1
|
Hu B, Pinzour J, Patel A, Rooney F, Zerwic A, Gao Y, Nguyen NT, Xie H, Ye D, Lin F. Gα13 controls pharyngeal endoderm convergence by regulating E-cadherin expression and RhoA activation. Development 2024; 151:dev202597. [PMID: 39258889 PMCID: PMC11463957 DOI: 10.1242/dev.202597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Pharyngeal endoderm cells undergo convergence and extension (C&E), which is essential for endoderm pouch formation and craniofacial development. Our previous work implicates Gα13/RhoA-mediated signaling in regulating this process, but the underlying mechanisms remain unclear. Here, we have used endoderm-specific transgenic and Gα13 mutant zebrafish to demonstrate that Gα13 plays a crucial role in pharyngeal endoderm C&E by regulating RhoA activation and E-cadherin expression. We showed that during C&E, endodermal cells gradually establish stable cell-cell contacts, acquire apical-basal polarity and undergo actomyosin-driven apical constriction, which are processes that require Gα13. Additionally, we found that Gα13-deficient embryos exhibit reduced E-cadherin expression, partially contributing to endoderm C&E defects. Notably, interfering with RhoA function disrupts spatial actomyosin activation without affecting E-cadherin expression. Collectively, our findings identify crucial cellular processes for pharyngeal endoderm C&E and reveal that Gα13 controls this through two independent pathways - modulating RhoA activation and regulating E-cadherin expression - thus unveiling intricate mechanisms governing pharyngeal endoderm morphogenesis.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua Pinzour
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Asmi Patel
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Faith Rooney
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amie Zerwic
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nhan T. Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Caetano da Silva C, Macias Trevino C, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. Commun Biol 2024; 7:1040. [PMID: 39179789 PMCID: PMC11344038 DOI: 10.1038/s42003-024-06715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shannon H Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russ P Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospital for Children, Tampa, FL, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
da Silva CC, Trevino CM, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601574. [PMID: 39005284 PMCID: PMC11245018 DOI: 10.1101/2024.07.02.601574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Shannon H. Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W. Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Russ P. Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C. Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospital for Children, Tampa, FL, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA signaling stimulate actin polymerization and flow in protrusions to drive collective cell migration. Curr Biol 2024; 34:245-259.e8. [PMID: 38096821 PMCID: PMC10872453 DOI: 10.1016/j.cub.2023.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network. Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin-II-dependent actin flow and protrusion retraction at the base of the protrusions and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
5
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA Signaling Stimulate Actin Polymerization and Flow in Protrusions to Drive Collective Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560679. [PMID: 37873192 PMCID: PMC10592895 DOI: 10.1101/2023.10.03.560679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network (Yamada and Sixt, 2019). Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin II-dependent actin flow and protrusion retraction at the base of the protrusions, and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other-but not all (Bastock and Strutt, 2007; Lebreton and Casanova, 2013; Matthews et al., 2008)-contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| | - Michael Cammer
- Microscopy laboratory, New York University Grossman School of Medicine, New York, United States
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
6
|
Stark BC, Gao Y, Sepich DS, Belk L, Culver MA, Hu B, Mekel M, Ferris W, Shin J, Solnica-Krezel L, Lin F, Cooper JA. CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Dev Biol 2022; 481:148-159. [PMID: 34599906 PMCID: PMC8781030 DOI: 10.1016/j.ydbio.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Diane S. Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lakyn Belk
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew A. Culver
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Wyndham Ferris
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| |
Collapse
|
7
|
Abstract
The inner ear, which mediates the senses of hearing and balance, derives from a simple ectodermal vesicle in the vertebrate embryo. In the zebrafish, the otic placode and vesicle express a whole suite of genes required for ciliogenesis and ciliary motility. Every cell of the otic epithelium is ciliated at early stages; at least three different ciliary subtypes can be distinguished on the basis of length, motility, genetic requirements and function. In the early otic vesicle, most cilia are short and immotile. Long, immotile kinocilia on the first sensory hair cells tether the otoliths, biomineralized aggregates of calcium carbonate and protein. Small numbers of motile cilia at the poles of the otic vesicle contribute to the accuracy of otolith tethering, but neither the presence of cilia nor ciliary motility is absolutely required for this process. Instead, otolith tethering is dependent on the presence of hair cells and the function of the glycoprotein Otogelin. Otic cilia or ciliary proteins also mediate sensitivity to ototoxins and coordinate responses to extracellular signals. Other studies are beginning to unravel the role of ciliary proteins in cellular compartments other than the kinocilium, where they are important for the integrity and survival of the sensory hair cell. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Tanya T Whitfield
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
8
|
Fuentealba J, Toro-Tapia G, Rodriguez M, Arriagada C, Maureira A, Beyer A, Villaseca S, Leal JI, Hinrichs MV, Olate J, Caprile T, Torrejón M. Expression profiles of the Gα subunits during Xenopus tropicalis embryonic development. Gene Expr Patterns 2016; 22:15-25. [PMID: 27613600 DOI: 10.1016/j.gep.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/31/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development.
Collapse
Affiliation(s)
- Jaime Fuentealba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Marion Rodriguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Cecilia Arriagada
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Alejandro Maureira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Juan I Leal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Maria V Hinrichs
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Juan Olate
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
9
|
Prieto D, Zolessi FR. Functional Diversification of the Four MARCKS Family Members in Zebrafish Neural Development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:119-138. [PMID: 27554589 DOI: 10.1002/jez.b.22691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Myristoylated alanin-rich C-kinase substrate (MARCKS) and MARCKS-like 1, each encoded by a different gene, comprise a very small family of actin-modulating proteins with essential roles in mammalian neural development. We show here that four genes (two marcks and two marcksl1) are present in teleosts including zebrafish, while ancient actinopterigians, sarcopterigian fishes, and chondrichtyans only have two. No marcks genes were found in agnaths or invertebrates. All four zebrafish genes are expressed during development, and we show here how their early knockdown causes defects in neural development, with some phenotypical differences. Knockdown of marcksa generated embryos with smaller brain and eyes, while marcksb caused different morphogenetic defects, such as larger hindbrain ventricle and folded retina. marcksl1a and marcksl1b morpholinos also caused smaller eyes and brain, although marcksl1a alone generated larger brain ventricles. At 24 hpf, marcksb caused a wider angle of the hindbrain walls, while marcksl1a showed a "T-shaped" neural tube and alterations in neuroepithelium organization. The double knockdown surprisingly produced new features, which included an increased neuroepithelial disorganization and partial neural tube duplications evident at 48 hpf, suggesting defects in convergent extension. This disorganization was also evident in the retina, although retinal ganglion cells were still able to differentiate. marcksl1b morphants presented a unique retinal phenotype characterized by the occurrence of sporadic ectopic neuronal differentiation. Although only marcksl1a morphant had a clear "ciliary phenotype," all presented significantly shorter cilia. Altogether, our data show that all marcks genes have functions in zebrafish neural development, with some differences that suggest the onset of protein diversification.
Collapse
Affiliation(s)
- Daniel Prieto
- Facultad de Ciencias, Sección Biología Celular, Universidad de la República, Montevideo, Uruguay
| | - Flavio R Zolessi
- Facultad de Ciencias, Sección Biología Celular, Universidad de la República, Montevideo, Uruguay.,Cell Biology of Neural Development Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
10
|
Chen YH, Chang CF, Lai YY, Sun CY, Ding YJ, Tsai JN. von Hippel-Lindau gene plays a role during zebrafish pronephros development. In Vitro Cell Dev Biol Anim 2015. [PMID: 26194803 DOI: 10.1007/s11626-015-9938-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
von Hippel-Lindau (pVHL)-mediated ubiquitination of HIF-1α plays a central role in the cellular responses to changes in oxygen availability. In the present study, using zebrafish as a model, we showed that specific knockdown of endogenous vhl leads to pronephros malformation and renal failure. Knockdown of vhl resulted in abnormal kidney development, including curved and cystic pronephric tubule or/and cystic and atrophic glomerulus. Co-injecting capped vhl messenger RNA (mRNA) partially rescued pronephros morphant phenotype, confirming the specificity of the morpholino oligonucleotide (MO)-induced pronephric defects. In keeping with the pronephros phenotype, renal function was affected as well in vhl morphants. Dextran clearance abilities of vhl morphants were significantly reduced as compared with those of control embryos. Further analysis indicated that glomerular integrity is impaired in vhl morphants, while the organization of pronephric duct was minimally affected. Vhl morphants display global increased vegf signaling and angiogenesis. In addition, we found that vhl morphants displayed elevated expression of vegfa in podocytes and increased angiogenesis at pronephric glomerulus and the nearby vessels. Treatment of vegf inducer to embryos also caused pronephros phenotype resembling vhl morphants, further supporting that increased vegfa signaling contribute to the pronephros morphant phenotype. Our study establishes the zebrafish as an alternative vertebrate model system for studying Vhl function during kidney development.
Collapse
Affiliation(s)
- Yau-Hung Chen
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan. .,Bachelor's Program in Advanced Material Sciences, Tamkang University, Tamsui, New Taipei, Taiwan.
| | - Chiung-Fang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Yu Lai
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Ju Ding
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan
| | - Jen-Ning Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
12
|
Young T, Poobalan Y, Tan EK, Tao S, Ong S, Wehner P, Schwenty-Lara J, Lim CY, Sadasivam A, Lovatt M, Wang ST, Ali Y, Borchers A, Sampath K, Dunn NR. The PDZ domain protein Mcc is a novel effector of non-canonical Wnt signaling during convergence and extension in zebrafish. Development 2014; 141:3505-16. [DOI: 10.1242/dev.114033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During vertebrate gastrulation, a complex set of mass cellular rearrangements shapes the embryonic body plan and appropriately positions the organ primordia. In zebrafish and Xenopus, convergence and extension (CE) movements simultaneously narrow the body axis mediolaterally and elongate it from head to tail. This process is governed by polarized cell behaviors that are coordinated by components of the non-canonical, β-catenin-independent Wnt signaling pathway, including Wnt5b and the transmembrane planar cell polarity (PCP) protein Vangl2. However, the intracellular events downstream of Wnt/PCP signals are not fully understood. Here, we show that zebrafish mutated in colorectal cancer (mcc), which encodes an evolutionarily conserved PDZ domain-containing putative tumor suppressor, is required for Wnt5b/Vangl2 signaling during gastrulation. Knockdown of mcc results in CE phenotypes similar to loss of vangl2 and wnt5b, whereas overexpression of mcc robustly rescues the depletion of wnt5b, vangl2 and the Wnt5b tyrosine kinase receptor ror2. Biochemical experiments establish a direct physical interaction between Mcc and the Vangl2 cytoplasmic tail. Lastly, CE defects in mcc morphants are suppressed by downstream activation of RhoA and JNK. Taken together, our results identify Mcc as a novel intracellular effector of non-canonical Wnt5b/Vangl2/Ror2 signaling during vertebrate gastrulation.
Collapse
Affiliation(s)
- Teddy Young
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Yogavalli Poobalan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Shijie Tao
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
| | - Sheena Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Peter Wehner
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, GZMB, University of Göttingen, Göttingen 37077, Germany
| | - Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg 35043, Germany
| | - Chin Yan Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Akila Sadasivam
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Matthew Lovatt
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Siew Tein Wang
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Yusuf Ali
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Annette Borchers
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, GZMB, University of Göttingen, Göttingen 37077, Germany
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg 35043, Germany
| | - Karuna Sampath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
- Division of Biomedical Cell Biology, B040, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - N. Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| |
Collapse
|
13
|
Itoh K, Ossipova O, Sokol SY. GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure. J Cell Sci 2014; 127:2542-53. [PMID: 24681784 DOI: 10.1242/jcs.146811] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rho family GTPases regulate many morphogenetic processes during vertebrate development including neural tube closure. Here we report a function for GEF-H1/Lfc/ArhGEF2, a RhoA-specific guanine nucleotide exchange factor that functions in neurulation in Xenopus embryos. Morpholino-mediated depletion of GEF-H1 resulted in severe neural tube defects, which were rescued by GEF-H1 RNA. Lineage tracing of GEF-H1 morphants at different developmental stages revealed abnormal cell intercalation and apical constriction, suggesting that GEF-H1 regulates these cell behaviors. Molecular marker analysis documented defects in myosin II light chain (MLC) phosphorylation, Rab11 and F-actin accumulation in GEF-H1-depleted cells. In gain-of-function studies, overexpressed GEF-H1 induced Rho-associated kinase-dependent ectopic apical constriction - marked by apical accumulation of phosphorylated MLC, γ-tubulin and F-actin in superficial ectoderm - and stimulated apical protrusive activity of deep ectoderm cells. Taken together, our observations newly identify functions of GEF-H1 in morphogenetic movements that lead to neural tube closure.
Collapse
Affiliation(s)
- Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Xu H, Ye D, Behra M, Burgess S, Chen S, Lin F. Gβ1 controls collective cell migration by regulating the protrusive activity of leader cells in the posterior lateral line primordium. Dev Biol 2013; 385:316-27. [PMID: 24201188 DOI: 10.1016/j.ydbio.2013.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 10/27/2013] [Indexed: 12/25/2022]
Abstract
Collective cell migration is critical for normal development, tissue repair and cancer metastasis. Migration of the posterior lateral line primordium (pLLP) generates the zebrafish sensory organs (neuromasts, NMs). This migration is promoted by the leader cells at the leading edge of the pLLP, which express the G protein-coupled chemokine receptor Cxcr4b and respond to the chemokine Cxcl12a. However, the mechanism by which Cxc112a/Cxcr4b signaling regulates pLLP migration remains unclear. Here we report that signal transduction by the heterotrimeric G protein subunit Gβ1 is essential for proper pLLP migration. Although both Gβ1 and Gβ4 are expressed in the pLLP and NMs, depletion of Gβ1 but not Gβ4 resulted in an arrest of pLLP migration. In embryos deficient for Gβ1, the pLLP cells migrated in an uncoordinated fashion and were unable to extend protrusions at the leading front, phenocopying those in embryos deficient for Cxcl12a or Cxcr4b. A transplantation assay showed that, like Cxcr4b, Gβ1 is required only in the leader cells of the pLLP. Analysis of F-actin dynamics in the pLLP revealed that whereas wild-type leader cells display extensive actin polymerization in the direction of pLLP migration, counterparts defective for Gβ1, Cxcr4b or Cxcl12a do not. Finally, synergy experiments revealed that Gβ1 and Cxcr4b interact genetically in regulating pLLP migration. Collectively, our data indicate that Gβ1 controls migration of the pLLP, likely by acting downstream of the Cxcl12a/Cxcr4b signaling. This study also provides compelling evidence for functional specificity among Gβ isoforms in vivo.
Collapse
Affiliation(s)
- Hui Xu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, USA
| | - Martine Behra
- Department of Anatomy and Neurobiology, University of Puerto Rico, USA
| | - Shawn Burgess
- Genome Technology Branch, NHGRI/NIH, Bethesda, MD, USA
| | - Songhai Chen
- Department of Pharmacology, Carver College of Medicine, University of Iowa, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, USA.
| |
Collapse
|
15
|
Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia. Am J Hum Genet 2013; 93:672-86. [PMID: 24094744 DOI: 10.1016/j.ajhg.2013.08.015] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/24/2013] [Accepted: 08/28/2013] [Indexed: 11/21/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65.
Collapse
|
16
|
Abstract
The centrosome, a major organizer of microtubules, has important functions in regulating cell shape, polarity, cilia formation and intracellular transport as well as the position of cellular structures, including the mitotic spindle. By means of these activities, centrosomes have important roles during animal development by regulating polarized cell behaviors, such as cell migration or neurite outgrowth, as well as mitotic spindle orientation. In recent years, the pace of discovery regarding the structure and composition of centrosomes has continuously accelerated. At the same time, functional studies have revealed the importance of centrosomes in controlling both morphogenesis and cell fate decision during tissue and organ development. Here, we review examples of centrosome and centriole positioning with a particular emphasis on vertebrate developmental systems, and discuss the roles of centrosome positioning, the cues that determine positioning and the mechanisms by which centrosomes respond to these cues. The studies reviewed here suggest that centrosome functions extend to the development of tissues and organs in vertebrates.
Collapse
Affiliation(s)
- Nan Tang
- Department of Anatomy, Cardiovascular Research Institute, The University of California, San Francisco, USA.
| | | |
Collapse
|
17
|
Rothschild SC, Lahvic J, Francescatto L, McLeod JJA, Burgess SM, Tombes RM. CaMK-II activation is essential for zebrafish inner ear development and acts through Delta-Notch signaling. Dev Biol 2013; 381:179-88. [PMID: 23747599 DOI: 10.1016/j.ydbio.2013.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Zebrafish inner ear development is characterized by the crystallization of otoliths onto immotile kinocilia that protrude from sensory "hair" cells. The stereotypical formation of these sensory structures is dependent on the expression of key patterning genes and on Ca2+ signals. One potential target of Ca2+ signaling in the inner ear is the type II Ca2+/calmodulin-dependent protein kinase (CaMK-II), which is preferentially activated in hair cells, with intense activation at the base of kinocilia. In zebrafish, CaMK-II is encoded by seven genes; the expression of one of these genes (camk2g1) is enriched in hair cells. The suppression of camk2g1 expression by antisense morpholino oligonucleotides or inhibition of CaMK-II activation by the pharmacological antagonist, KN-93, results in aberrant otolith formation without preventing cilia formation. In fact, CaMK-II suppression results in additional ciliated hair cells and altered levels of Delta-Notch signaling members. DeltaA and deltaD transcripts are increased and DeltaD protein accumulates in hair cells of CaMK-II morphants, indicative of defective recycling and/or exocytosis. Our findings indicate that CaMK-II plays a critical role in the developing ear, influencing cell differentiation through extranuclear effects on Delta-Notch signaling. Continued expression and activation of CaMK-II in maculae and cristae in older embryos suggests continued roles in auditory sensory maturation and transduction.
Collapse
Affiliation(s)
- Sarah C Rothschild
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Herder C, Swiercz JM, Müller C, Peravali R, Quiring R, Offermanns S, Wittbrodt J, Loosli F. ArhGEF18 regulates RhoA-Rock2 signaling to maintain neuro-epithelial apico-basal polarity and proliferation. Development 2013; 140:2787-97. [PMID: 23698346 DOI: 10.1242/dev.096487] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The vertebrate central nervous system develops from an epithelium where cells are polarized along the apicobasal axis. Loss of this polarity results in abnormal organ architecture, morphology and proliferation. We found that mutations of the guanine nucleotide exchange factor ArhGEF18 affect apicobasal polarity of the retinal neuroepithelium in medaka fish. We show that ArhGEF18-mediated activation of the small GTPase RhoA is required to maintain apicobasal polarity at the onset of retinal differentiation and to control the ratio of neurogenic to proliferative cell divisions. RhoA signals through Rock2 to regulate apicobasal polarity, tight junction localization and the cortical actin cytoskeleton. The human ArhGEF18 homologue can rescue the mutant phenotype, suggesting a conserved function in vertebrate neuroepithelia. Our analysis identifies ArhGEF18 as a key regulator of tissue architecture and function, controlling apicobasal polarity and proliferation through RhoA activation. We thus identify the control of neuroepithelial apicobasal polarity as a novel role for RhoA signaling in vertebrate development.
Collapse
Affiliation(s)
- Cathrin Herder
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mikelis CM, Palmby TR, Simaan M, Li W, Szabo R, Lyons R, Martin D, Yagi H, Fukuhara S, Chikumi H, Galisteo R, Mukouyama YS, Bugge TH, Gutkind JS. PDZ-RhoGEF and LARG are essential for embryonic development and provide a link between thrombin and LPA receptors and Rho activation. J Biol Chem 2013; 288:12232-43. [PMID: 23467409 DOI: 10.1074/jbc.m112.428599] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) linked to both members of the Gα12 family of heterotrimeric G proteins α subunits, Gα12 and Gα13, regulate the activation of Rho GTPases, thereby contributing to many key biological processes. Multiple Rho GEFs have been proposed to link Gα12/13 GPCRs to Rho activation, including PDZ-RhoGEF (PRG), leukemia-associated Rho GEF (LARG), p115-RhoGEF (p115), lymphoid blast crisis (Lbc), and Dbl. PRG, LARG, and p115 share the presence of a regulator of G protein signaling homology (RGS) domain. There is limited information on the biological roles of this RGS-containing family of RhoGEFs in vivo. p115-deficient mice are viable with some defects in the immune system and gastrointestinal motor dysfunctions, whereas in an initial study we showed that mice deficient for Larg are viable and resistant to salt-induced hypertension. Here, we generated knock-out mice for Prg and observed that these mice do not display any overt phenotype. However, deficiency in Prg and Larg leads to complex developmental defects and early embryonic lethality. Signaling from Gα11/q-linked GPCRs to Rho was not impaired in mouse embryonic fibroblasts defective in all three RGS-containing RhoGEFs. However, a combined lack of Prg, Larg, and p115 expression abolished signaling through Gα12/13 to Rho and thrombin-induced cell proliferation, directional migration, and nuclear signaling through JNK and p38. These findings provide evidence of an essential role for the RGS-containing RhoGEF family in signaling to Rho by Gα12/13-coupled GPCRs, which may likely play a critical role during embryonic development.
Collapse
Affiliation(s)
- Constantinos M Mikelis
- Oral and Pharyngeal Cancer Branch, NIDCR, Genetics and Developmental Biology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ye D, Lin F. S1pr2/Gα13 signaling controls myocardial migration by regulating endoderm convergence. Development 2013; 140:789-99. [PMID: 23318642 DOI: 10.1242/dev.085340] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A key process during vertebrate heart development is the migration of bilateral populations of myocardial precursors towards the midline to form the primitive heart tube. In zebrafish, signaling mediated by sphingosine-1-phosphate (S1P) and its cognate G protein-coupled receptor (S1pr2/Mil) is essential for myocardial migration, but the underlying mechanisms remain undefined. Here, we show that suppression of Gα(13) signaling disrupts myocardial migration, leading to the formation of two bilaterally located hearts (cardia bifida). Genetic studies indicate that Gα(13) acts downstream of S1pr2 to regulate myocardial migration through a RhoGEF-dependent pathway. Furthermore, disrupting any component of the S1pr2/Gα(13)/RhoGEF pathway impairs endoderm convergence during segmentation, and the endodermal defects correlate with the extent of cardia bifida. Moreover, endoderm transplantation reveals that the presence of wild-type anterior endodermal cells in Gα(13)-deficient embryos is sufficient to rescue the endoderm convergence defect and cardia bifida, and, conversely, that the presence of anterior endodermal cells defective for S1pr2 or Gα(13) in wild-type embryos causes such defects. Thus, S1pr2/Gα(13) signaling probably acts in the endoderm to regulate myocardial migration. In support of this notion, cardiac-specific expression of Gα(13) fails to rescue cardia bifida in the context of global Gα(13) inhibition. Our data demonstrate for the first time that the Gα(13)/RhoGEF-dependent pathway functions downstream of S1pr2 to regulate convergent movement of the endoderm, an event that is crucial for coordinating myocardial migration.
Collapse
Affiliation(s)
- Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, the University of Iowa, 1-400 Bowen Science Building, Iowa City, IA 52242-1109, USA
| | | |
Collapse
|
21
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
22
|
Williams JM, Johnson AC, Stelloh C, Dreisbach AW, Franceschini N, Regner KR, Townsend RR, Roman RJ, Garrett MR. Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension 2012; 60:1157-68. [PMID: 22987919 DOI: 10.1161/hypertensionaha.112.199240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A previous genetic analysis comparing the Dahl salt-sensitive (S) rat with the spontaneously hypertensive rat identified a major locus on chromosome 2 that influences proteinuria in the S rat. In the present study, blood pressure, proteinuria, and renal hemodynamics were evaluated in congenic strains with small segments of the protective spontaneously hypertensive rat genome on the S background. Proteinuria and renal function were significantly improved in the congenic strains compared with the S. The causative locus interval was narrowed to <375 kb on the basis of congenic strains, haplotype data, comparative mapping, and concordance with human genetic studies. Sequencing of the coding region of genes in this region identified 36 single nucleotide polymorphisms (13 nonsynonymous and 23 synonymous). Gene expression profiling indicated that only a few genes exhibited differential expression. Arhgef11, Pear1, and Sh2d2 were identified as important candidate genes that may be linked to kidney injury in the S rat. In particular, Arhgef11 plays an important role in the activation of the Rho-ROCK signaling pathway. Inhibition of this pathway using fasudil resulted in a significant reduction of proteinuria in treated S rats (compared with untreated S). However, no difference was observed between treated or untreated spontaneously hypertensive rat or congenic strains. The homologous region in humans was found to be associated with estimated glomerular filtration rate in the Candidate Gene Association Resource population. In summary, these findings demonstrate that allelic variants in Arhgef11, acting through the Rho-ROCK pathway, could influence kidney injury in the S as well as provide insight into human kidney disease.
Collapse
Affiliation(s)
- Jan M Williams
- University of Mississippi Medical Center, Department of Pharmacology and Toxicology, 2500 North State St, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi D, Liu Y, Loges NT, Pathak N, Austin-Tse C, Sheridan E, Schmidts M, Olbrich H, Werner C, Häffner K, Hellman N, Chodhari R, Gupta A, Kramer-Zucker A, Olale F, Burdine RD, Schier AF, O’Callaghan C, Chung EMK, Reinhardt R, Mitchison HM, King SM, Omran H, Drummond IA. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet 2012; 44:714-9. [PMID: 22581229 PMCID: PMC3371652 DOI: 10.1038/ng.2277] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/17/2012] [Indexed: 11/09/2022]
Abstract
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.
Collapse
Affiliation(s)
- Jennifer R. Panizzi
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anita Becker-Heck
- University Hospital Freiburg, Freiburg, Germany
- Klinik und Poliklinik fuer Kinder- und Jugendmedizin -Allgemeine Paediatrie-, Universitätsklinikum Münster, Münster, Germany
| | - Victoria H. Castleman
- Molecular Medicine Unit, University College London, Institute of Child Health, London, UK
| | - Dalal Al-Mutairi
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Yan Liu
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA, USA
| | - Niki T. Loges
- Klinik und Poliklinik fuer Kinder- und Jugendmedizin -Allgemeine Paediatrie-, Universitätsklinikum Münster, Münster, Germany
| | - Narendra Pathak
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Eamonn Sheridan
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Miriam Schmidts
- Molecular Medicine Unit, University College London, Institute of Child Health, London, UK
| | - Heike Olbrich
- Klinik und Poliklinik fuer Kinder- und Jugendmedizin -Allgemeine Paediatrie-, Universitätsklinikum Münster, Münster, Germany
| | - Claudius Werner
- Klinik und Poliklinik fuer Kinder- und Jugendmedizin -Allgemeine Paediatrie-, Universitätsklinikum Münster, Münster, Germany
| | | | - Nathan Hellman
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rahul Chodhari
- General and Adolescent Paediatrics Unit, University College London, Institute of Child Health, London, UK
| | - Amar Gupta
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Felix Olale
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Christopher O’Callaghan
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, England
| | - Eddie MK Chung
- General and Adolescent Paediatrics Unit, University College London, Institute of Child Health, London, UK
| | - Richard Reinhardt
- Genome Centre Cologne at MPI for Plant Breeding Research, Köln, Germany
| | - Hannah M. Mitchison
- Molecular Medicine Unit, University College London, Institute of Child Health, London, UK
- Genome Centre Cologne at MPI for Plant Breeding Research, Köln, Germany
| | - Stephen M. King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Heymut Omran
- Klinik und Poliklinik fuer Kinder- und Jugendmedizin -Allgemeine Paediatrie-, Universitätsklinikum Münster, Münster, Germany
| | - Iain A. Drummond
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Stooke-Vaughan GA, Huang P, Hammond KL, Schier AF, Whitfield TT. The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle. Development 2012; 139:1777-87. [PMID: 22461562 DOI: 10.1242/dev.079947] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Otoliths are biomineralised structures required for the sensation of gravity, linear acceleration and sound in the zebrafish ear. Otolith precursor particles, initially distributed throughout the otic vesicle lumen, become tethered to the tips of hair cell kinocilia (tether cilia) at the otic vesicle poles, forming two otoliths. We have used high-speed video microscopy to investigate the role of cilia and ciliary motility in otolith formation. In wild-type ears, groups of motile cilia are present at the otic vesicle poles, surrounding the immotile tether cilia. A few motile cilia are also found on the medial wall, but most cilia (92-98%) in the otic vesicle are immotile. In mutants with defective cilia (iguana) or ciliary motility (lrrc50), otoliths are frequently ectopic, untethered or fused. Nevertheless, neither cilia nor ciliary motility are absolutely required for otolith tethering: a mutant that lacks cilia completely (MZovl) is still capable of tethering otoliths at the otic vesicle poles. In embryos with attenuated Notch signalling [mindbomb mutant or Su(H) morphant], supernumerary hair cells develop and otolith precursor particles bind to the tips of all kinocilia, or bind directly to the hair cells' apical surface if cilia are absent [MZovl injected with a Su(H)1+2 morpholino]. However, if the first hair cells are missing (atoh1b morphant), otolith formation is severely disrupted and delayed. Our data support a model in which hair cells produce an otolith precursor-binding factor, normally localised to tether cell kinocilia. We also show that embryonic movement plays a minor role in the formation of normal otoliths.
Collapse
Affiliation(s)
- Georgina A Stooke-Vaughan
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | | | |
Collapse
|
25
|
Jin W, Reddy MA, Chen Z, Putta S, Lanting L, Kato M, Park JT, Chandra M, Wang C, Tangirala RK, Natarajan R. Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. J Biol Chem 2012; 287:15672-83. [PMID: 22431733 DOI: 10.1074/jbc.m111.322669] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Angiotensin II (Ang II)-mediated vascular smooth muscle cell dysfunction plays a critical role in cardiovascular diseases. However, the role of microRNAs (miRNAs) in this process is unclear. We used small RNA deep sequencing to profile Ang II-regulated miRNAs in rat vascular smooth muscle cells (VSMC) and evaluated their role in VSMC dysfunction. Sequencing results revealed several Ang II-responsive miRNAs, and bioinformatics analysis showed that their predicted targets can modulate biological processes relevant to cardiovascular diseases. Further studies with the most highly induced miR-132 and miR-212 cluster (miR-132/212) showed time- and dose-dependent up-regulation of miR-132/212 by Ang II through the Ang II Type 1 receptor. We identified phosphatase and tensin homolog (PTEN) as a novel target of miR-132 and demonstrated that miR-132 induces monocyte chemoattractant protein-1 at least in part via PTEN repression in rat VSMC. Moreover, miR-132 overexpression enhanced cyclic AMP-response element-binding protein (CREB) phosphorylation via RASA1 (p120 Ras GTPase-activating protein 1) down-regulation, whereas miR-132 inhibition attenuated Ang II-induced CREB activation. Furthermore, miR-132 up-regulation by Ang II required CREB activation, demonstrating a positive feedback loop. Notably, aortas from Ang II-infused mice displayed similar up-regulation of miR-132/212 and monocyte chemoattractant protein-1, supporting in vivo relevance. In addition, microarray analysis and reverse transcriptase-quantitative PCR validation revealed additional novel miR-132 targets among Ang II-down-regulated genes implicated in cell cycle, motility, and cardiovascular functions. These results suggest that miR132/212 can serve as a novel cellular node to fine-tune and amplify Ang II actions in VSMC.
Collapse
Affiliation(s)
- Wen Jin
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Werner ME, Mitchell BJ. Understanding ciliated epithelia: the power of Xenopus. Genesis 2011; 50:176-85. [PMID: 22083727 DOI: 10.1002/dvg.20824] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 01/20/2023]
Abstract
Ciliated epithelia are important in a wide variety of biological contexts where they generate directed fluid flow. Here we address the fundamental advances in understanding ciliated epithelia that have been achieved using Xenopus as a model system. Xenopus embryos are covered with a ciliated epithelium that propels fluid unidirectionally across their surface. The external nature of this tissue, coupled with the molecular tools available in Xenopus and the ease of microscopic analysis on intact animals has thrust Xenopus to the forefront of ciliated epithelia biology. We discuss advances in understanding the molecular regulators of ciliated epithelia cell fate as well as basic aspects of ciliated epithelia cell biology including ciliogenesis and cell polarity.
Collapse
Affiliation(s)
- M E Werner
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60302, USA
| | | |
Collapse
|
27
|
Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1239-48. [DOI: 10.1016/j.bbadis.2011.05.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 12/29/2022]
|
28
|
Ravanelli AM, Klingensmith J. The actin nucleator Cordon-bleu is required for development of motile cilia in zebrafish. Dev Biol 2010; 350:101-11. [PMID: 21129373 DOI: 10.1016/j.ydbio.2010.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/15/2010] [Accepted: 11/19/2010] [Indexed: 11/19/2022]
Abstract
The cordon-bleu (Cobl) gene is widely conserved in vertebrates, with developmentally regulated axial and epithelial expression in mouse and chick embryos. In vitro, Cobl can bind monomeric actin and nucleate formation of unbranched actin filaments, while in cultured cells it can modulate the actin cytoskeleton. However, an essential role for Cobl in vivo has yet to be determined. We have used zebrafish as a model to assess the requirements for Cobl in embryogenesis. We find that cobl shows enriched expression in ciliated epithelial tissues during zebrafish organogenesis. Cobl protein is enriched in the apical domain of ciliated cells, in close proximity to the apical actin cap. Reduction of Cobl by antisense morpholinos reveals an essential role in development of motile cilia in organs such as Kupffer's vesicle and the pronephros. In Kupffer's vesicle, the reduction in Cobl coincides with a reduction in the amount of apical F-actin. Thus, Cobl represents a molecular activity that couples developmental patterning signals with local intracellular cytoskeletal dynamics to support morphogenesis of motile cilia.
Collapse
Affiliation(s)
- Andrew M Ravanelli
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
29
|
Wang G, Cadwallader AB, Jang DS, Tsang M, Yost HJ, Amack JD. The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's vesicle in zebrafish. Development 2010; 138:45-54. [PMID: 21098560 DOI: 10.1242/dev.052985] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vertebrate body plan features a consistent left-right (LR) asymmetry of internal organs. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that is necessary for normal LR development. However, the mechanisms involved in orienting LR asymmetric flow with previously established anteroposterior (AP) and dorsoventral (DV) axes remain poorly understood. In zebrafish, asymmetric flow is generated in Kupffer's vesicle (KV). The cellular architecture of KV is asymmetric along the AP axis, with more ciliated cells densely packed into the anterior region. Here, we identify a Rho kinase gene, rock2b, which is required for normal AP patterning of KV and subsequent LR development in the embryo. Antisense depletion of rock2b in the whole embryo or specifically in the KV cell lineage perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ LR asymmetries. Analyses of KV architecture demonstrated that rock2b knockdown altered the AP placement of ciliated cells without affecting cilia number or length. In control embryos, leftward flow across the anterior pole of KV was stronger than rightward flow at the posterior end, correlating with the normal AP asymmetric distribution of ciliated cells. By contrast, rock2b knockdown embryos with AP patterning defects in KV exhibited randomized flow direction and equal flow velocities in the anterior and posterior regions. Live imaging of Tg(dusp6:memGFP)(pt19) transgenic embryos that express GFP in KV cells revealed that rock2b regulates KV cell morphology. Our results suggest a link between AP patterning of the ciliated Kupffer's vesicle and LR patterning of the zebrafish embryo.
Collapse
Affiliation(s)
- Guangliang Wang
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
30
|
Banerjee J, Fischer CC, Wedegaertner PB. The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF. Biochemistry 2009; 48:8032-43. [PMID: 19618964 DOI: 10.1021/bi9010013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PDZ-RhoGEF is a member of the regulator family of G protein signaling (RGS) domain-containing RhoGEFs (RGS-RhoGEFs) that link activated heterotrimeric G protein alpha subunits of the G12 family to activation of the small GTPase RhoA. Unique among the RGS-RhoGEFs, PDZ-RhoGEF contains a short sequence that localizes the protein to the actin cytoskeleton. In this report, we demonstrate that the actin-binding domain, located between amino acids 561 and 585, directly binds to F-actin in vitro. Extensive mutagenesis identifies isoleucine 568, isoleucine 569, phenylalanine 572, and glutamic acid 573 as being necessary for binding to actin and for colocalization with the actin cytoskeleton in cells. These results define a novel actin-binding sequence in PDZ-RhoGEF with a critical amino acid motif of IIxxFE. Moreover, sequence analysis identifies a similar actin-binding motif in the N-terminus of the RhoGEF frabin, and as with PDZ-RhoGEF, mutagenesis and actin interaction experiments demonstrate an LIxxFE motif, consisting of the key amino acids leucine 23, isoleucine 24, phenylalanine 27, and glutamic acid 28. Taken together, results with PDZ-RhoGEF and frabin identify a novel actin-binding sequence. Lastly, inducible dimerization of the actin-binding region of PDZ-RhoGEF revealed a dimerization-dependent actin bundling activity in vitro. PDZ-RhoGEF exists in cells as a dimer, raising the possibility that PDZ-RhoGEF could influence actin structure in a manner independent of its ability to activate RhoA.
Collapse
Affiliation(s)
- Jayashree Banerjee
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
31
|
Dale RM, Sisson BE, Topczewski J. The emerging role of Wnt/PCP signaling in organ formation. Zebrafish 2009; 6:9-14. [PMID: 19250029 DOI: 10.1089/zeb.2008.0563] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the last two decades zebrafish has been an excellent model organism to study vertebrate development. Mutant analysis combined with gene knockdown and other manipulations revealed an essential role of Wnt signaling, independent of beta-catenin, during development. Especially well characterized is the function of Wnt/planar cell polarity (PCP) signaling in the regulation of gastrulation movements and neurulation, described in other reviews within this special issue. Here, we set out to highlight some of the new and exciting research that is being carried out in zebrafish to elucidate the role that Wnt/PCP signaling plays in the formation of specific organs, including the lateral line, craniofacial development, and regeneration. We also summarized the emerging connection of the Wnt/PCP pathway with primary cilia function, an essential organelle in several organ activities.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Children's Memorial Research Center, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
32
|
Lin F, Chen S, Sepich DS, Panizzi JR, Clendenon SG, Marrs JA, Hamm HE, Solnica-Krezel L. Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. ACTA ACUST UNITED AC 2009; 184:909-21. [PMID: 19307601 PMCID: PMC2664974 DOI: 10.1083/jcb.200805148] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation, and involves coordinated movements of several cell layers. Although recent studies have begun to elucidate the processes that underlie these epibolic movements, the cellular and molecular mechanisms involved remain to be fully defined. Here, we show that gastrulae with altered Galpha(12/13) signaling display delayed epibolic movement of the deep cells, abnormal movement of dorsal forerunner cells, and dissociation of cells from the blastoderm, phenocopying e-cadherin mutants. Biochemical and genetic studies indicate that Galpha(12/13) regulate epiboly, in part by associating with the cytoplasmic terminus of E-cadherin, and thereby inhibiting E-cadherin activity and cell adhesion. Furthermore, we demonstrate that Galpha(12/13) modulate epibolic movements of the enveloping layer by regulating actin cytoskeleton organization through a RhoGEF/Rho-dependent pathway. These results provide the first in vivo evidence that Galpha(12/13) regulate epiboly through two distinct mechanisms: limiting E-cadherin activity and modulating the organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Fang Lin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kin5 knockdown in Tetrahymena thermophila using RNAi blocks cargo transport of Gef1. PLoS One 2009; 4:e4873. [PMID: 19290045 PMCID: PMC2653729 DOI: 10.1371/journal.pone.0004873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/27/2009] [Indexed: 11/21/2022] Open
Abstract
A critical process that builds and maintains the eukaryotic cilium is intraflagellar transport (IFT). This process utilizes members of the kinesin-2 superfamily to transport cargo into the cilium (anterograde transport) and a dynein motor for the retrograde traffic. Using a novel RNAi knockdown method, we have analyzed the function of the homodimeric IFT kinesin-2, Kin5, in Tetrahymena ciliary transport. In RNAi transformants, Kin5 was severely downregulated and disappeared from the cilia, but cilia did not resorb, although tip structure was affected. After deciliation of the knockdown cell, cilia regrew and cells swam, which suggested that Kin5 is not responsible for the trafficking of axonemal precursors to build the cilium, but could be transporting molecules that act in ciliary signal transduction, such as guanine nucleotide exchange proteins (GEFs). Gef1 is a Tetrahymena ciliary protein, and current coimmunoprecipitation and immunofluorescence studies showed that it is absent in regrowing cilia of the knockdown cells lacking ciliary Kin5. We suggest that one important cargo of Kin5 is Gef1 and knockdown of Kin5 results in cell lethality.
Collapse
|
34
|
Ferrante MI, Romio L, Castro S, Collins JE, Goulding DA, Stemple DL, Woolf AS, Wilson SW. Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum Mol Genet 2008; 18:289-303. [PMID: 18971206 PMCID: PMC2638777 DOI: 10.1093/hmg/ddn356] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In humans, OFD1 is mutated in oral-facial-digital type I syndrome leading to prenatal death in hemizygous males and dysmorphic faces and brain malformations, with polycystic kidneys presenting later in life in heterozygous females. To elucidate the function of Ofd1, we have studied its function during zebrafish embryonic development. In wild-type embryos, ofd1 mRNA is widely expressed and Ofd1-green fluorescent protein (GFP) fusion localizes to the centrosome/basal body. Disrupting Ofd1 using antisense morpholinos (MOs) led to bent body axes, hydrocephalus and oedema. Laterality was randomized in the brain, heart and viscera, likely a consequence of shorter cilia with disrupted axonemes and perturbed intravesicular fluid flow in Kupffer's vesicle. Embryos injected with ofd1 MOs also displayed convergent extension (CE) defects, which were enhanced by loss of Slb/Wnt11 or Tri/Vangl2, two proteins functioning in a non-canonical Wnt/Planar Cell Polarity (PCP) pathway. Pronephric glomerular midline fusion was compromised in vangl2 and ofd1 loss of function embryos and we suggest this anomaly may be a novel CE defect. Thus, Ofd1 is required for ciliary motility and function in zebrafish, supporting data showing that Ofd1 is essential for primary cilia function in mice. In addition, our data show that Ofd1 is important for CE during gastrulation, consistent with data linking primary cilia and non-canonical Wnt/PCP signalling.
Collapse
Affiliation(s)
- Maria I Ferrante
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 2008; 40:871-9. [PMID: 18552847 PMCID: PMC2771675 DOI: 10.1038/ng.104] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/28/2008] [Indexed: 02/07/2023]
Abstract
The planar cell polarity (PCP) signaling system governs many aspects of polarized cell behavior. Here, we use an in vivo model of vertebrate mucociliary epithelial development to show that Dishevelled (Dvl) is essential for the apical positioning of basal bodies. We find that Dvl and Inturned mediate the activation of the Rho GTPase specifically at basal bodies, and that these three proteins together mediate the docking of basal bodies to the apical plasma membrane. Moreover, we find that this docking involves a Dvl-dependent association of basal bodies with membrane-bound vesicles and the vesicle-trafficking protein, Sec8. Once docked, basal bodies again require Dvl and Rho for the planar polarization that underlies directional beating of cilia. These results demonstrate previously undescribed functions for PCP signaling components and suggest that a common signaling apparatus governs both apical docking and planar polarization of basal bodies.
Collapse
Affiliation(s)
- Tae Joo Park
- Dept. of Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology University of Texas Austin, Texas 78712
| | - Brian J. Mitchell
- The Salk Institute for Biological Studies, La Jolla, California 92186, USA
| | - Philip B. Abitua
- Dept. of Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology University of Texas Austin, Texas 78712
| | - Chris Kintner
- The Salk Institute for Biological Studies, La Jolla, California 92186, USA
| | - John B. Wallingford
- Dept. of Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology University of Texas Austin, Texas 78712
| |
Collapse
|
36
|
Wong K, Van Keymeulen A, Bourne HR. PDZRhoGEF and myosin II localize RhoA activity to the back of polarizing neutrophil-like cells. ACTA ACUST UNITED AC 2008; 179:1141-8. [PMID: 18086913 PMCID: PMC2140022 DOI: 10.1083/jcb.200706167] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemoattractants such as formyl-Met-Leu-Phe (fMLP) induce neutrophils to polarize by triggering divergent pathways that promote formation of a protrusive front and contracting back and sides. RhoA, a Rho GTPase, stimulates assembly of actomyosin contractile complexes at the sides and back. We show here, in differentiated HL60 cells, that PDZRhoGEF (PRG), a guanine nucleotide exchange factor (GEF) for RhoA, mediates RhoA-dependent responses and determines their spatial distribution. As with RNAi knock-down of PRG, a GEF-deleted PRG mutant blocks fMLP-dependent RhoA activation and causes neutrophils to exhibit multiple fronts and long tails. Similarly, inhibition of RhoA, a Rho-dependent protein kinase (ROCK), or myosin II produces the same morphologies. PRG inhibition reduces or mislocalizes monophosphorylated myosin light chains in fMLP-stimulated cells, and myosin II ATPase inhibition reciprocally disrupts normal localization of PRG. We propose a cooperative reinforcing mechanism at the back of cells, in which PRG, RhoA, ROCK, myosin II, and actomyosin spatially cooperate to consolidate attractant-induced contractility and ensure robust cell polarity.
Collapse
Affiliation(s)
- Kit Wong
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
37
|
Cilia orientation and the fluid mechanics of development. Curr Opin Cell Biol 2008; 20:48-52. [PMID: 18194854 DOI: 10.1016/j.ceb.2007.11.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 11/28/2007] [Indexed: 11/21/2022]
Abstract
Motile cilia produce large-scale fluid flows crucial for development and physiology. Defects in ciliary motility cause a range of disease symptoms including bronchiectasis, hydrocephalus, and situs inversus. However, it is not enough for cilia to be motile and generate a flow -- the flow must be driven in the proper direction. Generation of properly directed coherent flow requires that the cilia are properly oriented relative to tissue axes. Genetic, molecular, and ultrastructural studies have begun to suggest pathways linking cilia orientation to planar cell polarity (PCP) and other long-range positional cues and also suggest that cilia-driven flow can itself play a causal role in orienting the cilia that create it. Errors in cilia orientation have been observed in human ciliary disease patients, suggesting that orientation defects may constitute a novel class of ciliopathies with a distinct etiology at the cell biological level.
Collapse
|