1
|
Wang H, Iida-Norita R, Mashiko D, Pham AH, Miyata H, Ikawa M. Golgi associated RAB2 interactor protein family contributes to murine male fertility to various extents by assuring correct morphogenesis of sperm heads. PLoS Genet 2024; 20:e1011337. [PMID: 38935810 PMCID: PMC11236154 DOI: 10.1371/journal.pgen.1011337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/10/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Sperm heads contain not only the nucleus but also the acrosome which is a distinctive cap-like structure located anterior to the nucleus and is derived from the Golgi apparatus. The Golgi Associated RAB2 Interactors (GARINs; also known as FAM71) protein family shows predominant expression in the testis and all possess a RAB2-binding domain which confers binding affinity to RAB2, a small GTPase that is responsible for membrane transport and vesicle trafficking. Our previous study showed that GARIN1A and GARIN1B are important for acrosome biogenesis and that GARIN1B is indispensable for male fertility in mice. Here, we generated KO mice of other Garins, namely Garin2, Garin3, Garin4, Garin5a, and Garin5b (Garin2-5b). Using computer-assisted morphological analysis, we found that the loss of each Garin2-5b resulted in aberrant sperm head morphogenesis. While the fertilities of Garin2-/- and Garin4-/- males are normal, Garin5a-/- and Garin5b-/- males are subfertile, and Garin3-/- males are infertile. Further analysis revealed that Garin3-/- males exhibited abnormal acrosomal morphology, but not as severely as Garin1b-/- males; instead, the amounts of membrane proteins, particularly ADAM family proteins, decreased in Garin3 KO spermatozoa. Moreover, only Garin4 KO mice exhibit vacuoles in the sperm head. These results indicate that GARINs assure correct head morphogenesis and some members of the GARIN family function distinctively in male fertility.
Collapse
Affiliation(s)
- Haoting Wang
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Mashiko
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Anh Hoang Pham
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Tufoni C, Battistella A, Luppi S, Boscolo R, Ricci G, Lazzarino M, Andolfi L. Flagellar beating forces of human spermatozoa with different motility behaviors. Reprod Biol Endocrinol 2024; 22:28. [PMID: 38448984 PMCID: PMC10916019 DOI: 10.1186/s12958-024-01197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND One of the causes of male infertility is associated with altered spermatozoa motility. These sperm features are frequently analyzed by image-based approaches, which, despite allowing the acquisition of crucial parameters to assess sperm motility, they are unable to provide details regarding the flagellar beating forces, which have been neglected until now. RESULTS In this work we exploit Fluidic Force Microscopy to investigate and quantify the forces associated with the flagellar beating frequencies of human spermatozoa. The analysis is performed on two groups divided according to the progressive motility of semen samples, as identified by standard clinical protocols. In the first group, 100% of the spermatozoa swim linearly (100% progressive motility), while, in the other, spermatozoa show both linear and circular motility (identified as 80 - 20% progressive motility). Significant differences in flagellar beating forces between spermatozoa from semen sample with different progressive motility are observed. Particularly, linear motile spermatozoa exhibit forces higher than those with a circular movement. CONCLUSIONS This research can increase our understanding of sperm motility and the role of mechanics in fertilization, which could help us unveil some of the causes of idiopathic male infertility.
Collapse
Affiliation(s)
- Cristina Tufoni
- University of Trieste, Trieste, 34100, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alice Battistella
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefania Luppi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Rita Boscolo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| | - Marco Lazzarino
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
| | - Laura Andolfi
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy.
| |
Collapse
|
3
|
Breitbart H, Grinshtein E. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction. Int J Mol Sci 2023; 24:17005. [PMID: 38069328 PMCID: PMC10707520 DOI: 10.3390/ijms242317005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
To acquire the capacity to fertilize the oocyte, mammalian spermatozoa must undergo a series of biochemical reactions in the female reproductive tract, which are collectively called capacitation. The capacitated spermatozoa subsequently interact with the oocyte zona-pellucida and undergo the acrosome reaction, which enables the penetration of the oocyte and subsequent fertilization. However, the spontaneous acrosome reaction (sAR) can occur prematurely in the sperm before reaching the oocyte cumulus oophorus, thereby jeopardizing fertilization. One of the main processes in capacitation involves actin polymerization, and the resulting F-actin is subsequently dispersed prior to the acrosome reaction. Several biochemical reactions that occur during sperm capacitation, including actin polymerization, protect sperm from sAR. In the present review, we describe the protective mechanisms that regulate sperm capacitation and prevent sAR.
Collapse
Affiliation(s)
- Haim Breitbart
- The Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | |
Collapse
|
4
|
Battistella A, Andolfi L, Stebel M, Ciubotaru C, Lazzarino M. Investigation on the change of spermatozoa flagellar beating forces before and after capacitation. BIOMATERIALS ADVANCES 2023; 145:213242. [PMID: 36549152 DOI: 10.1016/j.bioadv.2022.213242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/14/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The swimming forces exerted by mammalian spermatozoa during the pathway to the ovary and during the interaction with the oocyte are thought to play a fundamental role in the fertilization of the egg. In particular, a process named capacitation is of key relevance for its success. Capacitation enables spermatozoa to undergo the acrosome reaction and to exhibit different motility called hyperactivation with a change in the sperm cell tail motion from symmetric to a more asymmetric beating, characterized by wider flagellar bending at lower frequencies. Despite several studies about the mechanism that underlies capacitation, no quantitative information is available about the forces associated with sperm motility. Sperm cell motility has been widely studied with digital imaging tools and video microscopy, but these methodologies cannot provide information about the forces exerted by spermatozoa during the motion and the contribution of every single frequency of flagellar beating to the sperm cell movement. For this purpose, fluidic force microscopy was used to trap single swimming spermatozoa allowing to evaluate these parameters. We observe significant differences between capacitated and non-capacitated spermatozoa in terms of force exerted and beating frequencies. The description of the dynamics of this process is of great interest in the field of reproductive medicine. Such information could be useful to clarify unknown causes of male infertility or for the development of novel methods to assess the quality of semen samples.
Collapse
Affiliation(s)
- Alice Battistella
- CNR-IOM, SS 14 km 163.5 Area Science Park Basovizza, 34149 Trieste, Italy.
| | - Laura Andolfi
- CNR-IOM, SS 14 km 163.5 Area Science Park Basovizza, 34149 Trieste, Italy.
| | - Marco Stebel
- University of Trieste, P. le Europa 1, 34100 Trieste, Italy.
| | - Catalin Ciubotaru
- CNR-IOM, SS 14 km 163.5 Area Science Park Basovizza, 34149 Trieste, Italy.
| | - Marco Lazzarino
- CNR-IOM, SS 14 km 163.5 Area Science Park Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
5
|
Morohoshi A, Miyata H, Tokuhiro K, Iida-Norita R, Noda T, Fujihara Y, Ikawa M. Testis-enriched ferlin, FER1L5, is required for Ca 2+-activated acrosome reaction and male fertility. SCIENCE ADVANCES 2023; 9:eade7607. [PMID: 36696506 PMCID: PMC9876558 DOI: 10.1126/sciadv.ade7607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Spermatozoa need to undergo an exocytotic event called the acrosome reaction before fusing with eggs. Although calcium ion (Ca2+) is essential for the acrosome reaction, its molecular mechanism remains unknown. Ferlin is a single transmembrane protein with multiple Ca2+-binding C2 domains, and there are six ferlins, dysferlin (DYSF), otoferlin (OTOF), myoferlin (MYOF), fer-1-like 4 (FER1L4), FER1L5, and FER1L6, in mammals. Dysf, Otof, and Myof knockout mice have been generated, and each knockout mouse line exhibited membrane fusion disorders such as muscular dystrophy in Dysf, deafness in Otof, and abnormal myogenesis in Myof. Here, by generating mutant mice of Fer1l4, Fer1l5, and Fer1l6, we found that only Fer1l5 is required for male fertility. Fer1l5 mutant spermatozoa could migrate in the female reproductive tract and reach eggs, but no acrosome reaction took place. Even a Ca2+ ionophore cannot induce the acrosome reaction in Fer1l5 mutant spermatozoa. These results suggest that FER1L5 is the missing link between Ca2+ and the acrosome reaction.
Collapse
Affiliation(s)
- Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 5650871 Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
| | - Keizo Tokuhiro
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 5731191 Japan
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto 8600811 Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Kumamoto 8608555 Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka 5648565, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 5650871 Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639 Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 5650871 Japan
| |
Collapse
|
6
|
Anderegg MA, Gyimesi G, Ho TM, Hediger MA, Fuster DG. The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches. Front Physiol 2022; 13:898508. [PMID: 35694410 PMCID: PMC9174904 DOI: 10.3389/fphys.2022.898508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The SLC9 gene family encodes Na+/H+ exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1–9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets.
Collapse
Affiliation(s)
- Manuel A. Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Manuel A. Anderegg,
| | - Gergely Gyimesi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tin Manh Ho
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Cohen R, Mukai C, Nelson JL, Zenilman SS, Sosnicki DM, Travis AJ. A genetically targeted sensor reveals spatial and temporal dynamics of acrosomal calcium and sperm acrosome exocytosis. J Biol Chem 2022; 298:101868. [PMID: 35346690 PMCID: PMC9046242 DOI: 10.1016/j.jbc.2022.101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Secretion of the acrosome, a single vesicle located rostrally in the head of a mammalian sperm, through a process known as "acrosome exocytosis" (AE), is essential for fertilization. However, the mechanisms leading to and regulating this complex process are controversial. In particular, poor understanding of Ca2+ dynamics between sperm subcellular compartments and regulation of membrane fusion mechanisms have led to competing models of AE. Here, we developed a transgenic mouse expressing an Acrosome-targeted Sensor for Exocytosis (AcroSensE) to investigate the spatial and temporal Ca2+ dynamics in AE in live sperm. AcroSensE combines a genetically encoded Ca2+ indicator (GCaMP) fused with an mCherry indicator to spatiotemporally resolve acrosomal Ca2+ rise (ACR) and membrane fusion events, enabling real-time study of AE. We found that ACR is dependent on extracellular Ca2+ and that ACR precedes AE. In addition, we show that there are intermediate steps in ACR and that AE correlates better with the ACR rate rather than absolute Ca2+ amount. Finally, we demonstrate that ACR and membrane fusion progression kinetics and spatial patterns differ with different stimuli and that sites of initiation of ACR and sites of membrane fusion do not always correspond. These findings support a model involving functionally redundant pathways that enable a highly regulated, multistep AE in heterogeneous sperm populations, unlike the previously proposed "acrosome reaction" model.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jacquelyn L Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Shoshana S Zenilman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Danielle M Sosnicki
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Andolfi L, Battistella A, Zanetti M, Lazzarino M, Pascolo L, Romano F, Ricci G. Scanning Probe Microscopies: Imaging and Biomechanics in Reproductive Medicine Research. Int J Mol Sci 2021; 22:ijms22083823. [PMID: 33917060 PMCID: PMC8067746 DOI: 10.3390/ijms22083823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
Basic and translational research in reproductive medicine can provide new insights with the application of scanning probe microscopies, such as atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). These microscopies, which provide images with spatial resolution well beyond the optical resolution limit, enable users to achieve detailed descriptions of cell topography, inner cellular structure organization, and arrangements of single or cluster membrane proteins. A peculiar characteristic of AFM operating in force spectroscopy mode is its inherent ability to measure the interaction forces between single proteins or cells, and to quantify the mechanical properties (i.e., elasticity, viscoelasticity, and viscosity) of cells and tissues. The knowledge of the cell ultrastructure, the macromolecule organization, the protein dynamics, the investigation of biological interaction forces, and the quantification of biomechanical features can be essential clues for identifying the molecular mechanisms that govern responses in living cells. This review highlights the main findings achieved by the use of AFM and SNOM in assisted reproductive research, such as the description of gamete morphology; the quantification of mechanical properties of gametes; the role of forces in embryo development; the significance of investigating single-molecule interaction forces; the characterization of disorders of the reproductive system; and the visualization of molecular organization. New perspectives of analysis opened up by applying these techniques and the translational impacts on reproductive medicine are discussed.
Collapse
Affiliation(s)
- Laura Andolfi
- Istituto Officina dei Materiali IOM-CNR, 34149 Trieste, Italy; (A.B.); (M.Z.); (M.L.)
- Correspondence: (L.A.); (G.R.)
| | - Alice Battistella
- Istituto Officina dei Materiali IOM-CNR, 34149 Trieste, Italy; (A.B.); (M.Z.); (M.L.)
- Doctoral School in Nanotechnology, University of Trieste, 34100 Trieste, Italy
| | - Michele Zanetti
- Istituto Officina dei Materiali IOM-CNR, 34149 Trieste, Italy; (A.B.); (M.Z.); (M.L.)
- Doctoral School in Nanotechnology, University of Trieste, 34100 Trieste, Italy
| | - Marco Lazzarino
- Istituto Officina dei Materiali IOM-CNR, 34149 Trieste, Italy; (A.B.); (M.Z.); (M.L.)
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.P.); (F.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.P.); (F.R.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.P.); (F.R.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (L.A.); (G.R.)
| |
Collapse
|
9
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
10
|
Balestrini PA, Jabloñski M, Schiavi-Ehrenhaus LJ, Marín-Briggiler CI, Sánchez-Cárdenas C, Darszon A, Krapf D, Buffone MG. Seeing is believing: Current methods to observe sperm acrosomal exocytosis in real time. Mol Reprod Dev 2020; 87:1188-1198. [PMID: 33118273 DOI: 10.1002/mrd.23431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Acrosomal exocytosis (AR) is a critical process that sperm need to undergo to fertilize an egg. The evaluation of the presence or absence of the acrosome is usually performed by using lectins or dyes in fixed cells. With this approach, it is neither possible to monitor the dynamic process of exocytosis and related molecular events while discriminating between live and dead cells, nor to evaluate the acrosomal status while sperm reside in the female reproductive tract. However, over the last two decades, several new methodologies have been used to assess the occurrence of AR in living cells allowing different groups to obtain information that was not possible in the past. These techniques have revolutionized the whole study of this process. This review summarizes current methods available to analyze AR in living cells as well as the important information that emerged from studies using these approaches.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Balbach M, Hamzeh H, Jikeli JF, Brenker C, Schiffer C, Hansen JN, Neugebauer P, Trötschel C, Jovine L, Han L, Florman HM, Kaupp UB, Strünker T, Wachten D. Molecular Mechanism Underlying the Action of Zona-pellucida Glycoproteins on Mouse Sperm. Front Cell Dev Biol 2020; 8:572735. [PMID: 32984353 PMCID: PMC7487327 DOI: 10.3389/fcell.2020.572735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pHi increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pHi increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Jan F Jikeli
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christian Schiffer
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pia Neugebauer
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Harvey M Florman
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School Worcester, Worcester, MA, United States
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany.,Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Fahrenkamp E, Algarra B, Jovine L. Mammalian egg coat modifications and the block to polyspermy. Mol Reprod Dev 2020; 87:326-340. [PMID: 32003503 PMCID: PMC7155028 DOI: 10.1002/mrd.23320] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.
Collapse
Affiliation(s)
- Eileen Fahrenkamp
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
13
|
Mammalian spermatozoa and cumulus cells bind to a 3D model generated by recombinant zona pellucida protein-coated beads. Sci Rep 2019; 9:17989. [PMID: 31784633 PMCID: PMC6884566 DOI: 10.1038/s41598-019-54501-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The egg is a spherical cell encapsulated by the zona pellucida (ZP) which forms a filamentous matrix composed of several glycoproteins that mediate gamete recognition at fertilization. Studies on molecular mechanisms of sperm-egg binding are limited in many mammalian species by the scarcity of eggs, by ethical concerns in harvesting eggs, and by the high cost of producing genetically modified animals. To address these limitations, we have reproduced a three-dimensional (3D) model mimicking the oocyte's shape, by means of magnetic sepharose beads coated with recombinant ZP glycoproteins (BZP) and cumulus cells. Three preparations composed of either ZP2 (C and N-termini; BZP2), ZP3 (BZP3) or ZP4 (BZP4) were obtained and characterized by protein SDS-PAGE, immunoblot and imaging with confocal and electron microscopy. The functionality of the model was validated by adhesion of cumulus cells, the ability of the glycoprotein-beads to support spermatozoa binding and induce acrosome exocytosis. Thus, our findings document that ZP-beads provide a novel 3D tool to investigate the role of specific proteins on egg-sperm interactions becoming a relevant tool as a diagnostic predictor of mammalian sperm function once transferred to the industry.
Collapse
|
14
|
Bhakta HH, Refai FH, Avella MA. The molecular mechanisms mediating mammalian fertilization. Development 2019; 146:146/15/dev176966. [PMID: 31375552 DOI: 10.1242/dev.176966] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fertilization is a key biological process in which the egg and sperm must recognize one another and fuse to form a zygote. Although the process is a continuum, mammalian fertilization has been studied as a sequence of steps: sperm bind and penetrate through the zona pellucida of the egg, adhere to the egg plasma membrane and finally fuse with the egg. Following fusion, effective blocks to polyspermy ensure monospermic fertilization. Here, we review how recent advances obtained using genetically modified mouse lines bring new insights into the molecular mechanisms regulating mammalian fertilization. We discuss models for these processes and we include studies showing that these mechanisms may be conserved across different mammalian species.
Collapse
Affiliation(s)
- Hanisha H Bhakta
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| | - Fares H Refai
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| | - Matteo A Avella
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
15
|
Hirohashi N, Yanagimachi R. Sperm acrosome reaction: its site and role in fertilization. Biol Reprod 2019; 99:127-133. [PMID: 29462288 DOI: 10.1093/biolre/ioy045] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 01/14/2023] Open
Abstract
Manner and roles of sperm acrosome reaction in a variety of animals were compared.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, Oki, Japan
| | - Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
16
|
Okabe M. Sperm-egg interaction and fertilization: past, present, and future. Biol Reprod 2019; 99:134-146. [PMID: 29462236 DOI: 10.1093/biolre/ioy028] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/03/2018] [Indexed: 01/21/2023] Open
Abstract
Fifty years have passed since the findings of capacitation and acrosome reaction. These discoveries and the extensive effort of researchers led to the success of in vitro fertilization, which has become a top choice for patients at infertility clinics today. The effort to understand the mechanism of fertilization is ongoing, but the small number of eggs and similarly small quantity of spermatozoa continue to hinder biochemical experiments. The emergence of transgenic animals and gene disruption techniques has had a significant effect on fertilization research. Factors considered important in the early years were shown not to be essential and were replaced by newly found proteins. However, there is much about sperm-egg interaction which remains to be learned before we can outline the mechanism of fertilization. In fact, our understanding of sperm-egg interaction is entering a new stage. Progress in transgenic spermatozoa helped us to observe the behavior of spermatozoa in vivo and/or at the moment of sperm-egg fusion. These advancements are discussed together with the paradigm-shifting research in related fields to help us picture the direction which fertilization research may take in the future.
Collapse
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Tokuhiro K, Dean J. Glycan-Independent Gamete Recognition Triggers Egg Zinc Sparks and ZP2 Cleavage to Prevent Polyspermy. Dev Cell 2018; 46:627-640.e5. [PMID: 30122633 DOI: 10.1016/j.devcel.2018.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The zona pellucida surrounding ovulated eggs regulates monospermic fertilization necessary for successful development. Using mouse transgenesis, we document that the N terminus of ZP2 is sufficient for sperm binding to the zona matrix and for in vivo fertility. Sperm binding is independent of ZP2 glycans and does not occur after complete cleavage of ZP2 by ovastacin, a zinc metalloendopeptidase stored in egg cortical granules. Immediately following fertilization, a rapid block to sperm penetration of the zona pellucida is established that precedes ZP2 cleavage but requires ovastacin enzymatic activity. This block to penetration is associated with release of zinc from cortical granules coincident with exocytosis. High levels of zinc affect forward motility of sperm to prevent their passage through the zona matrix. This transient, post-fertilization block to sperm penetration provides a temporal window to complete the cleavage of ZP2, which prevents sperm binding to ensure monospermy.
Collapse
Affiliation(s)
- Keizo Tokuhiro
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Balbach M, Beckert V, Hansen JN, Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol Cell Endocrinol 2018; 468:111-120. [PMID: 29146556 DOI: 10.1016/j.mce.2017.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research (caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Vera Beckert
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany; Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany.
| |
Collapse
|
19
|
Sankaranarayanan S, Higashiyama T. Capacitation in Plant and Animal Fertilization. TRENDS IN PLANT SCIENCE 2018; 23:129-139. [PMID: 29170007 DOI: 10.1016/j.tplants.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Sexual reproduction relies on the successful fusion of the sperm and egg cell. Despite the vast differences between plants and animals, there are similarities at a molecular level between plant and animal reproduction. While the molecular basis of fertilization has been extensively studied in plants, the process of capacitation has received little attention until recently. Recent research has started to uncover the molecular basis of plant capacitation. Furthermore, recent studies suggest that the key molecules in plants and animal fertilization are functionally conserved. Here, we review new insights for our understanding of capacitation of pollen tube and fertilization in plants and also propose that there are commonalities in the process of sexual reproduction between plants and animals.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
20
|
Ramírez-Reveco A, Villarroel-Espíndola F, Rodríguez-Gil JE, Concha II. Neuronal signaling repertoire in the mammalian sperm functionality. Biol Reprod 2017; 96:505-524. [PMID: 28339693 DOI: 10.1095/biolreprod.116.144154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
The common embryonic origin has been a recurrent explanation to understand the presence of "neural receptors" in sperm. However, this designation has conditioned a bias marked by the classical neurotransmission model, dismissing the possibility that neurotransmitters can play specific roles in the sperm function by themselves. For instance, the launching of acrosome reaction, a fundamental sperm function, includes several steps that recall the process of presynaptic secretion. Unlike of postsynaptic neuron, whose activation is mediated by molecular interaction between neurotransmitter and postsynaptic receptors, the oocyte activation is not mediated by receptors, but by cytosolic translocation of sperm phospholipase (PLCζ). Thus, the sperm has a cellular design to access and activate the oocyte and restore the ploidy of the species by an "allogenic pronuclear fusion." At subcellular level, the events controlling sperm function, particularly the capacitation process, are activated by chemical signals that trigger ion fluxes, sterol oxidation, synthesis of cyclic adenosine monophosphate, protein kinase A activation, tyrosine phosphorylations and calcium signaling, which correspond to second messengers similar to those associated with exocytosis and growth cone guidance in neurons. Classically, the sperm function associated with neural signals has been analyzed as a unidimensional approach (single ligand-receptor effect). However, the in vivo sperm are exposed to multidimensional signaling context, for example, the GABAergic, monoaminergic, purinergic, cholinergic, and melatoninergic, to name a few. The aim of this review is to present an overview of sperm functionality associated with "neuronal signaling" and possible cellular and molecular mechanisms involved in their regulation.
Collapse
Affiliation(s)
- Alfredo Ramírez-Reveco
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Franz Villarroel-Espíndola
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Department of Pathology and Pediatric Pathology, Yale University, New Haven, Connecticut, USA
| | - Joan E Rodríguez-Gil
- Unitat de Reproducció Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ilona I Concha
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
21
|
Zhou W, Anderson AL, Turner AP, De Iuliis GN, McCluskey A, McLaughlin EA, Nixon B. Characterization of a novel role for the dynamin mechanoenzymes in the regulation of human sperm acrosomal exocytosis. Mol Hum Reprod 2017; 23:657-673. [DOI: 10.1093/molehr/gax044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022] Open
|
22
|
Hanaue M, Miwa N. Structural and rheological properties conferring fertilization competence to Xenopus egg-coating envelope. Sci Rep 2017; 7:5651. [PMID: 28720818 PMCID: PMC5515883 DOI: 10.1038/s41598-017-06093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/07/2017] [Indexed: 11/23/2022] Open
Abstract
The extracellular egg-coating envelope that comprises a meshwork of filaments polymerized by glycoproteins plays a pivotal role in species-selective sperm recognition and subsequent fertilization; however, the structural and rheological properties conferring fertilization competence to the egg-coating envelope remain poorly unveiled. Here we show several nanoscale-structural and viscoelastic properties of the egg-coat using the transmission electron microscopy and the quartz crystal microbalance experiments, following clamp of the egg-coat at either fertilization-competent or -incompetent statuses by short-term pretreatment with synthetic peptides. Individual filament of approximately 4.8 nm diameter crossed one another, forming several types of intersections. Higher competence-inducing treatment changed the proportion of V-, Y-, and T-type intersections, and induced more randomly deflected angles at intersections. Incompetence-inducing treatment increased the median of a Gaussian distribution of filament lengths that had a peak of 10-20 nm under control conditions; furthermore, this treatment created bumps in the 30-40 and 50-60 nm windows. Quartz crystal microbalance study revealed that viscoelasticity of the competent VE suspension was lower than that of incompetent VE, indicating that viscoelastic property required for successful fertilization resides within a specific range. These findings indicated that the architecture of the egg-coat is capable of rapid and dynamic remodeling, which determines fertilization efficiency.
Collapse
Affiliation(s)
- Mayu Hanaue
- Department of Physiology, School of Medicine, Toho University, Ohmori-nishi 5-21-16, Ohta-ku, Tokyo, 143-8540, Japan
| | - Naofumi Miwa
- Department of Physiology, School of Medicine, Toho University, Ohmori-nishi 5-21-16, Ohta-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
23
|
Fernandez-Fuertes B, Laguna-Barraza R, Fernandez-Gonzalez R, Gutierrez-Adan A, Blanco-Fernandez A, O’Doherty AM, Di Fenza M, Kelly AK, Kölle S, Lonergan P. Subfertility in bulls carrying a nonsense mutation in transmembrane protein 95 is due to failure to interact with the oocyte vestments†. Biol Reprod 2017; 97:50-60. [DOI: 10.1093/biolre/iox065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 11/12/2022] Open
|
24
|
Tosti E, Ménézo Y. Gamete activation: basic knowledge and clinical applications. Hum Reprod Update 2016; 22:420-39. [PMID: 27278231 PMCID: PMC4917743 DOI: 10.1093/humupd/dmw014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/01/2016] [Indexed: 01/07/2023] Open
Abstract
Background The first clues to the process of gamete activation date back to nearly 60 years ago. The mutual activation of gametes is a crucial event during fertilization. In the testis and ovaries, spermatozoa and oocytes are in a state of meiotic and metabolic quiescence and require reciprocal signals in order to undergo functional changes that lead to competence for fertilization. First, the oocyte activates sperm by triggering motility, chemoattraction, binding and the acrosome reaction, culminating with the fusion of the two plasma membranes. At the end of this cascade of events, collectively known as sperm capacitation, sperm-induced oocyte activation occurs, generating electrical, morphological and metabolic modifications in the oocyte. Objective and rationale The aim of this review is to provide the current state of knowledge regarding the entire process of gamete activation in selected specific animal models that have contributed to our understanding of fertilization in mammals, including humans. Here we describe in detail the reciprocal induction of the two activation processes, the molecules involved and the mechanisms of cell interaction and signal transduction that ultimately result in successful embryo development and creation of a new individual. Search methods We carried out a literature survey with no restrictions on publication date (from the early 1950s to March 2016) using PubMed/Medline, Google Scholar and Web of Knowledge by utilizing common keywords applied in the field of fertilization and embryo development. We also screened the complete list of references published in the most recent research articles and relevant reviews published in English (both animal and human studies) on the topics investigated. Outcomes Literature on the principal animal models demonstrates that gamete activation is a pre-requisite for successful fertilization, and is a process common to all species studied to date. We provide a detailed description of the dramatic changes in gamete morphology and behavior, the regulatory molecules triggering gamete activation and the intracellular ions and second messengers involved in active metabolic pathways in different species. Recent scientific advances suggest that artificial gamete activation may represent a novel technique to improve human IVF outcomes, but this approach requires caution. Wider implications Although controversial, manipulation of gamete activation represents a promising tool for ameliorating the fertilization rate in assisted reproductive technologies. A better knowledge of mechanisms that transform the quiescent oocyte into a pluripotent cell may also provide new insights for the clinical use of stem cells.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Yves Ménézo
- London Fertility Associates, 104 Harley Street, London WIG7JD, UK
| |
Collapse
|
25
|
Glycopolymer induction of mouse sperm acrosomal exocytosis shows highly cooperative self-antagonism. Biochem Biophys Res Commun 2016; 474:435-440. [PMID: 27150629 DOI: 10.1016/j.bbrc.2016.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/01/2016] [Indexed: 11/23/2022]
Abstract
Identifying inducers of sperm acrosomal exocytosis (AE) to understand sperm functionality is important for both mechanistic and clinical studies in mammalian fertilization. Epifluorescence microscopy methods, while reproducible, are laborious and incompatible for high throughput screening. Flow cytometry methods are ideal for quantitative measurements on large numbers of samples, yet typically rely on the use of lectins that can interfere with physiologic AE-inducers. Here, we present an optimized triple stain flow cytometric method that is suitable for high-throughput screening of AE activation by glycopolymers. SYTO-17 and propidium iodide (PI) were used to differentiate cells based on their membrane integrity or viability, and membrane impermeable soybean trypsin inhibitor (SBTI) was used to monitor acrosome exocytosis. The SBTI/PI/SYTO-17 combination provides a positive screen for viability and AE of live sperm cells with minimal noise or false positives. A scattering gate enables the use of samples that may be contaminated with non-cellular aggregates, e.g., cryopreservation agents. This assay format enabled detailed analysis of glycopolymer dose response curves. We found that fucose polymer has a narrow effective dose range (EC50 = 1.6 μM; IC50 = 13.5 μM); whereas mannose polymer and β-N-acetylglucosamine polymer have broader effective dose ranges (EC50 = 1.2 μM and 3.4 μM, respectively). These results highlight the importance of testing inducers over a large concentration range in small increments for accurate comparison.
Collapse
|
26
|
The bioactivities of the central segment of Zp2 polypeptide. ZYGOTE 2016; 24:768-74. [PMID: 27193969 DOI: 10.1017/s0967199416000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In order to understand the role of the protein zona pellucida 2 in fertilization, an antibody against a central segment of the zona pellucida 2 peptide, segment 190-505 (Z2eH), was prepared. The influence of the antibody on sperm-zona interaction was tested using the sperm-egg binding assay. The effect of the antibody on fertility was evaluated by passive immunization with anti-Z2eH antibody. Immunohistochemical assay showed that an antibody from rabbit reacted specifically with the natural zona pellucida on mouse ovarian sections. Immunofluorescence assay showed that the antibody bound specifically to the zonae pellucidae of the ovulated oocytes and 2-cell embryos after passive immunization. The antibody-treated oocytes bound capacitated sperm as control oocytes, passive immunization did not impede the action of sperm to fertilize the oocyte in vivo. These findings suggest that the central peptide of ZP2 (190-505) is immunogenic and contains zona pellucida-specific epitopes, however the central polypeptide might not be the crucial part from which to construct a functional domain to bind sperm.
Collapse
|
27
|
Hirohashi N. Site of Mammalian Sperm Acrosome Reaction. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 220:145-58. [DOI: 10.1007/978-3-319-30567-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
28
|
Kuo YW, Li SH, Maeda KI, Gadella BM, Tsai PSJ. Roles of the reproductive tract in modifications of the sperm membrane surface. J Reprod Dev 2016; 62:337-43. [PMID: 27009019 PMCID: PMC5004788 DOI: 10.1262/jrd.2016-028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Successful fertilization requires viable and
functional spermatozoa to recognize and fuse with
the oocyte. In most mammalian species, mature
spermatozoa are not capable of fertilizing the
oocytes immediately after ejaculation. However,
unlike somatic cells, spermatozoa, after leaving
the testis, are transcriptionally and
translationally silent; therefore, upon completion
of spermiogenesis, spermatozoa carry only a
minimal amount of essential proteins on their
membranes as well as within their restricted
volume of cytoplasm. To develop into a fully
functional and competent sperm that is capable of
successful fertilization, modifications of the
sperm membrane surface during its transit in the
reproductive tracts is critical. These
post-spermatogenesis modifications advance the
maturation of epididymal spermatozoa. In addition,
components secreted into the lumen of the
reproductive tracts that are later added onto the
sperm membrane surface also regulate (inhibit or
activate) the functions of the spermatozoa. This
acquisition of additional proteins from the
reproductive tracts may compensate for the
inactivity of morphologically mature spermatozoa.
In this review, we discuss the contributions of
the male and female genital tracts to
modifications of the sperm membrane surface at
different stages of fertilization.
Collapse
Affiliation(s)
- Yu-Wen Kuo
- Graduate Institute of Veterinary Medicine, National Taiwan University, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Abstract
Capacitation and the acrosome reaction are key phenomena in mammalian fertilization. These phenomena were found more than 60 years ago. However, fundamental questions regarding the nature of capacitation and the timing of the acrosome reaction remain unsolved. Factors were postulated over time, but as their roles were not verified by gene-disruption experiments, widely accepted notions concerning the mechanism of fertilization are facing modifications. Today, although in vitro fertilization systems remain our central research tool, the importance of in vivo observations must be revisited. Here, primarily focusing on our own research, I summarize how in vivo observations using gene-manipulated animals have elucidated new concepts in the mechanisms of fertilization.
Collapse
Affiliation(s)
- Masaru Okabe
- Center for Genetic Analysis for Biological Responses, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565 0871, Japan
| |
Collapse
|
30
|
Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev Biol 2016; 411:172-182. [PMID: 26872876 DOI: 10.1016/j.ydbio.2016.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 11/22/2022]
Abstract
Recent evidence demonstrated that most fertilizing mouse sperm undergo acrosomal exocytosis (AE) before binding to the zona pellucida of the eggs. However, the sites where fertilizing sperm could initiate AE and what stimuli trigger it remain unknown. Therefore, the aim of this study was to determine physiological sites of AE by using double transgenic mouse sperm, which carried EGFP in the acrosome and DsRed2 fluorescence in mitochondria. Using live imaging of sperm during in vitro fertilization of cumulus-oocyte complexes, it was observed that most sperm did not undergo AE. Thus, the occurrence of AE within the female reproductive tract was evaluated in the physiological context where this process occurs. Most sperm in the lower segments of the oviduct were acrosome-intact; however, a significant number of sperm that reached the upper isthmus had undergone AE. In the ampulla, only 5% of the sperm were acrosome-intact. These results support our previous observations that most of mouse sperm do not initiate AE close to or on the ZP, and further demonstrate that a significant proportion of sperm initiate AE in the upper segments of the oviductal isthmus.
Collapse
|
31
|
Okabe M. The Acrosome Reaction: A Historical Perspective. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:1-13. [PMID: 27194347 DOI: 10.1007/978-3-319-30567-7_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acrosome reaction is often referred to as acrosomal exocytosis, but it differs significantly from normal exocytosis. While the vesicle membrane initially holding excreting molecules remains on the cell surface during exocytosis, the outer acrosomal membrane and plasma membrane are lost by forming vesicles during acrosome reaction. In this context, the latter process resembles a release of exosome. However, recent experimental data indicate that the most important roles of acrosome reaction lie not in the release of acrosomal contents (or "vesiculated" plasma and outer acrosomal membrane complexes) but rather in changes in sperm membrane. This review describes the mechanism of fertilization vis-a-vis sperm membrane change, with a brief historical overview of the half-century study of acrosome reaction.
Collapse
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
32
|
Role of Actin Cytoskeleton During Mammalian Sperm Acrosomal Exocytosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:129-44. [PMID: 27194353 DOI: 10.1007/978-3-319-30567-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian sperm require to undergo an exocytotic process called acrosomal exocytosis in order to be able to fuse with the oocyte. This ability is acquired during the course of sperm capacitation. This review is focused on one aspect related to this acquisition: the role of the actin cytoskeleton. Evidence from different laboratories indicates that actin polymerization occurs during capacitation, and the detection of several actin-related proteins suggests that the cytoskeleton is involved in important sperm functions. In other mammalian cells, the cortical actin network acts as a dominant negative clamp which blocks constitutive exocytosis but, at the same time, is necessary to prepare the cell to undergo regulated exocytosis. Thus, F-actin stabilizes structures generated by exocytosis and supports the physiological progression of this process. Is this also the case in mammalian sperm? This review summarizes what is currently known about actin and its related proteins in the male gamete, with particular emphasis on their role in acrosomal exocytosis.
Collapse
|
33
|
Miwa N. Dicalcin, a zona pellucida protein that regulates fertilization competence of the egg coat in Xenopus laevis. J Physiol Sci 2015; 65:507-14. [PMID: 26420688 PMCID: PMC10717281 DOI: 10.1007/s12576-015-0402-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022]
Abstract
Fertilization is a highly coordinated process whereby sperm interact with the egg-coating envelope (called the zona pellucida, ZP) in a taxon-restricted manner, Fertilization triggers the resumption of the cell cycle of the egg, ultimately leading to generation of a new organism that contains hereditary information of the parents. The complete sperm-ZP interaction comprises sperm recognition of the ZP, the acrosome reaction, penetration of the ZP, and fusion with the egg. Recent evidence suggests that these processes involve oligosaccharides associated with a ZP constituent (termed ZP protein), the polypeptide backbone of a ZP protein, and/or the proper three-dimensional filamentous structure of the ZP. However, a detailed description of the molecular mechanisms involved in sperm-ZP interaction remains elusive. Recently, I found that dicalcin, a novel ZP protein-associated protein, suppresses fertilization through its association with gp41, the frog counterpart of the mammalian ZPC protein. This review focuses on molecular aspects of sperm-ZP interaction and describes the fertilization-suppressive function of dicalcin and associated molecular mechanisms. The amount of dicalcin in the ZP significantly correlates with alteration of the lectin-staining pattern within the ZP and the orientation pattern of ZP filaments, which may assist in elucidating the complex molecular mechanisms that underlie sperm-ZP interaction.
Collapse
Affiliation(s)
- Naofumi Miwa
- Department of Physiology, School of Medicine, Toho University, Tokyo, Japan.
| |
Collapse
|
34
|
Hirohashi N, Spina FAL, Romarowski A, Buffone MG. Redistribution of the intra-acrosomal EGFP before acrosomal exocytosis in mouse spermatozoa. Reproduction 2015; 149:657-63. [PMID: 25832106 DOI: 10.1530/rep-15-0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/01/2015] [Indexed: 01/23/2023]
Abstract
Mammalian spermatozoa must undergo complex physiological and morphological alterations within the female reproductive tract before they become fertilization competent. Two important alterations are capacitation and the acrosome reaction (AR), by which spermatozoa become capable of penetrating the zona pellucida (ZP) of the oocyte. Although various biochemical stimulants have been reported to induce the AR, the true physiological inducer in vivo remains to be identified. Previously, it has been reported that most fertilizing spermatozoa undergo the AR before contacting the ZP and that only a small fraction of in vitro-capacitated spermatozoa can penetrate the ZP. Therefore, it is important to identify which capacitating spermatozoa undergo the AR in response to potential AR inducers such as progesterone. Here we show that spermatozoa undergo a dynamic rearrangement of the acrosome during in vitro capacitation. This involves the rapid movement of an artificially introduced soluble component of the acrosome, enhanced green fluorescent protein (EGFP), from the acrosomal cap region to the equatorial segment (EQ) of the sperm head. Spermatozoa exhibiting the EQ pattern were more sensitive to progesterone than were those without it. We suggest that spermatozoa that are ready to undergo acrosomal exocytosis can be detected by real-time EGFP imaging. This offers a promising new method for identifying where spermatozoa undergo the AR in the female reproductive tract in vivo.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Oki Marine Biological StationEducation and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, JapanDepartment of Biological SciencesOchanomizu University, 2-1-1 Otsuka, Tokyo 112-8610, JapanInstituto de Biología y Medicina Experimental (IBYME)National Research Council of Argentina (CONICET), Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina Oki Marine Biological StationEducation and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, JapanDepartment of Biological SciencesOchanomizu University, 2-1-1 Otsuka, Tokyo 112-8610, JapanInstituto de Biología y Medicina Experimental (IBYME)National Research Council of Argentina (CONICET), Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Florenza A La Spina
- Oki Marine Biological StationEducation and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, JapanDepartment of Biological SciencesOchanomizu University, 2-1-1 Otsuka, Tokyo 112-8610, JapanInstituto de Biología y Medicina Experimental (IBYME)National Research Council of Argentina (CONICET), Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Ana Romarowski
- Oki Marine Biological StationEducation and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, JapanDepartment of Biological SciencesOchanomizu University, 2-1-1 Otsuka, Tokyo 112-8610, JapanInstituto de Biología y Medicina Experimental (IBYME)National Research Council of Argentina (CONICET), Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Mariano G Buffone
- Oki Marine Biological StationEducation and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, JapanDepartment of Biological SciencesOchanomizu University, 2-1-1 Otsuka, Tokyo 112-8610, JapanInstituto de Biología y Medicina Experimental (IBYME)National Research Council of Argentina (CONICET), Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| |
Collapse
|
35
|
Zigo M, Dorosh A, Pohlová A, Jonáková V, Šulc M, Maňásková-Postlerová P. Panel of monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and identification of sperm–zona pellucida receptors. Cell Tissue Res 2014; 359:895-908. [DOI: 10.1007/s00441-014-2072-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 11/17/2014] [Indexed: 02/01/2023]
|
36
|
Molecular and cellular mechanisms of sperm-oocyte interactions opinions relative to in vitro fertilization (IVF). Int J Mol Sci 2014; 15:12972-97. [PMID: 25054321 PMCID: PMC4139886 DOI: 10.3390/ijms150712972] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/07/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022] Open
Abstract
One of the biggest prerequisites for pregnancy is the fertilization step, where a human haploid spermatozoon interacts and penetrates one haploid oocyte in order to produce the diploid zygote. Although fertilization is defined by the presence of two pronuclei and the extraction of the second polar body the process itself requires preparation of both gametes for fertilization to take place at a specific time. These preparations include a number of consecutive biochemical and molecular events with the help of specific molecules and with the consequential interaction between the two gametes. These events take place at three different levels and in a precise order, where the moving spermatozoon penetrates (a) the outer vestments of the oocyte, known as the cumulus cell layer; (b) the zona pellucida (ZP); where exocytosis of the acrosome contents take place and (c) direct interaction of the spermatozoon with the plasma membrane of the oocyte, which involves a firm adhesion of the head of the spermatozoon with the oocyte plasma membrane that culminates with the fusion of both sperm and oocyte membranes (Part I). After the above interactions, a cascade of molecular signal transductions is initiated which results in oocyte activation. Soon after the entry of the first spermatozoon into the oocyte and oocyte activation, the oocyte’s coat (the ZP) and the oocyte’s plasma membrane seem to change quickly in order to initiate a fast block to a second spermatozoon (Part II). Sometimes, two spermatozoa fuse with one oocyte, an incidence of 1%–2%, resulting in polyploid fetuses that account for up to 10%–20% of spontaneously aborted human conceptuses. The present review aims to focus on the first part of the human sperm and oocyte interactions, emphasizing the latest molecular and cellular mechanisms controlling this process.
Collapse
|
37
|
Abstract
Despite numerous studies on mammalian fertilization, the mechanisms of
fertilization—including the timing of acrosome reaction—remain largely unknown; more
accurately described, the classical theory built upon years of layered experimental data
is being challenged by recent conflicting evidence provided by gene-manipulated animals.
Although in vitro fertilization remains our central research tool, the
classical theory’s decline reminds us of the importance of in vivo
observations. Here, I describe the essential roles of gene-manipulated animals in
elucidating the mechanism of fertilization and the pitfalls of in vitro
fertilization studies trapping many researchers.
Collapse
Affiliation(s)
- Masaru Okabe
- Center for Genetic Analysis for Biological Responses, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Avella MA, Baibakov B, Dean J. A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. ACTA ACUST UNITED AC 2014; 205:801-9. [PMID: 24934154 PMCID: PMC4068139 DOI: 10.1083/jcb.201404025] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ZP251–149 domain is necessary for human and mouse gamete recognition on the surface of the zona pellucida and for mouse fertility. The extracellular zona pellucida surrounds ovulated eggs and mediates gamete recognition that is essential for mammalian fertilization. Zonae matrices contain three (mouse) or four (human) glycoproteins (ZP1–4), but which protein binds sperm remains controversial. A defining characteristic of an essential zona ligand is sterility after genetic ablation. We have established transgenic mice expressing human ZP4 that form zonae pellucidae in the absence of mouse or human ZP2. Neither mouse nor human sperm bound to these ovulated eggs, and these female mice were sterile after in vivo insemination or natural mating. The same phenotype was observed with truncated ZP2 that lacks a restricted domain within ZP251–149. Chimeric human/mouse ZP2 isoforms expressed in transgenic mice and recombinant peptide bead assays confirmed that this region accounts for the taxon specificity observed in human–mouse gamete recognition. These observations in transgenic mice document that the ZP251–149 sperm-binding domain is necessary for human and mouse gamete recognition and penetration through the zona pellucida.
Collapse
Affiliation(s)
- Matteo A Avella
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Boris Baibakov
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
39
|
Buffone MG, Hirohashi N, Gerton GL. Unresolved questions concerning mammalian sperm acrosomal exocytosis. Biol Reprod 2014; 90:112. [PMID: 24671881 DOI: 10.1095/biolreprod.114.117911] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, the study of mammalian acrosomal exocytosis has produced some major advances that challenge the long-held, general paradigms in the field. Principally, the idea that sperm must be acrosome-intact to bind to the zona pellucida of unfertilized eggs, based largely on in vitro fertilization studies of mouse oocytes denuded of the cumulus oophorus, has been overturned by experiments using state-of-the-art imaging of cumulus-intact oocytes and fertilization experiments where eggs were reinseminated by acrosome-reacted sperm recovered from the perivitelline space of zygotes. In light of these results, this minireview highlights a number of unresolved questions and emphasizes the fact that there is still much work to be done in this exciting field. Future experiments using recently advanced technologies should lead to a more complete and accurate understanding of the molecular mechanisms governing the fertilization process in mammals.
Collapse
Affiliation(s)
- Mariano G Buffone
- Instituto de Biologia y Medicina Experimental, National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, Shimane, Japan
| | - George L Gerton
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Wu L, Sampson NS. Fucose, mannose, and β-N-acetylglucosamine glycopolymers initiate the mouse sperm acrosome reaction through convergent signaling pathways. ACS Chem Biol 2014; 9:468-75. [PMID: 24252131 PMCID: PMC4049243 DOI: 10.1021/cb400550j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The sperm acrosome reaction (AR),
an essential exocytosis step
in mammalian fertilization, is mediated by a species-specific interaction
of sperm surface molecules with glycans on the egg. Previous studies
indicate that a subset of terminal carbohydrates on the mouse egg
zona pellucida (ZP) trigger the AR by cross-linking or aggregating
receptors on the sperm membrane. However, the exact role of those
carbohydrates in AR has not been identified and the mechanism underlying
the AR still needs further investigation. To study this process, a
series of glycopolymers was synthesized. The glycopolymers are composed
of a multivalent scaffold (norbornene), a functional ligand (previously
identified ZP terminal monosaccharides), and a linker connecting the
ligand and the scaffold. The polymers were tested for their ability
to initiate AR and through which signaling pathways AR induction occurred.
Our data demonstrate that mannose, fucose, and β-N-acetylglucosamine 10-mers and 100-mers initiate AR in a dose-dependent
manner, and the 100-mers are more potent on a per monomer basis than
the 10-mers. Although nearly equipotent in inducing the AR at the
optimal concentrations, their AR activation kinetics are not identical.
Similar to mouse ZP3, all 100-mer-activated AR are sensitive to guanine-binding
regulatory proteins (G-proteins), tyrosine kinase, protein kinase
A, protein kinase C, and Ca2+-related antagonists. Thus,
the chemotypes of synthetic glycopolymers imitate the physiologic
AR-activation agents and provide evidence that occupation of one of
at least three different receptor binding sites is sufficient to initiate
the AR.
Collapse
Affiliation(s)
- Linghui Wu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
41
|
Abstract
Fertilization is the process by which eggs and spermatozoa interact, achieve mutual recognition, and fuse to create a zygote, which then develops to form a new individual, thus allowing for the continuity of a species. Despite numerous studies on mammalian fertilization, the molecular mechanisms underpinning the fertilization event remain largely unknown. However, as I summarize here, recent work using both gene-manipulated animals and in vitro studies has begun to elucidate essential sperm and egg molecules and to establish predictive models of successful fertilization.
Collapse
Affiliation(s)
- Masaru Okabe
- Center for Genetic Analysis for Biological Responses Research Institute for Microbial Diseases Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Affiliation(s)
- Masaru OKABE
- Center for Genetic Analysis for Biological Responses, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Affiliation(s)
- Jorge Parodi
- Laboratorio de Fisiología de la Reproducción, Escuela de Medicina Veterinaria, Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco
TemucoChile
| |
Collapse
|
44
|
Gray JE, Starmer J, Lin VS, Dickinson BC, Magnuson T. Mitochondrial hydrogen peroxide and defective cholesterol efflux prevent in vitro fertilization by cryopreserved inbred mouse sperm. Biol Reprod 2013; 89:17. [PMID: 23740947 DOI: 10.1095/biolreprod.113.109157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent advances in the cryopreservation of mouse sperm have resulted in dramatically improved in vitro fertilization (IVF) rates, but the biological mechanisms underlying the techniques remain unclear. Two different classes of compounds have been widely utilized to improve the IVF rates of cryopreserved mouse sperm: antioxidants and cyclodextrins. To determine how cryopreservation reduces mouse sperm IVF and how antioxidants and cyclodextrins mitigate this effect, we examined sperm function and oxidative damage after cryopreservation, with and without treatments, in mouse strains important for biomedical research. Our investigation revealed mouse strain-specific effects on IVF by modulation of oxidative stress and cholesterol efflux of cryopreserved sperm. Antioxidants improved IVF rates of C57Bl6/J cryopreserved mouse sperm by reducing hydrogen peroxide produced by sperm mitochondria and ameliorating peroxidative damage to the sperm acrosome. Enhancing cholesterol efflux with cyclodextrin restored capacitation-dependent sperm function and IVF after cryopreservation of C57Bl/6J, C57Bl/6N, and 129X1 mouse sperm. Our results highlight two accessible pathways for continued development of IVF techniques for mouse sperm and provide novel endpoints prognostic of IVF success. These insights may improve sperm cryopreservation methods of other mouse strains and species.
Collapse
Affiliation(s)
- Jeffrey E Gray
- Department of Genetics, the Carolina Center for Genome Sciences, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
45
|
Li L, Lu X, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med 2013; 34:919-38. [PMID: 23352575 DOI: 10.1016/j.mam.2013.01.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies.
Collapse
Affiliation(s)
- Lei Li
- Division of Molecular Embryonic Development, State Key Laboratory of Reproductive Biology, Institute of Zoology/Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | |
Collapse
|
46
|
Avella MA, Xiong B, Dean J. The molecular basis of gamete recognition in mice and humans. Mol Hum Reprod 2013; 19:279-89. [PMID: 23335731 DOI: 10.1093/molehr/gat004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Successful fertilization heralds the onset of development and requires both gamete recognition and a definitive block to polyspermy. Sperm initially bind and penetrate the extracellular zona pellucida (ZP) that surrounds ovulated eggs, but are unable to bind the zona surrounding preimplantation embryos. The ZP of humans is composed of four (ZP1-4) and that of mouse three (ZP1-3) glycoproteins. Models for gamete recognition developed in mice had proposed that sperm bind to ZP3 glycans. However, phenotypes observed in genetically engineered mice are not consistent with this widely accepted model. More recently, taking advantage of the observation that human sperm do not bind to mouse eggs, human ZP2 was defined as the zona ligand in transgenic mouse models using gain-of-function assays. The sperm-binding site is an N-terminal domain of ZP2 that is cleaved by ovastacin, a metalloendoprotease released from egg cortical granules following fertilization. Proteolysis of this docking site provides a definitive block to polyspermy as sperm bind to uncleaved, but not cleaved ZP2 even after fertilization and cortical granule exocytosis. While progress has been made in defining the ZP ligand, less headway has been made in identifying the cognate sperm receptor. Although a number of sperm receptor candidates have been documented to interact with specific proteins in the ZP in vitro, continued fertility after genetic ablation of the cognate gene indicates that none are essential for gamete recognition. These on-going investigations inform reproductive medicine and suggest new therapies to improve fertility and/or provide contraception, thus expanding reproductive choices for human couples.
Collapse
Affiliation(s)
- Matteo A Avella
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
47
|
Suzuki H, Dann CT, Rajkovic A. Generation of a germ cell-specific mouse transgenic CHERRY reporter, Sohlh1-mCherryFlag. Genesis 2013; 51:50-8. [PMID: 22965810 PMCID: PMC3547139 DOI: 10.1002/dvg.22347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/02/2012] [Accepted: 09/04/2012] [Indexed: 01/15/2023]
Abstract
Visualization of differentiating germ cells is critical to understanding the formation of primordial follicles in the ovary, and the commitment of spermatogonial stem cells to differentiation. We engineered and generated a BAC transgenic mouse line, Sohlh1-mCherryFlag (S1CF), under the direction of the native Sohlh1 promoter. Sohlh1 is a germ cell-specific gene that encodes the basic helix-loop-helix (bHLH) transcriptional regulator that is essential in oogenesis and spermatogenesis. Sohlh1 expression is unique, and is limited to perinatal and early follicle oocytes and differentiating spermatogonia. The Sohlh1-mCherryFlag transgene was engineered to fuse SOHLH1 to the red fluorescent protein CHERRY with 3-tandem-FLAG tags. S1CF animals fluoresce specifically in the oocytes of perinatal ovaries and small follicles in adult ovaries, as well as in spermatogonia, a pattern that is similar to endogenous SOHLH1. Moreover, S1CF rescued germ cell loss and infertility in both male and female Sohlh1(-/-) animals. The FLAG-tag on S1CF was effective for immunostaining and immunoprecipitation. The Sohlh1-mCherryFlag transgenic mouse provides a unique model to study early germ cell differentiation, as well as in vivo imaging and purification of differentiating germ cells.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Aleksandar Rajkovic
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
48
|
Protein-tyrosine kinase signaling in the biological functions associated with sperm. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:181560. [PMID: 23209895 PMCID: PMC3503396 DOI: 10.1155/2012/181560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/17/2012] [Accepted: 05/31/2012] [Indexed: 01/07/2023]
Abstract
In sexual reproduction, two gamete cells (i.e., egg and sperm) fuse (fertilization) to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization).
Collapse
|
49
|
Baibakov B, Boggs NA, Yauger B, Baibakov G, Dean J. Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice. ACTA ACUST UNITED AC 2012; 197:897-905. [PMID: 22734000 PMCID: PMC3384420 DOI: 10.1083/jcb.201203062] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1-3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm-egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy.
Collapse
Affiliation(s)
- Boris Baibakov
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
50
|
Burkart AD, Xiong B, Baibakov B, Jiménez-Movilla M, Dean J. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. ACTA ACUST UNITED AC 2012; 197:37-44. [PMID: 22472438 PMCID: PMC3317803 DOI: 10.1083/jcb.201112094] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
After fertilization, the metalloendoprotease ovastacin is released by cortical granule exocytosis and cleaves the zona pellucida glycoprotein ZP2, an essential step to block sperm binding to an already fertilized egg. The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, and ZP3), of which ZP2 is proteolytically cleaved after gamete fusion to prevent polyspermy. This cleavage is associated with exocytosis of cortical granules that are peripherally located subcellular organelles unique to ovulated eggs. Based on the cleavage site of ZP2, ovastacin was selected as a candidate protease. Encoded by the single-copy Astl gene, ovastacin is an oocyte-specific member of the astacin family of metalloendoproteases. Using specific antiserum, ovastacin was detected in cortical granules before, but not after, fertilization. Recombinant ovastacin cleaved ZP2 in native zonae pellucidae, documenting that ZP2 was a direct substrate of this metalloendoprotease. Female mice lacking ovastacin did not cleave ZP2 after fertilization, and mouse sperm bound as well to Astl-null two-cell embryos as they did to normal eggs. Ovastacin is a pioneer component of mouse cortical granules and plays a definitive role in the postfertilization block to sperm binding that ensures monospermic fertilization and successful development.
Collapse
Affiliation(s)
- Anna D Burkart
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|