V-ATPase c-subunit. The mutant embryos differentiated embryonic epithelial tissues, primitive endoderm, epiblast, and extraembryonic ectoderm; however, the organisation of these epithelia was severely affected. The apical-basal polarity in the visceral endoderm layer was not properly established in the mutant embryos, resulting in abnormal epithelial morphology. Thus, the function of V-ATPase is imperative for the establishment and/or maintenance of epithelial cell polarity, which is required for early embryogenesis.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Hiroyuki Tabata
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan.,Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-ohno, Himeji, Hyogo, 670-8524, Japan
| | - Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
23
|
Hirota A, AlMusawi S, Nateri AS, Ordóñez-Morán P, Imajo M. Biomaterials for intestinal organoid technology and personalized disease modeling. Acta Biomater 2021; 132:272-287. [PMID: 34023456 DOI: 10.1016/j.actbio.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in intestinal organoid technologies have paved the way for in vitro recapitulation of the homeostatic renewal of adult tissues, tissue or organ morphogenesis during development, and pathogenesis of many disorders. In vitro modelling of individual patient diseases using organoid systems have been considered key in establishing rational design of personalized treatment strategies and in improving therapeutic outcomes. In addition, the transplantation of organoids into diseased tissues represents a novel approach to treat currently incurable diseases. Emerging evidence from intensive studies suggests that organoid systems' development and functional maturation depends on the presence of an extracellular matrix with suitable biophysical properties, where advanced synthetic hydrogels open new avenues for theoretical control of organoid phenotypes and potential applications of organoids in therapeutic purposes. In this review, we discuss the status, applications, challenges and perspectives of intestinal organoid systems emphasising on hydrogels and their properties suitable for intestinal organoid culture. We provide an overview of hydrogels used for intestinal organoid culture and key factors regulating their biological activity. The comparison of different hydrogels would be a theoretical basis for establishing design principles of synthetic niches directing intestinal cell fates and functions. STATEMENT OF SIGNIFICANCE: Intestinal organoid is an in vitro recapitulation of the gut, which self-organizes from intestinal stem cells and maintains many features of the native tissue. Since the development of this technology, intestinal organoid systems have made significant contribution to rapid progress in intestinal biology. Prevailing methodology for organoid culture, however, depends on animal-derived matrices and suffers from variability and potential risk for contamination of pathogens, limiting their therapeutic application. Synthetic scaffold matrices, hydrogels, might provide solutions to these issues and deepen our understanding on how intestinal cells sense and respond to key biophysical properties of the surrounding matrices. This review provides an overview of developing intestinal models and biomaterials, thereby leading to better understanding of current intestinal organoid systems for both biologists and materials scientists.
Collapse
Affiliation(s)
- Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Shaikha AlMusawi
- Cancer Genetic and Stem Cell group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom; Stem Cell biology and Cancer group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Abdolrahman S Nateri
- Cancer Genetic and Stem Cell group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Paloma Ordóñez-Morán
- Stem Cell biology and Cancer group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom.
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
24
|
Osnato A, Brown S, Krueger C, Andrews S, Collier AJ, Nakanoh S, Quiroga Londoño M, Wesley BT, Muraro D, Brumm AS, Niakan KK, Vallier L, Ortmann D, Rugg-Gunn PJ. TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells. eLife 2021; 10:e67259. [PMID: 34463252 PMCID: PMC8410071 DOI: 10.7554/elife.67259] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naive human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naive hPSCs. The downstream effector proteins - SMAD2/3 - bind common sites in naive and primed hPSCs, including shared pluripotency genes. In naive hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naive pluripotency genes. Inhibiting TGFβ signalling in naive hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naive and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naive hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naive to primed states.
Collapse
Affiliation(s)
- Anna Osnato
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Stephanie Brown
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Christel Krueger
- Bioinformatics Group, The Babraham InstituteCambridgeUnited Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham InstituteCambridgeUnited Kingdom
| | - Amanda J Collier
- Epigenetics Programme, The Babraham InstituteCambridgeUnited Kingdom
| | - Shota Nakanoh
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
- Division of Embryology, National Institute for Basic BiologyOkazakiJapan
| | - Mariana Quiroga Londoño
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Brandon T Wesley
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Daniele Muraro
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
- Wellcome Sanger Institute, HinxtonCambridgeUnited Kingdom
| | - A Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Centre for Trophoblast Research, University of CambridgeCambridgeUnited Kingdom
| | - Ludovic Vallier
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Ortmann
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Peter J Rugg-Gunn
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Epigenetics Programme, The Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast Research, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
25
|
Ueda Y, Kimura-Yoshida C, Mochida K, Tsume M, Kameo Y, Adachi T, Lefebvre O, Hiramatsu R, Matsuo I. Intrauterine Pressures Adjusted by Reichert's Membrane Are Crucial for Early Mouse Morphogenesis. Cell Rep 2021; 31:107637. [PMID: 32433954 DOI: 10.1016/j.celrep.2020.107637] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022] Open
Abstract
Mammalian embryogenesis proceeds in utero with the support of nutrients and gases from maternal tissues. However, the contribution of the mechanical environment provided by the uterus to embryogenesis remains unaddressed. Notably, how intrauterine pressures are produced, accurately adjusted, and exerted on embryos are completely unknown. Here, we find that Reichert's membrane, a specialized basement membrane that wraps around the implanted mouse embryo, plays a crucial role as a shock absorber to protect embryos from intrauterine pressures. Notably, intrauterine pressures are produced by uterine smooth muscle contractions, showing the highest and most frequent periodic peaks just after implantation. Mechanistically, such pressures are adjusted within the sealed space between the embryo and uterus created by Reichert's membrane and are involved in egg-cylinder morphogenesis as an important biomechanical environment in utero. Thus, we propose the buffer space sealed by Reichert's membrane cushions and disperses intrauterine pressures exerted on embryos for egg-cylinder morphogenesis.
Collapse
Affiliation(s)
- Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Mami Tsume
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Yoshitaka Kameo
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Olivier Lefebvre
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Ryuji Hiramatsu
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
26
|
Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell 2021; 28:453-471.e8. [PMID: 33271069 PMCID: PMC7939546 DOI: 10.1016/j.stem.2020.11.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Pluripotent cells emerge as a naive founder population in the blastocyst, acquire capacity for germline and soma formation, and then undergo lineage priming. Mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs) represent the initial naive and final primed phases of pluripotency, respectively. Here, we investigate the intermediate formative stage. Using minimal exposure to specification cues, we derive stem cells from formative mouse epiblast. Unlike ESCs or EpiSCs, formative stem (FS) cells respond directly to germ cell induction. They colonize somatic tissues and germline in chimeras. Whole-transcriptome analyses show similarity to pre-gastrulation formative epiblast. Signal responsiveness and chromatin accessibility features reflect lineage capacitation. Furthermore, FS cells show distinct transcription factor dependencies, relying critically on Otx2. Finally, FS cell culture conditions applied to human naive cells or embryos support expansion of similar stem cells, consistent with a conserved staging post on the trajectory of mammalian pluripotency.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Yingzhi Cui
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Daniel Spindlow
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Giuliano Giuseppe Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
27
|
Madsen RR, Longden J, Knox RG, Robin X, Völlmy F, Macleod KG, Moniz LS, Carragher NO, Linding R, Vanhaesebroeck B, Semple RK. NODAL/TGFβ signalling mediates the self-sustained stemness induced by PIK3CAH1047R homozygosity in pluripotent stem cells. Dis Model Mech 2021; 14:dmm048298. [PMID: 33514588 PMCID: PMC7969366 DOI: 10.1242/dmm.048298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Activating PIK3CA mutations are known 'drivers' of human cancer and developmental overgrowth syndromes. We recently demonstrated that the 'hotspot' PIK3CAH1047R variant exerts unexpected allele dose-dependent effects on stemness in human pluripotent stem cells (hPSCs). In this study, we combine high-depth transcriptomics, total proteomics and reverse-phase protein arrays to reveal potentially disease-related alterations in heterozygous cells, and to assess the contribution of activated TGFβ signalling to the stemness phenotype of homozygous PIK3CAH1047R cells. We demonstrate signalling rewiring as a function of oncogenic PI3K signalling strength, and provide experimental evidence that self-sustained stemness is causally related to enhanced autocrine NODAL/TGFβ signalling. A significant transcriptomic signature of TGFβ pathway activation in heterozygous PIK3CAH1047R was observed but was modest and was not associated with the stemness phenotype seen in homozygous mutants. Notably, the stemness gene expression in homozygous PIK3CAH1047R hPSCs was reversed by pharmacological inhibition of NODAL/TGFβ signalling, but not by pharmacological PI3Kα pathway inhibition. Altogether, this provides the first in-depth analysis of PI3K signalling in hPSCs and directly links strong PI3K activation to developmental NODAL/TGFβ signalling. This work illustrates the importance of allele dosage and expression when artificial systems are used to model human genetic disease caused by activating PIK3CA mutations. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - James Longden
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115Berlin, Germany
| | - Rachel G. Knox
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Xavier Robin
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Franziska Völlmy
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenneth G. Macleod
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Larissa S. Moniz
- University College London Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Rune Linding
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115Berlin, Germany
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
28
|
Kim YS, Fan R, Kremer L, Kuempel-Rink N, Mildner K, Zeuschner D, Hekking L, Stehling M, Bedzhov I. Deciphering epiblast lumenogenesis reveals proamniotic cavity control of embryo growth and patterning. SCIENCE ADVANCES 2021; 7:7/11/eabe1640. [PMID: 33692105 PMCID: PMC7946377 DOI: 10.1126/sciadv.abe1640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
During the peri-implantation stages, the mouse embryo radically changes its appearance, transforming from a hollow-shaped blastocyst to an egg cylinder. At the same time, the epiblast gets reorganized from a simple ball of cells to a cup-shaped epithelial monolayer enclosing the proamniotic cavity. However, the cavity's function and mechanism of formation have so far been obscure. Through investigating the cavity formation, we found that in the epiblast, the process of lumenogenesis is driven by reorganization of intercellular adhesion, vectoral fluid transport, and mitotic paracellular water influx from the blastocoel into the emerging proamniotic cavity. By experimentally blocking lumenogenesis, we found that the proamniotic cavity functions as a hub for communication between the early lineages, enabling proper growth and patterning of the postimplantation embryo.
Collapse
Affiliation(s)
- Yung Su Kim
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ludmila Kremer
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Nannette Kuempel-Rink
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Liesbeth Hekking
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
29
|
Amadei G, Lau KYC, De Jonghe J, Gantner CW, Sozen B, Chan C, Zhu M, Kyprianou C, Hollfelder F, Zernicka-Goetz M. Inducible Stem-Cell-Derived Embryos Capture Mouse Morphogenetic Events In Vitro. Dev Cell 2020; 56:366-382.e9. [PMID: 33378662 PMCID: PMC7883308 DOI: 10.1016/j.devcel.2020.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The development of mouse embryos can be partially recapitulated by combining embryonic stem cells (ESCs), trophoblast stem cells (TS), and extra-embryonic endoderm (XEN) stem cells to generate embryo-like structures called ETX embryos. Although ETX embryos transcriptionally capture the mouse gastrula, their ability to recapitulate complex morphogenic events such as gastrulation is limited, possibly due to the limited potential of XEN cells. To address this, we generated ESCs transiently expressing transcription factor Gata4, which drives the extra-embryonic endoderm fate, and combined them with ESCs and TS cells to generate induced ETX embryos (iETX embryos). We show that iETX embryos establish a robust anterior signaling center that migrates unilaterally to break embryo symmetry. Furthermore, iETX embryos gastrulate generating embryonic and extra-embryonic mesoderm and definitive endoderm. Our findings reveal that replacement of XEN cells with ESCs transiently expressing Gata4 endows iETX embryos with greater developmental potential, thus enabling the study of the establishment of anterior-posterior patterning and gastrulation in an in vitro system. Stem cells generate mouse-embryo-like structures with improved potential These structures undertake anterior visceral endoderm formation and gastrulation Single-cell sequencing shows improved resemblance to mouse embryo
Collapse
Affiliation(s)
- Gianluca Amadei
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Kasey Y C Lau
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Carlos W Gantner
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Berna Sozen
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Christopher Chan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Christos Kyprianou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA.
| |
Collapse
|
30
|
Papadopoulos A, Chalmantzi V, Mikhaylichenko O, Hyvönen M, Stellas D, Kanhere A, Heath J, Cunningham DL, Fotsis T, Murphy C. Combined transcriptomic and phosphoproteomic analysis of BMP4 signaling in human embryonic stem cells. Stem Cell Res 2020; 50:102133. [PMID: 33383406 DOI: 10.1016/j.scr.2020.102133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Human embryonic stem cells (hESCs) are an invaluable tool in the fields of embryology and regenerative medicine. Activin A and BMP4 are well-characterised growth factors implicated in pluripotency and differentiation. In the current study, hESCs are cultured in a modified version of mTeSR1, where low concentrations of ActivinA substitute for TGFβ. This culture system is further used to investigate the changes induced by BMP4 on hESCs by employing a combination of transcriptomic and phosphoproteomic approaches. Results indicate that in a pluripotent state, hESCs maintain WNT signaling under negative regulation by expressing pathway inhibitors. Initial stages of differentiation are characterized by upregulation of WNT pathway ligands, TGFβ pathway inhibitors which have been shown in Xenopus to expand the BMP signaling range essential for embryonic patterning, and mesendodermal transcripts. Moreover, BMP4 enhances the phosphorylation of proteins associated with migration and transcriptional regulation. Results further indicate the vital regulatory role of Activin A and BMP4 in crucial fate decisions in hESCs.
Collapse
Affiliation(s)
- Angelos Papadopoulos
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, United Kingdom
| | - Varvara Chalmantzi
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Olga Mikhaylichenko
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Aditi Kanhere
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - John Heath
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Debbie L Cunningham
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Theodore Fotsis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina, 45110 Ioannina, Greece; Laboratory of Biology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Carol Murphy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
31
|
Abstract
The polar trophoblast overlays the epiblast in eutherian mammals and, depending on the species, has one of two different fates. It either remains a single-layered, thinning epithelium called "Rauber's layer," which soon disintegrates, or, alternatively, it keeps proliferating, contributing heavily to the population of differentiating, invasive trophoblast cells and, at least in mice, to the induction of gastrulation. While loss of the persistent polar trophoblast in mice leads to reduced induction of gastrulation, we show here that prevention of the loss of the polar trophoblast in cattle results in ectopic domains of the gastrulation marker, BRACHYURY This phenotype, and increased epiblast proliferation, arose when Rauber's layer was maintained for a day longer by countering apoptosis through BCL2 overexpression. This suggests that the disappearance of Rauber's layer is a necessity, presumably to avoid excessive signaling interactions between this layer and the subjacent epiblast. We note that, in all species in which the polar trophoblast persists, including humans and mice, ectopic polar trophoblast signaling is prevented via epiblast cavitation which leads to the (pro)amniotic cavity, whose function is to distance the central epiblast from such signaling interactions.
Collapse
|
32
|
Rodrigues Sousa E, Zoni E, Karkampouna S, La Manna F, Gray PC, De Menna M, Kruithof-de Julio M. A Multidisciplinary Review of the Roles of Cripto in the Scientific Literature Through a Bibliometric Analysis of its Biological Roles. Cancers (Basel) 2020; 12:cancers12061480. [PMID: 32517087 PMCID: PMC7352664 DOI: 10.3390/cancers12061480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-β ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-β and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Eugenio Zoni
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sofia Karkampouna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Federico La Manna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta De Menna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Marianna Kruithof-de Julio
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
33
|
Senft AD, Costello I, King HW, Mould AW, Bikoff EK, Robertson EJ. Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming. Cell Rep 2020; 24:1977-1985.e7. [PMID: 30134160 PMCID: PMC6113931 DOI: 10.1016/j.celrep.2018.07.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/31/2018] [Accepted: 07/22/2018] [Indexed: 11/29/2022] Open
Abstract
Epiblast cells in the early post-implantation stage mammalian embryo undergo a transition described as lineage priming before cell fate allocation, but signaling pathways acting upstream remain ill defined. Genetic studies demonstrate that Smad2/3 double-mutant mouse embryos die shortly after implantation. To learn more about the molecular disturbances underlying this abrupt failure, here we characterized Smad2/3-deficient embryonic stem cells (ESCs). We found that Smad2/3 double-knockout ESCs induced to form epiblast-like cells (EpiLCs) display changes in naive and primed pluripotency marker gene expression, associated with the disruption of Oct4-bound distal regulatory elements. In the absence of Smad2/3, we observed enhanced Bmp target gene expression and de-repression of extra-embryonic gene expression. Cell fate allocation into all three embryonic germ layers is disrupted. Collectively, these experiments demonstrate that combinatorial Smad2/3 functional activities are required to maintain distinct embryonic and/or extra-embryonic cell identity during lineage priming in the epiblast before gastrulation. Smad2/3 alters the transcriptome and activity of distal regulatory elements in EpiLCs Smad2 prevents expression of extra-embryonic genes during priming and differentiation Smad2/3 is essential for mesoderm and definitive endoderm cell fate allocation Smad2/3 signaling balances Bmp signaling during neural precursor differentiation
Collapse
Affiliation(s)
- Anna D Senft
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Arne W Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
34
|
Malaguti M, Migueles RP, Blin G, Lin CY, Lowell S. Id1 Stabilizes Epiblast Identity by Sensing Delays in Nodal Activation and Adjusting the Timing of Differentiation. Dev Cell 2019; 50:462-477.e5. [PMID: 31204172 PMCID: PMC6706657 DOI: 10.1016/j.devcel.2019.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/04/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Controlling responsiveness to prevailing signals is critical for robust transitions between cell states during development. For example, fibroblast growth factor (FGF) drives naive pluripotent cells into extraembryonic lineages before implantation but sustains pluripotency in primed cells of the post-implantation epiblast. Nanog supports pluripotency in naive cells, while Nodal supports pluripotency in primed cells, but the handover from Nanog to Nodal does not proceed seamlessly, opening up the risk of aberrant differentiation if FGF is activated before Nodal. Here, we report that Id1 acts as a sensor to detect delays in Nodal activation after the downregulation of Nanog. Id1 then suppresses FGF activity to delay differentiation. Accordingly, Id1 is not required for naive or primed pluripotency but rather stabilizes epiblast identity during the transition between these states. These findings help explain how development proceeds robustly in the face of imprecise signals and highlight the importance of mechanisms that stabilize cell identity during developmental transitions.
Collapse
Affiliation(s)
- Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Chia-Yi Lin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
35
|
Zhang S, Chen T, Chen N, Gao D, Shi B, Kong S, West RC, Yuan Y, Zhi M, Wei Q, Xiang J, Mu H, Yue L, Lei X, Wang X, Zhong L, Liang H, Cao S, Belmonte JCI, Wang H, Han J. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells. Nat Commun 2019; 10:496. [PMID: 30700702 PMCID: PMC6353907 DOI: 10.1038/s41467-019-08378-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/04/2019] [Indexed: 11/09/2022] Open
Abstract
Spatially ordered embryo-like structures self-assembled from blastocyst-derived stem cells can be generated to mimic embryogenesis in vitro. However, the assembly system and developmental potential of such structures needs to be further studied. Here, we devise a nonadherent-suspension-shaking system to generate self-assembled embryo-like structures (ETX-embryoids) using mouse embryonic, trophoblast and extra-embryonic endoderm stem cells. When cultured together, the three cell types aggregate and sort into lineage-specific compartments. Signaling among these compartments results in molecular and morphogenic events that closely mimic those observed in wild-type embryos. These ETX-embryoids exhibit lumenogenesis, asymmetric patterns of gene expression for markers of mesoderm and primordial germ cell precursors, and formation of anterior visceral endoderm-like tissues. After transplantation into the pseudopregnant mouse uterus, ETX-embryoids efficiently initiate implantation and trigger the formation of decidual tissues. The ability of the three cell types to self-assemble into an embryo-like structure in vitro provides a powerful model system for studying embryogenesis.
Collapse
Affiliation(s)
- Shaopeng Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Tianzhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Naixin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Bingbo Shi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Qingqing Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Jinzhu Xiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Haiyuan Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Liang Yue
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuepeng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Zhong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | | | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China. .,Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
36
|
Abstract
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Collapse
Affiliation(s)
- Hui Ting Zhang
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
37
|
Suppressing Nodal Signaling Activity Predisposes Ectodermal Differentiation of Epiblast Stem Cells. Stem Cell Reports 2018; 11:43-57. [PMID: 30008328 PMCID: PMC6067151 DOI: 10.1016/j.stemcr.2018.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/18/2023] Open
Abstract
The molecular mechanism underpinning the specification of the ectoderm, a transient germ-layer tissue, during mouse gastrulation was examined here in a stem cell-based model. We captured a self-renewing cell population with enhanced ectoderm potency from mouse epiblast stem cells (EpiSCs) by suppressing Nodal signaling activity. The transcriptome of the Nodal-inhibited EpiSCs resembles that of the anterior epiblast of embryonic day (E)7.0 and E7.5 mouse embryo, which is accompanied by chromatin modifications that reflect the priming of ectoderm lineage-related genes for expression. Nodal-inhibited EpiSCs show enhanced ectoderm differentiation in vitro and contribute to the neuroectoderm and the surface ectoderm in postimplantation chimeras but lose the propensity for mesendoderm differentiation in vitro and in chimeras. Our findings show that specification of the ectoderm progenitors is enhanced by the repression of Nodal signaling activity, and the ectoderm-like stem cells provide an experimental model to investigate the molecular characters of the epiblast-derived ectoderm. Self-renewing epiblast stem cells can be maintained under Nodal inhibition Nodal-inhibited epiblast stem cells and the ectoderm display similar transcriptome Blocking Nodal changes the epigenome to that associated with ectoderm potency Nodal-inhibited epiblast stem cells differentiate preferentially to ectodermal cells
Collapse
|
38
|
Hill CS. Spatial and temporal control of NODAL signaling. Curr Opin Cell Biol 2018; 51:50-57. [PMID: 29153705 DOI: 10.1016/j.ceb.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Embryonic development is orchestrated by the activity of signal transduction pathways, amongst which are those downstream of the transforming growth factor β (TGF-β) family. Here I focus on signalling by one of these ligands, NODAL, which is essential for early embryonic axis patterning. I review recent advances in our understanding of how NODAL signalling is transduced from the plasma membrane to the nucleus to regulate the transcription of target genes, and how domains of NODAL activity are established and refined during embryonic development. The duration of signalling is emerging as a key determinant of the specificity of downstream responses in terms of cell fate decisions and I will discuss what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
39
|
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 2018; 75:1411-1433. [PMID: 29243171 PMCID: PMC5852192 DOI: 10.1007/s00018-017-2730-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45122, Essen, Germany.
| |
Collapse
|
40
|
Stower MJ, Srinivas S. The Head's Tale: Anterior-Posterior Axis Formation in the Mouse Embryo. Curr Top Dev Biol 2017; 128:365-390. [PMID: 29477169 DOI: 10.1016/bs.ctdb.2017.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The establishment of the anterior-posterior (A-P) axis is a fundamental event during early development and marks the start of the process by which the basic body plan is laid down. This axial information determines where gastrulation, that generates and positions cells of the three-germ layers, occurs. A-P patterning requires coordinated interactions between multiple tissues, tight spatiotemporal control of signaling pathways, and the coordination of tissue growth with morphogenetic movements. In the mouse, a specialized population of cells, the anterior visceral endoderm (AVE) undergoes a migration event critical for correct A-P pattern. In this review, we summarize our understanding of the generation of anterior pattern, focusing on the role of the AVE. We will also outline some of the many questions that remain regarding the mechanism by which the first axial asymmetry is established, how the AVE is induced, and how it moves within the visceral endoderm epithelium.
Collapse
|
41
|
Rodriguez AM, Downs KM. Visceral endoderm and the primitive streak interact to build the fetal-placental interface of the mouse gastrula. Dev Biol 2017; 432:98-124. [PMID: 28882402 PMCID: PMC5980994 DOI: 10.1016/j.ydbio.2017.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
Hypoblast/visceral endoderm assists in amniote nutrition, axial positioning and formation of the gut. Here, we provide evidence, currently limited to humans and non-human primates, that hypoblast is a purveyor of extraembryonic mesoderm in the mouse gastrula. Fate mapping a unique segment of axial extraembryonic visceral endoderm associated with the allantoic component of the primitive streak, and referred to as the "AX", revealed that visceral endoderm supplies the placentae with extraembryonic mesoderm. Exfoliation of the AX was dependent upon contact with the primitive streak, which modulated Hedgehog signaling. Resolution of the AX's epithelial-to-mesenchymal transition (EMT) by Hedgehog shaped the allantois into its characteristic projectile and individualized placental arterial vessels. A unique border cell separated the delaminating AX from the yolk sac blood islands which, situated beyond the limit of the streak, were not formed by an EMT. Over time, the AX became the hindgut lip, which contributed extensively to the posterior interface, including both embryonic and extraembryonic tissues. The AX, in turn, imparted antero-posterior (A-P) polarity on the primitive streak and promoted its elongation and differentiation into definitive endoderm. Results of heterotopic grafting supported mutually interactive functions of the AX and primitive streak, showing that together, they self-organized into a complete version of the fetal-placental interface, forming an elongated structure that exhibited A-P polarity and was composed of the allantois, an AX-derived rod-like axial extension reminiscent of the embryonic notochord, the placental arterial vasculature and visceral endoderm/hindgut.
Collapse
Affiliation(s)
- Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Signore IA, Palma K, Concha ML. Nodal signalling and asymmetry of the nervous system. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0401. [PMID: 27821531 DOI: 10.1098/rstb.2015.0401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 11/12/2022] Open
Abstract
The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left-right asymmetry of the nervous system.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Iskra A Signore
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
| | - Karina Palma
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
| | - Miguel L Concha
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile .,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
43
|
Huang X, Balmer S, Yang F, Fidalgo M, Li D, Guallar D, Hadjantonakis AK, Wang J. Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling. eLife 2017; 6:33333. [PMID: 29168693 PMCID: PMC5708896 DOI: 10.7554/elife.33333] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotency is defined by a cell's potential to differentiate into any somatic cell type. How pluripotency is transited during embryo implantation, followed by cell lineage specification and establishment of the basic body plan, is poorly understood. Here we report the transcription factor Zfp281 functions in the exit from naive pluripotency occurring coincident with pre-to-post-implantation mouse embryonic development. By characterizing Zfp281 mutant phenotypes and identifying Zfp281 gene targets and protein partners in developing embryos and cultured pluripotent stem cells, we establish critical roles for Zfp281 in activating components of the Nodal signaling pathway and lineage-specific genes. Mechanistically, Zfp281 cooperates with histone acetylation and methylation complexes at target gene enhancers and promoters to exert transcriptional activation and repression, as well as epigenetic control of epiblast maturation leading up to anterior-posterior axis specification. Our study provides a comprehensive molecular model for understanding pluripotent state progressions in vivo during mammalian embryonic development.
Collapse
Affiliation(s)
- Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Fan Yang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Departamento de Fisioloxia, Centro de Investigacion en Medicina Molecular e Enfermidades Cronicas, Universidade de Santiago de Compostela, Santiago, Spain
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
44
|
Shirouzu Y, Yanai G, Yang KC, Sumi S. Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5. Cell Reprogram 2017; 18:171-86. [PMID: 27253628 DOI: 10.1089/cell.2015.0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nodal/activin signaling is indispensable for embryonic development. We examined what activin does to the embryoid bodies (EBs) produced from mouse embryonic stem cells (mESCs) expressing an epiblast marker. The EBs were produced by culturing mESCs by the hanging drop method for 24 hours. The resulting EBs were transferred onto gelatin-coated dishes and allowed to further differentiate. The 24-hour EBs showed a stronger expression of fibroblast growth factor (FGF)5 and Brachyury (specific to the epiblast) in comparison with mESCs. Treating the transferred EBs with activin A maintained transcript levels of FGF5 and Oct4, while inhibiting definitive endoderm differentiation. The activin A treatment reversed the endoderm differentiation induced by retinoic acid (RA), while the inhibition of nodal/activin signaling promoted RA-induced endoderm differentiation. Inhibition of nodal/activin signaling in EBs, including epiblast-like cells, promotes differentiation into the endoderm, facilitating the transition from the pluripotent state to specification of the endoderm.
Collapse
Affiliation(s)
- Yasumasa Shirouzu
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Goichi Yanai
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Kai-Chiang Yang
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Shoichiro Sumi
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| |
Collapse
|
45
|
Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, Mulas C, Chandra T, Voet T, Dean W, Nichols J, Marioni JC, Reik W. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. Cell Rep 2017; 20:1215-1228. [PMID: 28768204 PMCID: PMC5554778 DOI: 10.1016/j.celrep.2017.07.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
The mouse inner cell mass (ICM) segregates into the epiblast and primitive endoderm (PrE) lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq) of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.
Collapse
Affiliation(s)
- Hisham Mohammed
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aurora Savino
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Iain Macaulay
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Tamir Chandra
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Thierry Voet
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Department of Human Genetics, Human Genome Laboratory, KU Leuven, 3000 Leuven, Belgium
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK.
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
46
|
Rao S, Zaidi S, Banerjee J, Jogunoori W, Sebastian R, Mishra B, Nguyen BN, Wu RC, White J, Deng C, Amdur R, Li S, Mishra L. Transforming growth factor-β in liver cancer stem cells and regeneration. Hepatol Commun 2017; 1:477-493. [PMID: 29404474 PMCID: PMC5678904 DOI: 10.1002/hep4.1062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells have established mechanisms that contribute to tumor heterogeneity as well as resistance to therapy. Over 40% of hepatocellular carcinomas (HCCs) are considered to be clonal and arise from a stem-like/cancer stem cell. Moreover, HCC is the second leading cause of cancer death worldwide, and an improved understanding of cancer stem cells and targeting these in this cancer are urgently needed. Multiple studies have revealed etiological patterns and multiple genes/pathways signifying initiation and progression of HCC; however, unlike the transforming growth factor β (TGF-β) pathway, loss of p53 and/or activation of β-catenin do not spontaneously drive HCC in animal models. Despite many advances in cancer genetics that include identifying the dominant role of TGF-β signaling in gastrointestinal cancers, we have not reached an integrated view of genetic mutations, copy number changes, driver pathways, and animal models that support effective targeted therapies for these common and lethal cancers. Moreover, pathways involved in stem cell transformation into gastrointestinal cancers remain largely undefined. Identifying the key mechanisms and developing models that reflect the human disease can lead to effective new treatment strategies. In this review, we dissect the evidence obtained from mouse and human liver regeneration, and mouse genetics, to provide insight into the role of TGF-β in regulating the cancer stem cell niche. (Hepatology Communications 2017;1:477-493).
Collapse
Affiliation(s)
- Shuyun Rao
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Sobia Zaidi
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Jaideep Banerjee
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Wilma Jogunoori
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Raul Sebastian
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Bibhuti Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine George Washington University Washington DC
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Chuxia Deng
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Health Sciences University of Macau Taipa Macau China
| | - Richard Amdur
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Shulin Li
- Department of Pediatrics The University of Texas MD Anderson Cancer Center Houston TX
| | - Lopa Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| |
Collapse
|
47
|
Mulas C, Kalkan T, Smith A. NODAL Secures Pluripotency upon Embryonic Stem Cell Progression from the Ground State. Stem Cell Reports 2017; 9:77-91. [PMID: 28669603 PMCID: PMC5511111 DOI: 10.1016/j.stemcr.2017.05.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/02/2023] Open
Abstract
Naive mouse embryonic stem cells (ESCs) can develop multiple fates, but the cellular and molecular processes that enable lineage competence are poorly characterized. Here, we investigated progression from the ESC ground state in defined culture. We utilized downregulation of Rex1::GFPd2 to track the loss of ESC identity. We found that cells that have newly downregulated this reporter have acquired capacity for germline induction. They can also be efficiently specified for different somatic lineages, responding more rapidly than naive cells to inductive cues. Inhibition of autocrine NODAL signaling did not alter kinetics of exit from the ESC state but compromised both germline and somatic lineage specification. Transient inhibition prior to loss of ESC identity was sufficient for this effect. Genetic ablation of Nodal reduced viability during early differentiation, consistent with defective lineage specification. These results suggest that NODAL promotes acquisition of multi-lineage competence in cells departing naive pluripotency.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tüzer Kalkan
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK,Corresponding author
| |
Collapse
|
48
|
Morgani S, Nichols J, Hadjantonakis AK. The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC DEVELOPMENTAL BIOLOGY 2017; 17:7. [PMID: 28610558 PMCID: PMC5470286 DOI: 10.1186/s12861-017-0150-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
Pluripotency defines the propensity of a cell to differentiate into, and generate, all somatic, as well as germ cells. The epiblast of the early mammalian embryo is the founder population of all germ layer derivatives and thus represents the bona fide in vivo pluripotent cell population. The so-called pluripotent state spans several days of development and is lost during gastrulation as epiblast cells make fate decisions towards a mesoderm, endoderm or ectoderm identity. It is now widely recognized that the features of the pluripotent population evolve as development proceeds from the pre- to post-implantation period, marked by distinct transcriptional and epigenetic signatures. During this period of time epiblast cells mature through a continuum of pluripotent states with unique properties. Aspects of this pluripotent continuum can be captured in vitro in the form of stable pluripotent stem cell types. In this review we discuss the continuum of pluripotency existing within the mammalian embryo, using the mouse as a model, and the cognate stem cell types that can be derived and propagated in vitro. Furthermore, we speculate on embryonic stage-specific characteristics that could be utilized to identify novel, developmentally relevant, pluripotent states.
Collapse
Affiliation(s)
- Sophie Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
49
|
Matsuo I, Hiramatsu R. Mechanical perspectives on the anterior-posterior axis polarization of mouse implanted embryos. Mech Dev 2017; 144:62-70. [DOI: 10.1016/j.mod.2016.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 01/21/2023]
|
50
|
Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 2017; 356:science.aal1810. [PMID: 28254784 DOI: 10.1126/science.aal1810] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Abstract
Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos.
Collapse
Affiliation(s)
- Sarah Ellys Harrison
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Berna Sozen
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.,Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| | - Neophytos Christodoulou
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Christos Kyprianou
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|