1
|
Davis GM, Hipwell H, Boag PR. Oogenesis in Caenorhabditis elegans. Sex Dev 2023; 17:73-83. [PMID: 37232019 PMCID: PMC10659005 DOI: 10.1159/000531019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The nematode, Caenorhabditis elegans has proven itself as a valuable model for investigating metazoan biology. C. elegans have a transparent body, an invariant cell lineage, and a high level of genetic conservation which makes it a desirable model organism. Although used to elucidate many aspects of somatic biology, a distinct advantage of C. elegans is its well annotated germline which allows all aspects of oogenesis to be observed in real time within a single animal. C. elegans hermaphrodites have two U-shaped gonad arms which produce their own sperm that is later stored to fertilise their own oocytes. These two germlines take up much of the internal space of each animal and germ cells are therefore the most abundant cell present within each animal. This feature and the genetic phenotypes observed for mutant worm gonads have allowed many novel findings that established our early understanding of germ cell dynamics. The mutant phenotypes also allowed key features of meiosis and germ cell maturation to be unveiled. SUMMARY This review will focus on the key aspects that make C. elegans an outstanding model for exploring each feature of oogenesis. This will include the fundamental steps associated with germline function and germ cell maturation and will be of use for those interested in exploring reproductive metazoan biology. KEY MESSAGES Since germ cell biology is highly conserved in animals, much can be gained from study of a simple metazoan like C. elegans. Past findings have enhanced understanding on topics that would be more laborious or challenging in more complex animal models.
Collapse
Affiliation(s)
- Gregory M. Davis
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia
| | - Hayleigh Hipwell
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
2
|
Gao Y, Jiao Y, Gong X, Liu J, Xiao H, Zheng Q. Role of transcription factors in apoptotic cells clearance. Front Cell Dev Biol 2023; 11:1110225. [PMID: 36743409 PMCID: PMC9892555 DOI: 10.3389/fcell.2023.1110225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis. The genetically controlled, autonomously ordered cell death mainly proceeds by apoptosis. Apoptosis is an important way of programmed cell death in multicellular organisms, timely and effective elimination of apoptotic cells plays a key role in the growth and development of organisms and the maintenance of homeostasis. During the clearance of apoptotic cells, transcription factors bind to specific target promoters and act as activators or repressors to regulate multiple genes expression, how transcription factors regulate apoptosis is an important and poorly understood aspect of normal development. This paper summarizes the regulatory mechanisms of transcription factors in the clearance of apoptotic cells to date.
Collapse
Affiliation(s)
| | | | | | | | - Hui Xiao
- *Correspondence: Hui Xiao, ; Qian Zheng,
| | - Qian Zheng
- *Correspondence: Hui Xiao, ; Qian Zheng,
| |
Collapse
|
3
|
Fausett S, Poullet N, Gimond C, Vielle A, Bellone M, Braendle C. Germ cell apoptosis is critical to maintain Caenorhabditis elegans offspring viability in stressful environments. PLoS One 2021; 16:e0260573. [PMID: 34879088 PMCID: PMC8654231 DOI: 10.1371/journal.pone.0260573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Maintaining reproduction in highly variable, often stressful, environments is an essential challenge for all organisms. Even transient exposure to mild environmental stress may directly damage germ cells or simply tax the physiology of an individual, making it difficult to produce quality gametes. In Caenorhabditis elegans, a large fraction of germ cells acts as nurse cells, supporting developing oocytes before eventually undergoing so-called physiological germ cell apoptosis. Although C. elegans apoptosis has been extensively studied, little is known about how germline apoptosis is influenced by ecologically relevant environmental stress. Moreover, it remains unclear to what extent germline apoptosis contributes to maintaining oocyte quality, and thus offspring viability, in such conditions. Here we show that exposure to diverse environmental stressors, likely occurring in the natural C. elegans habitat (starvation, ethanol, acid, and mild oxidative stress), increases germline apoptosis, consistent with previous reports on stress-induced apoptosis. Using loss-of-function mutant alleles of ced-3 and ced-4, we demonstrate that eliminating the core apoptotic machinery strongly reduces embryonic survival when mothers are exposed to such environmental stressors during early adult life. In contrast, mutations in ced-9 and egl-1 that primarily block apoptosis in the soma but not in the germline, did not exhibit such reduced embryonic survival under environmental stress. Therefore, C. elegans germ cell apoptosis plays an essential role in maintaining offspring fitness in adverse environments. Finally, we show that ced-3 and ced-4 mutants exhibit concomitant decreases in embryo size and changes in embryo shape when mothers are exposed to environmental stress. These observations may indicate inadequate oocyte provisioning due to the absence of germ cell apoptosis. Taken together, our results show that the central genes of the apoptosis pathway play a key role in maintaining gamete quality, and thus offspring fitness, under ecologically relevant environmental conditions.
Collapse
Affiliation(s)
- Sarah Fausett
- Université Côte d’Azur, CNRS, Inserm, IBV, Nice, France
| | | | | | - Anne Vielle
- Université Côte d’Azur, CNRS, Inserm, IBV, Nice, France
| | | | | |
Collapse
|
4
|
Charlton-Perkins MA, Friedrich M, Cook TA. Semper's cells in the insect compound eye: Insights into ocular form and function. Dev Biol 2021; 479:126-138. [PMID: 34343526 PMCID: PMC8410683 DOI: 10.1016/j.ydbio.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.
Collapse
Affiliation(s)
- Mark A Charlton-Perkins
- Department of Paediatrics, Wellcome-MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA; Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Tiffany A Cook
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA; Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Hardy LR, Salvi A, Burdette JE. UnPAXing the Divergent Roles of PAX2 and PAX8 in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080262. [PMID: 30096791 PMCID: PMC6115736 DOI: 10.3390/cancers10080262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 01/19/2023] Open
Abstract
High-grade serous ovarian cancer is a deadly disease that can originate from the fallopian tube or the ovarian surface epithelium. The PAX (paired box) genes PAX2 and PAX8 are lineage-specific transcription factors required during development of the fallopian tube but not in the development of the ovary. PAX2 expression is lost early in serous cancer progression, while PAX8 is expressed ubiquitously. These proteins are implicated in migration, invasion, proliferation, cell survival, stem cell maintenance, and tumor growth. Hence, targeting PAX2 and PAX8 represents a promising drug strategy that could inhibit these pro-tumorigenic effects. In this review, we examine the implications of PAX2 and PAX8 expression in the cell of origin of serous cancer and their potential efficacy as drug targets by summarizing their role in the molecular pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- Laura R Hardy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Amrita Salvi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Raiders SA, Eastwood MD, Bacher M, Priess JR. Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis. PLoS Genet 2018; 14:e1007417. [PMID: 30024879 PMCID: PMC6053125 DOI: 10.1371/journal.pgen.1007417] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
Cell death plays a major role during C. elegans oogenesis, where over half of the oogenic germ cells die in a process termed physiological apoptosis. How germ cells are selected for physiological apoptosis, or instead become oocytes, is not understood. Most oocytes produce viable embryos when apoptosis is blocked, suggesting that physiological apoptosis does not function to cull defective germ cells. Instead, cells targeted for apoptosis may function as nurse cells; the germline is syncytial, and all germ cells appear to contribute cytoplasm to developing oocytes. C. elegans has been a leading model for the genetics and molecular biology of apoptosis and phagocytosis, but comparatively few studies have examined the cell biology of apoptotic cells. We used live imaging to identify and examine pre-apoptotic germ cells in the adult gonad. After initiating apoptosis, germ cells selectively export their mitochondria into the shared pool of syncytial cytoplasm; this transport appears to use the microtubule motor kinesin. The apoptotic cells then shrink as they expel most of their remaining cytoplasm, and close off from the syncytium. Shortly thereafter the apoptotic cells restructure their microtubule and actin cytoskeletons, possibly to maintain cell integrity; the microtubules form a novel, cortical array of stabilized microtubules, and actin and cofilin organize into giant cofilin-actin rods. We discovered that some apoptotic germ cells are binucleate; the binucleate germ cells can develop into binucleate oocytes in apoptosis-defective strains, and appear capable of producing triploid offspring. Our results suggest that the nuclear layer of the germline syncytium becomes folded during mitosis and growth, and that binucleate cells arise as the layer unfolds or everts; all of the binucleate cells are subsequently removed by apoptosis. These results show that physiological apoptosis targets at least two distinct populations of germ cells, and that the apoptosis machinery efficiently recognizes cells with two nuclei. Many germ cells die by apoptosis during the development of animal oocytes, including more than half of all germ cells in the model system C. elegans. How individual germ cells are selected for apoptosis, or survival, is not known. Here we study the cell biology of apoptosis. The C. elegans gonad is a syncytium, with nearly 1000 germ “cells” connected to a shared, core cytoplasm. Once apoptosis is initiated, germ cells selectively transport their mitochondria into the gonad core, apparently using the microtubule motor protein kinesin. The apoptotic cells next constrict, expelling most of their remaining cytoplasm into the core, and close off from the gonad core. The microtubule and actin cytoskeletons are remodeled and stabilized, presumably to maintain the integrity of the dying cell. The apoptotic cells form giant cofilin-actin rods, similar to rods described in stressed cultured cells and in human myopathies and neuropathies such as Alzheimer’s and Huntington’s disease. We show that some germ cells are binucleate; these cells appear to form during germline morphogenesis, and are removed by apoptosis. These results demonstrate heterogeneity between oogenic germ cells, and show that the apoptosis machinery efficiently recognizes and removes cells with two nuclei.
Collapse
Affiliation(s)
- Stephan A. Raiders
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael D. Eastwood
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Meghan Bacher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
7
|
Li J, Li H, Lv X, Yang Z, Gao M, Bi Y, Zhang Z, Wang S, Cui Z, Zhou B, Yin Z. Polymorphism in lncRNA AC016683.6 and its interaction with smoking exposure on the susceptibility of lung cancer. Cancer Cell Int 2018; 18:91. [PMID: 29997452 PMCID: PMC6031149 DOI: 10.1186/s12935-018-0591-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023] Open
Abstract
Background Long non-coding RNAs play pivotal roles in the carcinogenesis of multiple types of cancers. This study is firstly to evaluate influence of rs4848320 and rs1110839 polymorphisms in long non-coding RNA AC016683.6 on the susceptibility of lung cancer. Methods The present study was a hospital-based case–control study with 434 lung cancer patients and 593 cancer-free controls. Genotyping of the two SNPs detected by Taqman® allelic discrimination method. Results There were no statistically significant associations between rs4848320 and rs1110839 polymorphisms in AC016683.6 and risk of lung cancer in overall population. However, in the smoking population, rs4848320 and rs1110839 polymorphisms significantly increased the risk of lung cancer in dominant and homozygous models (Rs4848320: P = 0.029; Rs1110839: P = 0.034), respectively. In male population, rs1110839 genetic variant was related to the risk of lung cancer in all genetic models (GG vs. TT: P = 0.008; Dominant model: P = 0.029; Recessive model: P = 0.027) rather than heterozygous model. The crossover analyses provided rs4848320 and rs1110839 risk genotypes carriers combined with smoking exposure 2.218-fold, 1.755-fold increased risk of lung cancer (Rs4848320: P = 0.005; Rs1110839: P = 0.017). Additionally, there were significantly positive multiplicative interaction of rs4848320 polymorphism with smoking status, with adjusted OR of 2.244 (1.162–4.334), but rs1110839 polymorphism did not exist. Conclusions Rs4848320 and rs1110839 polymorphisms may be associated with lung cancer susceptibility. Interaction of rs4848320 risk genotypes with smoking exposure may strengthen the risk effect on lung cancer.
Collapse
Affiliation(s)
- Juan Li
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Hang Li
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Xiaoting Lv
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Zitai Yang
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Min Gao
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Yanhong Bi
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Ziwei Zhang
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Shengli Wang
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Zhigang Cui
- 3School of Nursing, China Medical University, Shenyang, 110122 China
| | - Baosen Zhou
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| | - Zhihua Yin
- 1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China
| |
Collapse
|
8
|
Asaturova AV, Ezhova LS, Faizullina NM, Adamyan LV, Khabas GN, Sannikova MV. [Expansion of secretory cells in the fallopian tubal epithelium in the early stages of the pathogenesis of ovarian serous carcinomas]. Arkh Patol 2017. [PMID: 28631711 DOI: 10.17116/patol201779310-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM to investigate the frequency of the types of fallopian tubal secretory cell expansion (SCE) in diseases of the reproductive organs and to determine the immunophenotype and biological role of the cells in the early stages of the pathogenesis of high-grade ovarian serous carcinomas (HGOSC). SUBJECTS AND METHODS The investigation enrolled 287 patients with extraovarian diseases and ovarian serous tumors varying in grade, whose fallopian tubes were morphologically and immunohistochemically examined using p53, Ki-67, PAX2, Bcl-2, beta-catenin, and ALDH1 markers. The material was statistically processed applying the Mann-Whitney test and χ2 test. RESULTS The rate of secretory cell proliferation (SCP) (more than 10 consecutive secretory cells) and that of secretory cell overgrowth (SCO) (more than 30 consecutive secretory cells) increase with age in all investigated reproductive system diseases. The rate of SCP in the corpus fimbriatum of the patients with HGOSC was 5.9 times higher than that in those with extraovarian disease (p<0.01); when comparing the same patient groups, that of SCO was 3.4 times higher (p<0.05). The immunohistochemical characteristics of the investigated lesions (in scores) were as follows: PAX2 was expressed in the intact epithelium (2.8), in SCP (1.3), in SCO (1.2), in serous tubal intraepithelial carcinoma (STIC) (1.0), and in HGOSC (0.9); Bcl-2 was in the intact epithelium (2.2), in SCP (2.1), STIC (0.9), and in HGOSC (0.6), β-catenin was in the intact epithelium (0.5), in SCP (2.85), in SCO (2.95), in STIC (0.6), and in HGOSC (0.5); ALDH1 was in the intact epithelium (0.5), in SCP (2.91), in SCO (2.92), in STIC (1.2), and in HGOSC (0.6). There were statistically significant differences with a 95% confidence interval (p<0.05) for: 1) PAX2 between the intact epithelium and pathology (fallopian tube lesions and HGOSC); 2) Bcl-2 between the intact epithelium and SCE (SCP and SCO) and between SCE and HGOSC; 3) beta-catenin between the intact epithelium and SCE (SCP and SCO) and between SCE and HGOSC; 4) ALDH1 between the intact epithelium and SCE, between and SCE and STIC, and between STIC and HGOSC. CONCLUSION SCE was shown to be an independent intraepithelial lesion. The incidence of this abnormality increased with age and significantly differed in the patients with fallopian tubal lesions in extraovarian diseases from that in those with malignant ovarian serous tumors (by 5.3 times), while these groups showed a three-fold difference in SCO. Thus, SCP may serve as a more sensitive marker for the early stages of the pathogenesis of ovarian serous carcinoma. The studied types of SCE demonstrated multiple molecular events (loss of PAX2 expression and increased Bcl-2, beta-catenin, and ALDH1 expressions), some of which underwent considerable changes, by increasing the severity of a pathological process (loss of ALDH1, and beta-catenin, and bcl-2 expressions). Thus, therapeutic exposure in the early stages of pathogenesis may have a few points of application and just several molecules can serve as independent markers for early pathological changes in the fallopian tubal epithelium.
Collapse
Affiliation(s)
- A V Asaturova
- V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
| | - L S Ezhova
- V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
| | - N M Faizullina
- V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
| | - L V Adamyan
- V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
| | - G N Khabas
- V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
| | - M V Sannikova
- V.I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
9
|
Mattingly HH, Chen JJ, Arur S, Shvartsman SY. A Transport Model for Estimating the Time Course of ERK Activation in the C. elegans Germline. Biophys J 2016; 109:2436-45. [PMID: 26636953 DOI: 10.1016/j.bpj.2015.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/01/2015] [Accepted: 10/01/2015] [Indexed: 02/02/2023] Open
Abstract
The Caenorhabditis elegans germline is a well-studied model system for investigating the control of cell fate by signaling pathways. Cell signals at the distal tip of the germline promote cell proliferation; just before the loop, signals couple cell maturation to organism-level nutrient status; at the proximal end of the germline, signals coordinate oocyte maturation and fertilization in the presence of sperm. The latter two events require dual phosphorylation and activation of ERK, the effector molecule of the Ras/MAPK cascade. In C. elegans, ERK is known as MPK-1. At this point, none of today's methods for real-time monitoring of dually phosphorylated MPK-1 are working in the germline. Consequently, quantitative understanding of the MPK-1-dependent processes during germline development is limited. Here, we make a step toward advancing this understanding using a model-based framework that reconstructs the time course of MPK-1 activation from a snapshot of a fixed germline. Our approach builds on a number of recent studies for estimating temporal dynamics from fixed organisms, but takes advantage of the anatomy of the germline to simplify the analysis. Our model predicts that the MPK-1 signal turns on ∼30 h into germ cell progression and peaks ∼7 h later.
Collapse
Affiliation(s)
- Henry H Mattingly
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Jessica J Chen
- The University of Texas Graduate School of Biomedical Sciences and Department of Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Swathi Arur
- The University of Texas Graduate School of Biomedical Sciences and Department of Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
10
|
Wang X, Yang C. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell Mol Life Sci 2016; 73:2221-36. [PMID: 27048817 PMCID: PMC11108496 DOI: 10.1007/s00018-016-2196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/01/2023]
Abstract
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
Collapse
Affiliation(s)
- Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
11
|
Thompson KW, Joshi P, Dymond JS, Gorrepati L, Smith HE, Krause MW, Eisenmann DM. The Paired-box protein PAX-3 regulates the choice between lateral and ventral epidermal cell fates in C. elegans. Dev Biol 2016; 412:191-207. [PMID: 26953187 PMCID: PMC4846358 DOI: 10.1016/j.ydbio.2016.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/12/2023]
Abstract
The development of the single cell layer skin or hypodermis of Caenorhabditis elegans is an excellent model for understanding cell fate specification and differentiation. Early in C. elegans embryogenesis, six rows of hypodermal cells adopt dorsal, lateral or ventral fates that go on to display distinct behaviors during larval life. Several transcription factors are known that function in specifying these major hypodermal cell fates, but our knowledge of the specification of these cell types is sparse, particularly in the case of the ventral hypodermal cells, which become Vulval Precursor Cells and form the vulval opening in response to extracellular signals. Previously, the gene pvl-4 was identified in a screen for mutants with defects in vulval development. We found by whole genome sequencing that pvl-4 is the Paired-box gene pax-3, which encodes the sole PAX-3 transcription factor homolog in C. elegans. pax-3 mutants show embryonic and larval lethality, and body morphology abnormalities indicative of hypodermal cell defects. We report that pax-3 is expressed in ventral P cells and their descendants during embryogenesis and early larval stages, and that in pax-3 reduction-of-function animals the ventral P cells undergo a cell fate transformation and express several markers of the lateral seam cell fate. Furthermore, forced expression of pax-3 in the lateral hypodermal cells causes them to lose expression of seam cell markers. We propose that pax-3 functions in the ventral hypodermal cells to prevent these cells from adopting the lateral seam cell fate. pax-3 represents the first gene required for specification solely of the ventral hypodermal fate in C. elegans providing insights into cell type diversification.
Collapse
Affiliation(s)
- Kenneth W Thompson
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Pradeep Joshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Jessica S Dymond
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Harold E Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Drive, Bethesda, MD 20892, USA.
| | - Michael W Krause
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Drive, Bethesda, MD 20892, USA.
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
12
|
Abstract
Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity.
Collapse
Affiliation(s)
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
13
|
Marotta P, Amendola E, Scarfò M, De Luca P, Zoppoli P, Amoresano A, De Felice M, Di Lauro R. The paired box transcription factor Pax8 is essential for function and survival of adult thyroid cells. Mol Cell Endocrinol 2014; 396:26-36. [PMID: 25127920 DOI: 10.1016/j.mce.2014.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 01/23/2023]
Abstract
The transcription factor Pax8 is already known to be essential at very early stages of mouse thyroid gland development, before the onset of thyroid hormone production. In this paper we show, using a conditional inactivation strategy, that the removal of the Pax8 protein late in gland development results in severe hypothyroidism, consequent to a reduced gland size and a deranged differentiation. These results demonstrate that Pax8 is also an essential player in controlling survival and differentiation of adult thyroid follicular cells.
Collapse
Affiliation(s)
- Pina Marotta
- IRGS, Biogem, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Elena Amendola
- IRGS, Biogem, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Marzia Scarfò
- IRGS, Biogem, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Pasquale De Luca
- IRGS, Biogem, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Pietro Zoppoli
- IRGS, Biogem, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Mario De Felice
- IRGS, Biogem, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy.
| | - Roberto Di Lauro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| |
Collapse
|
14
|
PAX genes in childhood oncogenesis: developmental biology gone awry? Oncogene 2014; 34:2681-9. [PMID: 25043308 DOI: 10.1038/onc.2014.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 01/27/2023]
Abstract
Childhood solid tumors often arise from embryonal-like cells, which are distinct from the epithelial cancers observed in adults, and etiologically can be considered as 'developmental patterning gone awry'. Paired-box (PAX) genes encode a family of evolutionarily conserved transcription factors that are important regulators of cell lineage specification, migration and tissue patterning. PAX loss-of-function mutations are well known to cause potent developmental phenotypes in animal models and underlie genetic disease in humans, whereas dysregulation and/or genetic modification of PAX genes have been shown to function as critical triggers for human tumorigenesis. Consequently, exploring PAX-related pathobiology generates insights into both normal developmental biology and key molecular mechanisms that underlie pediatric cancer, which are the topics of this review.
Collapse
|
15
|
Hung N, Chen YJ, Taha A, Olivecrona M, Boet R, Wiles A, Warr T, Shaw A, Eiholzer R, Baguley BC, Eccles MR, Braithwaite AW, Macfarlane M, Royds JA, Slatter T. Increased paired box transcription factor 8 has a survival function in glioma. BMC Cancer 2014; 14:159. [PMID: 24602166 PMCID: PMC4015841 DOI: 10.1186/1471-2407-14-159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background The molecular basis to overcome therapeutic resistance to treat glioblastoma remains unclear. The anti-apoptotic b cell lymphoma 2 (BCL2) gene is associated with treatment resistance, and is transactivated by the paired box transcription factor 8 (PAX8). In earlier studies, we demonstrated that increased PAX8 expression in glioma cell lines was associated with the expression of telomerase. In this current study, we more extensively explored a role for PAX8 in gliomagenesis. Methods PAX8 expression was measured in 156 gliomas including telomerase-negative tumours, those with the alternative lengthening of telomeres (ALT) mechanism or with a non-defined telomere maintenance mechanism (NDTMM), using immunohistochemistry and quantitative PCR. We also tested the affect of PAX8 knockdown using siRNA in cell lines on cell survival and BCL2 expression. Results Seventy-two percent of glioblastomas were PAX8-positive (80% telomerase, 73% NDTMM, and 44% ALT). The majority of the low-grade gliomas and normal brain cells were PAX8-negative. The suppression of PAX8 was associated with a reduction in both cell growth and BCL2, suggesting that a reduction in PAX8 expression would sensitise tumours to cell death. Conclusions PAX8 is increased in the majority of glioblastomas and promoted cell survival. Because PAX8 is absent in normal brain tissue, it may be a promising therapeutic target pathway for treating aggressive gliomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tania Slatter
- Department of Pathology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
Huang CC, Orvis GD, Kwan KM, Behringer RR. Lhx1 is required in Müllerian duct epithelium for uterine development. Dev Biol 2014; 389:124-36. [PMID: 24560999 DOI: 10.1016/j.ydbio.2014.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 02/08/2023]
Abstract
The female reproductive tract organs of mammals, including the oviducts, uterus, cervix and upper vagina, are derived from the Müllerian ducts, a pair of epithelial tubes that form within the mesonephroi. The Müllerian ducts form in a rostral to caudal manner, guided by and dependent on the Wolffian ducts that have already formed. Experimental embryological studies indicate that caudal elongation of the Müllerian duct towards the urogenital sinus occurs in part by proliferation at the ductal tip. The molecular mechanisms that regulate the elongation of the Müllerian duct are currently unclear. Lhx1 encodes a LIM-homeodomain transcription factor that is essential for male and female reproductive tract development. Lhx1 is expressed in both the Wolffian and Müllerian ducts. Wolffian duct-specific knockout of Lhx1 results in degeneration of the Wolffian duct and consequently the non-cell-autonomous loss of the Müllerian duct. To determine the role of Lhx1 specifically in the Müllerian duct epithelium, we performed a Müllerian duct-specific knockout study using Wnt7a-Cre mice. Loss of Lhx1 in the Müllerian duct epithelium led to a block in Müllerian duct elongation and uterine hypoplasia characterized by loss of the entire endometrium (luminal and glandular epithelium and stroma) and inner circular but not the outer longitudinal muscle layer. Time-lapse imaging and molecular analyses indicate that Lhx1 acts cell autonomously to maintain ductal progenitor cells for Müllerian duct elongation. These studies identify LHX1 as the first transcription factor that is essential in the Müllerian duct epithelial progenitor cells for female reproductive tract development. Furthermore, these genetic studies demonstrate the requirement of epithelial-mesenchymal interactions for uterine tissue compartment differentiation.
Collapse
Affiliation(s)
- Cheng-Chiu Huang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Grant D Orvis
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Kin Ming Kwan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, PR China
| | - Richard R Behringer
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Dispersed crude oil amplifies germ cell apoptosis in Caenorhabditis elegans, followed a CEP-1-dependent pathway. Arch Toxicol 2014; 88:543-51. [PMID: 24496467 DOI: 10.1007/s00204-014-1198-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
The Deepwater Horizon oil spill is among the most severe environmental disasters in US history. The extent of crude oil released and the subsequent dispersant used for cleanup was unprecedented. The dispersed crude oil represents a unique form of environmental contaminant that warrants investigations of its environmental and human health impacts. Lines of evidence have demonstrated that dispersed oil affects reproduction in various organisms, in a more potent manner than oil- and dispersant-only exposures. However, the action mechanism of dispersed oil remains largely unknown. In this study, we utilized the model organism Caenorhabditis elegans to investigate impacts of dispersed oil exposure on sex cell apoptosis and related gene expressions. Worms were exposed to different diluted levels of crude oil-dispersant (oil-dis) mixtures (20:1, v/v; at 500×, 2,000×, and 5,000× dilutions). The dispersed crude oil significantly increases the number of apoptotic germ cells in treated worms when compared with control at all exposure levels (p < 0.05). Genes involved in the apoptosis pathway were dysregulated, which include ced-13, ced-3, ced-4, ced-9, cep-1, dpl-1, efl-1, efl-2, egl-1, egl-38, lin-35, pax-2, and sir-2.1. Many aberrant expressed genes encoding for core components in apoptosis machinery (cep-1/p53, ced-13/BH3, ced-9/Bcl-2, ced-4/Apaf-1, and ced-3/caspase) displayed consistent expression patterns across all exposure levels. Significantly ced-3/caspase was upregulated at all dispersed oil-treated groups, consistent with the observed apoptosis phenotype. Given cep-1/p53 was activated at all dispersed oil treatments and the germ cell apoptosis was suppressed in the CEP-1 loss of function mutant, the increased apoptosis is likely CEP-1 dependent. In addition, the anti-apoptotic ced-9/Bcl-2 was activated in response to the increase in cell death. This study provides a mechanism understanding of dispersed crude oil-induced reproductive toxicity.
Collapse
|
18
|
Abstract
The nematode Caenorhabditis elegans has served as a fruitful setting for cell death research for over three decades. A conserved pathway of four genes, egl-1/BH3-only, ced-9/Bcl-2, ced-4/Apaf-1, and ced-3/caspase, coordinates most developmental cell deaths in C. elegans. However, other cell death forms, programmed and pathological, have also been described in this animal. Some of these share morphological and/or molecular similarities with the canonical apoptotic pathway, while others do not. Indeed, recent studies suggest the existence of an entirely novel mode of programmed developmental cell destruction that may also be conserved beyond nematodes. Here, we review evidence for these noncanonical pathways. We propose that different cell death modalities can function as backup mechanisms for apoptosis, or as tailor-made programs that allow specific dying cells to be efficiently cleared from the animal.
Collapse
Affiliation(s)
- Maxime J Kinet
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
19
|
Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS. A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One 2012; 7:e44869. [PMID: 22984579 PMCID: PMC3440354 DOI: 10.1371/journal.pone.0044869] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 08/15/2012] [Indexed: 01/11/2023] Open
Abstract
Congenital reduction in nephron number (renal hypoplasia) is a predisposing factor for chronic kidney disease and hypertension. Despite identification of specific genes and pathways in nephrogenesis, determinants of final nephron endowment are poorly understood. Here, we report that mice with germ-line p53 deletion (p53(-/-)) manifest renal hypoplasia; the phenotype can be recapitulated by conditional deletion of p53 from renal progenitors in the cap mesenchyme (CM(p53-/-)). Mice or humans with germ-line heterozygous mutations in Pax2 exhibit renal hypoplasia. Since both transcription factors are developmentally expressed in the metanephros, we tested the hypothesis that p53 and Pax2 cooperate in nephrogenesis. In this study, we provide evidence for the presence of genetic epistasis between p53 and Pax2: a) p53(-/-) and CM(p53-/-)embryos express lower Pax2 mRNA and protein in nephron progenitors than their wild-type littermates; b) ChIP-Seq identified peaks of p53 occupancy in chromatin regions of the Pax2 promoter and gene in embryonic kidneys; c) p53 binding to Pax2 gene is significantly more enriched in Pax2 -expressing than non-expressing metanephric mesenchyme cells; d) in transient transfection assays, Pax2 promoter activity is stimulated by wild-type p53 and inhibited by a dominant negative mutant p53; e) p53 knockdown in cultured metanephric mesenchyme cells down-regulates endogenous Pax2 expression; f) reduction of p53 gene dosage worsens the renal hypoplasia in Pax2(+/-) mice. Bioinformatics identified a set of developmental renal genes likely to be co-regulated by p53 and Pax2. We propose that the cross-talk between p53 and Pax2 provides a transcriptional platform that promotes nephrogenesis, thus contributing to nephron endowment.
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Porreca I, De Felice E, Fagman H, Di Lauro R, Sordino P. Zebrafish bcl2l is a survival factor in thyroid development. Dev Biol 2012; 366:142-52. [DOI: 10.1016/j.ydbio.2012.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/17/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
21
|
Fagman H, Amendola E, Parrillo L, Zoppoli P, Marotta P, Scarfò M, De Luca P, de Carvalho DP, Ceccarelli M, De Felice M, Di Lauro R. Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning. Dev Biol 2011; 359:163-75. [PMID: 21924257 PMCID: PMC3206993 DOI: 10.1016/j.ydbio.2011.08.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/24/2011] [Indexed: 11/30/2022]
Abstract
The thyroid and lungs originate as neighboring bud shaped outgrowths from the midline of the embryonic foregut. When and how organ specific programs regulate development into structures of distinct shapes, positions and functions is incompletely understood. To characterize, at least in part, the genetic basis of these events, we have employed laser capture microdissection and microarray analysis to define gene expression in the mouse thyroid and lung primordia at E10.5. By comparing the transcriptome of each bud to that of the whole embryo as well as to each other, we broadly describe the genes that are preferentially expressed in each developing organ as well as those with an enriched expression common to both. The results thus obtained provide a valuable resource for further analysis of genes previously unrecognized to participate in thyroid and lung morphogenesis and to discover organ specific as well as common developmental mechanisms. As an initial step in this direction we describe a regulatory pathway involving the anti-apoptotic gene Bcl2 that controls cell survival in early thyroid development.
Collapse
Affiliation(s)
| | - Elena Amendola
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | | | | | | | | - Michele Ceccarelli
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Benevento, Italy
| | - Mario De Felice
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Biologia e Patologia, Università di Napoli Federico II, Naples, Italy
| | - Roberto Di Lauro
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Biologia e Patologia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
22
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
23
|
De Felice M, Di Lauro R. Minireview: Intrinsic and extrinsic factors in thyroid gland development: an update. Endocrinology 2011; 152:2948-56. [PMID: 21693675 DOI: 10.1210/en.2011-0204] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vertebrates the portion of the thyroid gland synthesizing the thyroid hormones develops from a small group of endodermal cells in the foregut. The nature of the signals that lead to the biochemical and morphogenetic events responsible for the organization of these cells into the adult thyroid gland has only recently become evident. In this review we summarize recent developments in the understanding of these processes, derived from evidence collected in several organisms.
Collapse
|
24
|
Abstract
Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.
Collapse
Affiliation(s)
- Malia B Potts
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9148, USA
| | | |
Collapse
|
25
|
Van Raamsdonk JM, Hekimi S. Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship? Antioxid Redox Signal 2010; 13:1911-53. [PMID: 20568954 DOI: 10.1089/ars.2010.3215] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The free radical theory of aging proposes a causal relationship between reactive oxygen species (ROS) and aging. While it is clear that oxidative damage increases with age, its role in the aging process is uncertain. Testing the free radical theory of aging requires experimentally manipulating ROS production or detoxification and examining the resulting effects on lifespan. In this review, we examine the relationship between ROS and aging in the genetic model organism Caenorhabditis elegans, summarizing experiments using long-lived mutants, mutants with altered mitochondrial function, mutants with decreased antioxidant defenses, worms treated with antioxidant compounds, and worms exposed to different environmental conditions. While there is frequently a negative correlation between oxidative damage and lifespan, there are many examples in which they are uncoupled. Neither is resistance to oxidative stress sufficient for a long life nor are all long-lived mutants more resistant to oxidative stress. Similarly, sensitivity to oxidative stress does not necessarily shorten lifespan and is in fact compatible with long life. Overall, the data in C. elegans indicate that oxidative damage can be dissociated from aging in experimental situations.
Collapse
|
26
|
Abstract
Whole genome duplication events are thought to have substantially contributed to organismal complexity, largely via divergent transcriptional regulation. Members of the vertebrate PAX2, PAX5 and PAX8 gene subfamily derived from an ancient class of paired box genes and arose from such whole genome duplication events. These genes are critical in establishing the midbrain-hindbrain boundary, specifying interneuron populations and for eye, ear and kidney development. Also PAX2 has adopted a unique role in pancreas development, whilst PAX5 is essential for early B-cell differentiation. The contribution of PAX258 genes to their collective role has diverged across paralogues and the animal lineages, resulting in a complex wealth of literature. It is now timely to provide a comprehensive comparative overview of these genes and their ancient and divergent roles. We also discuss their fundamental place within gene regulatory networks and the likely influence of cis-regulatory elements over their differential roles during early animal development.
Collapse
Affiliation(s)
- Debbie K Goode
- Queen Mary, University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | | |
Collapse
|
27
|
Nehme R, Conradt B. egl-1: a key activator of apoptotic cell death in C. elegans. Oncogene 2009; 27 Suppl 1:S30-40. [DOI: 10.1038/onc.2009.41] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Abstract
PAX5 is a nuclear transcription factor required for B cell development, and its expression was evaluated in upper aerodigestive malignancies and pancreatic cancer by immunoblotting. The PAX5 protein expression was relatively strong in small-cell lung cancer (SCLC, 11/12); however, its expression was not detected in non-SCLC (NSCLC, n=13), mesothelioma (n=7), pancreatic (n=6), esophageal (n=6) and head and neck cancer cell lines (n=12). In comparison, PAX8 and PAX3 expressions were absent or non-detectable in SCLC cell lines; however, PAX8 was expressed in most of the tested NSCLC cell lines (13/13) and also frequently in all the other cell lines. We also detected frequent expressions of PAX2 and PAX9 protein in the various cell lines. Utilizing neuroendocrine tumor samples, we found that the frequency as well as the average intensity of the expression of PAX5 increased from pulmonary carcinoid (9%, moderate and strong PAX5 expression, n=44), to large-cell neuroendocrine carcinoma (LCNC, 27%, n=11) to SCLC (33%, n=76). FISH analysis revealed no translocations of the PAX5 gene, but polyploidy in some SCLC tumor tissues (6/37). We determined that PAX5 could regulate the transcription of c-Met using luciferase-coupled reporter and chromatin immunoprecipitation analysis. In addition, the phospho-c-Met (active form) and PAX5 were both localized to the same intra-nuclear compartment in hepatocyte growth factor treated SCLC cells and interacted with each other. Finally, we determined the therapeutic translational potential of PAX5 using PAX5 knockdown SCLC cells in conjunction with Topoisomerase 1 (SN38) and c-Met (SU11274) inhibitors. Loss of endogenous PAX5 significantly decreased the viability of SCLC cells, especially when combined with SN38 or SU11274, and maximum effect was seen when both inhibitors were used. Therefore, we propose that PAX5 could be an important regulator of c-Met transcription and a potential target for therapy in SCLC.
Collapse
|
29
|
Trithorax, Hox, and TALE-class homeodomain proteins ensure cell survival through repression of the BH3-only gene egl-1. Dev Biol 2009; 329:374-85. [PMID: 19254707 DOI: 10.1016/j.ydbio.2009.02.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/05/2009] [Accepted: 02/18/2009] [Indexed: 12/21/2022]
Abstract
Mutations that aberrantly activate trithorax-group proteins, Hox transcription factors and TALE-class Hox cofactors promote leukemogenesis, but their target genes critical for leukemogenesis remain largely unknown. Through genetic analyses in C. elegans, we find that the trithorax-group gene lin-59 and the TALE-class Hox cofactor unc-62 are required for survival of the VC motor neurons. With the goal of providing a model for how aberrantly active Hox complexes might promote leukemia, we elucidate the mechanism through which these new inhibitors of programmed cell death act: lin-59 maintains transcription of the Hox gene lin-39, while unc-62 promotes nuclear localization of the TALE-class Hox cofactor ceh-20. A LIN-39/CEH-20 complex binds the promoter of the pro-apoptotic BH3-only gene egl-1, repressing its transcription and ensuring survival of the VC neurons. In the absence of this regulatory mechanism, egl-1 is transcribed and the VC neurons die. Furthermore, ectopic expression of the Hox gene lin-39, as occurs for human Hox genes in leukemia, is sufficient to block death of some cells. This work identifies BH3-only pro-apoptotic genes as targets of Hox-mediated repression and suggests that aberrant activation of Hox networks may promote leukemia in part by inhibiting apoptosis.
Collapse
|
30
|
Yan M, Himoudi N, Pule M, Sebire N, Poon E, Blair A, Williams O, Anderson J. Development of cellular immune responses against PAX5, a novel target for cancer immunotherapy. Cancer Res 2008; 68:8058-65. [PMID: 18829564 DOI: 10.1158/0008-5472.can-08-0153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PAX5 is a member of the PAX family of developmental transcription factors with an important role in B-cell development. Its expression in normal adult tissue is limited to the hemopoietic system, but it is aberrantly expressed in a number of solid cancers and leukemias where it functions as an oncogene. We therefore hypothesized that anti-PAX5 immune responses could be used to target a number of malignancies without significant toxicity. We screened PAX5 peptides for the ability to bind HLA-A2 and identified a novel sequence, TLPGYPPHV (referred to as TLP). CTL lines against TLP were generated from peripheral blood of five normal HLA-A2-positive blood donors and showed specific HLA-A2-restricted killing against PAX5-expressing target cells. We generated high-avidity CTL clones from these lines capable of killing cells pulsed with <1 nmol/L of TLP and killing a range of PAX5-expressing malignant cell lines. I.v. injection of an anti-PAX5 CTL clone into immunodeficient mice bearing s.c. human tumors resulted in specific growth inhibition of PAX5-expressing tumors. This knowledge can be used for the therapeutic generation of CTL lines or the cloning of high-avidity T-cell receptor genes for use in adoptive immunotherapy.
Collapse
Affiliation(s)
- Mengyong Yan
- Units of Molecular Haematology and Cancer Biology, Institute of Child Health, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Thompson JA, Zembrzycki A, Mansouri A, Ziman M. Pax7 is requisite for maintenance of a subpopulation of superior collicular neurons and shows a diverging expression pattern to Pax3 during superior collicular development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:62. [PMID: 18513381 PMCID: PMC2430198 DOI: 10.1186/1471-213x-8-62] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/30/2008] [Indexed: 11/21/2022]
Abstract
Background Pax7 encodes a transcription factor well-established as an important determinant of mesencephalic identity and superior collicular development. Pax7 mutant mice, however, present with no obvious morphological impairments to the superior colliculus. This finding is paradoxical and has been attributed to functional redundancy afforded by its paralogue Pax3. Here we utilise Pax7 mutant mice to investigate the precise role of this important developmental regulator during superior collicular development and neuronal specification/differentiation. We also assess its spatiotemporal relationship with Pax3 during embryonic development. Results Analysis of the superior colliculus of Pax7 mutant and wildtype mice at a variety of developmental timepoints revealed that whilst correct initial specification is maintained, a subpopulation of dorsal mesencephalic neurons is lost at early postnatal stages. Moreover, a comparative analysis of embryonic Pax3 and Pax7 expression profiles indicate that Pax3 expression overlaps extensively with that of Pax7 initially, but their expression domains increasingly diverge as development progresses, coinciding spatiotemporally with neuronal differentiation and maturation of the tissue. Furthermore, Pax3 expression is perturbed within the CNS of embryonic Pax7 mutant mice. Conclusion In summary, these results demonstrate that during superior collicular development, Pax7 is required to maintain a subpopulation of dorsal, mesencephalic neurons and partially regulates, spatiotemporally, Pax3 expression within the CNS. The differential nature of Pax7 and Pax3 with respect to neuronal differentiation may have implications for future stem cell therapies aimed at exploiting their developmental capabilities.
Collapse
Affiliation(s)
- Jennifer A Thompson
- School of Exercise, Biomedical and Health Science, Edith Cowan University, Joondalup Drive, Joondalup, Western Australia 6027, Australia.
| | | | | | | |
Collapse
|
32
|
Blum ES, Driscoll M, Shaham S. Noncanonical cell death programs in the nematode Caenorhabditis elegans. Cell Death Differ 2008; 15:1124-31. [PMID: 18437162 DOI: 10.1038/cdd.2008.56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic studies of the nematode Caenorhabditis elegans have uncovered four genes, egl-1 (BH3 only), ced-9 (Bcl-2 related), ced-4 (apoptosis protease activating factor-1), and ced-3 (caspase), which function in a linear pathway to promote developmental cell death in this organism. While this core pathway functions in many cells, recent studies suggest that additional regulators, acting on or in lieu of these core genes, can promote or inhibit the onset of cell death. Here, we discuss the evidence for these noncanonical mechanisms of C. elegans cell death control. We consider novel modes for regulating the core apoptosis genes, and describe a newly identified cell death pathway independent of all known C. elegans cell death genes. The existence of these noncanonical cell death programs suggests that organisms have evolved multiple ways to ensure appropriate cellular demise during development.
Collapse
Affiliation(s)
- E S Blum
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
33
|
Schertel C, Conradt B. C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development 2007; 134:3691-701. [PMID: 17881492 DOI: 10.1242/dev.004606] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To obtain insight into the role of the retinoblastoma susceptibility gene (Rb; also known as Rb1) in apoptosis, we analyzed Caenorhabditis elegans mutants lacking a functional lin-35 RB gene. We found that the loss of lin-35 function results in a decrease in constitutive germ cell apoptosis. We present evidence that lin-35 promotes germ cell apoptosis by repressing the expression of ced-9, an anti-apoptotic C. elegans gene that is orthologous to the human proto-oncogene BCL2. Furthermore, we show that the genes dpl-1 DP, efl-1 E2F and efl-2 E2F also promote constitutive germ cell apoptosis. However, in contrast to lin-35, dpl-1 (and probably also efl-1 and efl-2) promotes germ cell apoptosis by inducing the expression of the pro-apoptotic genes ced-4 and ced-3, which encode an APAF1-like adaptor protein and a pro-caspase, respectively. Based on these results, we propose that C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions in the germ line and that the transcriptional regulation of components of the central apoptosis machinery is a critical determinant of constitutive germ cell apoptosis in C. elegans. Finally, we demonstrate that lin-35, dpl-1 and efl-2, but not efl-1, function either downstream of or in parallel to cep-1 p53 (also known as TP53) and egl-1 BH3-only to cause DNA damage-induced germ cell apoptosis. Our results have implications for the general mechanisms through which RB-like proteins control gene expression, the role of RB-, DP- and E2F-like proteins in apoptosis, and the regulation of apoptosis.
Collapse
Affiliation(s)
- Claus Schertel
- Dartmouth Medical School, Department of Genetics, Norris Cotton Cancer Center, 7400 Remsen, Hanover, NH 03755, USA
| | | |
Collapse
|
34
|
Yi B, Sommer RJ. The pax-3 gene is involved in vulva formation in Pristionchus pacificus and is a target of the Hox gene lin-39. Development 2007; 134:3111-9. [PMID: 17652349 DOI: 10.1242/dev.008375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hox gene lin-39 plays a crucial role in the establishment of the nematode vulva equivalence group. Mutations in lin-39 in Caenorhabditis elegans and Pristionchus pacificus result in a vulvaless phenotype because presumptive vulva precursor cells adopt non-vulval fates. Interestingly, the non-vulval fate of anterior and posterior epidermal cells differs between Caenorhabditis and Pristionchus; in C. elegans, non-vulval cells fuse with the hypodermis, whereas, in P. pacificus, they die as a result of programmed cell death. C. elegans lin-39 (Cel-lin-39) indirectly controls the cell fusion gene eff-1 by regulating the GATA transcription factors egl-18 and elt-6. In P. pacificus, the genetic context of its lin-39 (Ppa-lin-39) function was unknown. Here, we describe the isolation and characterization of gev-2, a second generation-vulvaless mutant in P. pacificus. We show that gev-2 is the Ppa-pax-3 gene and that it has distinct functions in the cell fate specification of epidermal cells. Whereas Ppa-pax-3 regulates cell survival of the presumptive vulval precursor cells, it controls cell death of posterior epidermal cells. Molecular studies indicate that Ppa-pax-3 is a direct target of Ppa-LIN-39. Thus, we describe the first specific developmental defect of a nematode pax-3 gene and our data reveal different regulatory networks for the specification of the vulva equivalence group.
Collapse
Affiliation(s)
- Buqing Yi
- Max-Planck Institute for Developmental Biology, Department for Evolutionary Biology, Spemannstrasse 37, D-72076 Tübingen, Germany
| | | |
Collapse
|
35
|
Domingos PM, Steller H. Pathways regulating apoptosis during patterning and development. Curr Opin Genet Dev 2007; 17:294-9. [PMID: 17629474 PMCID: PMC1989756 DOI: 10.1016/j.gde.2007.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 04/30/2007] [Accepted: 05/01/2007] [Indexed: 12/19/2022]
Abstract
The patterning and development of multicellular organisms require a precisely controlled balance between cell proliferation, differentiation and death. The regulation of apoptosis is an important aspect to achieve this balance, by eliminating unnecessary or mis-specified cells which, otherwise, may have harmful effects on the whole organism. Apoptosis is also important for the morphogenetic processes that occur during development and that lead to the sculpting of organs and other body structures. Here, we review recent progress in understanding how apoptosis is regulated during development, focusing on studies using Drosophila or Caenorhabditis elegans as model organisms.
Collapse
Affiliation(s)
- Pedro M Domingos
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|