1
|
Sival DA, Noort SAMV, Tijssen MAJ, de Koning TJ, Verbeek DS. Developmental neurobiology of cerebellar and Basal Ganglia connections. Eur J Paediatr Neurol 2022; 36:123-129. [PMID: 34954622 DOI: 10.1016/j.ejpn.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/03/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The high prevalence of mixed phenotypes of Early Onset Ataxia (EOA) with comorbid dystonia has shifted the pathogenetic concept from the cerebellum towards the interconnected cerebellar motor network. This paper on EOA with comorbid dystonia (EOA-dystonia) explores the conceptual relationship between the motor phenotype and the cortico-basal-ganglia-ponto-cerebellar network. METHODS In EOA-dystonia, we reviewed anatomic-, genetic- and biochemical-studies on the comorbidity between ataxia and dystonia. RESULTS In a clinical EOA cohort, the prevalence of dystonia was over 60%. Both human and animal studies converge on the underlying role for the cortico-basal-ganglia-ponto-cerebellar network. Genetic -clinical and -in silico network studies reveal underlying biological pathways for energy production and neural signal transduction. CONCLUSIONS EOA-dystonia phenotypes are attributable to the cortico-basal-ganglia-ponto-cerebellar network, instead of to the cerebellum, alone. The underlying anatomic and pathogenetic pathways have clinical implications for our understanding of the heterogeneous phenotype, neuro-metabolic and genetic testing and potentially also for new treatment strategies, including neuro-modulation.
Collapse
Affiliation(s)
- Deborah A Sival
- Department of Pediatrics, University of Groningen, Groningen, the Netherlands.
| | - Suus A M van Noort
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Genetics University Medical Center, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Bardhan A, Banerjee A, Basu K, Pal DK, Ghosh A. PRNCR1: a long non-coding RNA with a pivotal oncogenic role in cancer. Hum Genet 2021; 141:15-29. [PMID: 34727260 PMCID: PMC8561087 DOI: 10.1007/s00439-021-02396-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been gaining importance in the field of cancer research in recent years. PRNCR1 (prostate cancer-associated non-coding RNA1) is a 12.7 kb, intron-less lncRNA found to play an oncogenic role in malignancy of diverse organs including prostate, breast, lung, oral cavity, colon and rectum. Single-nucleotide polymorphisms (SNPs) of PRNCR1 locus have been found to be associated with cancer susceptibility in different populations. In this review, an attempt has been made for the first time to summarize all sorts of available data on PRNCR1 to date from relevant databases (GeneCard, LncExpDB, Ensembl genome browser, and PubMed). As functional roles of PRNCR1, miRNA (microRNA) sponging was mostly highlighted in the pathogenesis of different cancer; in addition, an association of the lncRNA with chromatin-modifying complex to enhance androgen receptor-mediated gene transcription was reported in prostate cancer. Diagnostic and prognostic importance of PRNCR1 was found in some malignancies suggesting potency of the lncRNA to serve as a clinical biomarker. For PRNCR1 SNPs, although cancer susceptibility of the risk alleles/genotypes was reported in different populations, majorities of the findings were not replicated and underlying molecular mechanisms remained unexplored. Therapeutic implication of PRNCR1 was not studied well and future research may come up in this direction for intervening novel strategies to fight against cancer.
Collapse
Affiliation(s)
- Abhishek Bardhan
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Anwesha Banerjee
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Keya Basu
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Amlan Ghosh
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
3
|
Grison A, Atanasoski S. Cyclins, Cyclin-Dependent Kinases, and Cyclin-Dependent Kinase Inhibitors in the Mouse Nervous System. Mol Neurobiol 2020; 57:3206-3218. [PMID: 32506380 DOI: 10.1007/s12035-020-01958-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Development and normal physiology of the nervous system require proliferation and differentiation of stem and progenitor cells in a strictly controlled manner. The number of cells generated depends on the type of cell division, the cell cycle length, and the fraction of cells that exit the cell cycle to become quiescent or differentiate. The underlying processes are tightly controlled and modulated by cyclin-dependent kinases (Cdks) and their interactions with cyclins and Cdk inhibitors (CKIs). Studies performed in the nervous system with mouse models lacking individual Cdks, cyclins, and CKIs, or combinations thereof, have shown that many of these molecules control proliferation rates in a cell-type specific and time-dependent manner. In this review, we will provide an update on the in vivo studies on cyclins, Cdks, and CKIs in neuronal and glial tissue. The goal is to highlight their impact on proliferation processes during the development of the peripheral and central nervous system, including and comparing normal and pathological conditions in the adult.
Collapse
Affiliation(s)
- Alice Grison
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Suzana Atanasoski
- Department of Biomedicine, University of Basel, Basel, Switzerland. .,Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Urbach A, Witte OW. Divide or Commit - Revisiting the Role of Cell Cycle Regulators in Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2019; 7:55. [PMID: 31069222 PMCID: PMC6491688 DOI: 10.3389/fcell.2019.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons “on demand.” Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Schilling K. Moving into shape: cell migration during the development and histogenesis of the cerebellum. Histochem Cell Biol 2018; 150:13-36. [DOI: 10.1007/s00418-018-1677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
|
6
|
Filipkowski RK, Kaczmarek L. Severely impaired adult brain neurogenesis in cyclin D2 knock-out mice produces very limited phenotypic changes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:63-67. [PMID: 28433461 DOI: 10.1016/j.pnpbp.2017.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/02/2023]
Abstract
The discovery of new neurons being produced in the brains of adult mammals (adult brain neurogenesis) began a quest to determine the function(s) of these cells. Major hypotheses in the field have assumed that these neurons play pivotal role, in particular, in learning and memory phenomena, mood control, and epileptogenesis. In our studies summarized herein, we used cyclin D2 knockout (KO) mice, as we have shown that cyclin D2 is the key factor in adult brain neurogenesis and thus its lack produces profound impairment of the process. On the other hand, developmental neurogenesis responsible for the brain formation depends only slightly on cyclin D2, as the mutants display minor structural abnormalities, such as smaller hippocampus and more severe disturbances in the structure of the olfactory bulbs. Surprisingly, the studies have revealed that cyclin D2 KO mice did not show major deficits in several behavioral paradigms assessing hippocampal learning and memory. Furthermore, missing adult brain neurogenesis affected neither action of antidepressants, nor epileptogenesis. On the other hand, minor deficits observed in cyclin D2 KO mice in fine tuning of cognitive functions, species-typical behaviors and alcohol consumption might be explained by a reduced hippocampal size and/or other developmentally driven brain impairments observed in these mutant mice. In aggregate, surprisingly, missing almost entirely adult brain neurogenesis produces only very limited behavioral phenotype that could be attributed to the consequences of the development-dependent minor brain abnormalities.
Collapse
Affiliation(s)
- Robert K Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland.
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Wefers AK, Haberlandt C, Tekin NB, Fedorov DA, Timmermann A, van der Want JJL, Chaudhry FA, Steinhäuser C, Schilling K, Jabs R. Synaptic input as a directional cue for migrating interneuron precursors. Development 2017; 144:4125-4136. [PMID: 29061636 DOI: 10.1242/dev.154096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/11/2017] [Indexed: 02/02/2023]
Abstract
During CNS development, interneuron precursors have to migrate extensively before they integrate in specific microcircuits. Known regulators of neuronal motility include classical neurotransmitters, yet the mechanisms that assure interneuron dispersal and interneuron/projection neuron matching during histogenesis remain largely elusive. We combined time-lapse video microscopy and electrophysiological analysis of the nascent cerebellum of transgenic Pax2-EGFP mice to address this issue. We found that cerebellar interneuronal precursors regularly show spontaneous postsynaptic currents, indicative of synaptic innervation, well before settling in the molecular layer. In keeping with the sensitivity of these cells to neurotransmitters, ablation of synaptic communication by blocking vesicular release in acute slices of developing cerebella slows migration. Significantly, abrogation of exocytosis primarily impedes the directional persistence of migratory interneuronal precursors. These results establish an unprecedented function of the early synaptic innervation of migrating neuronal precursors and demonstrate a role for synapses in the regulation of migration and pathfinding.
Collapse
Affiliation(s)
- Annika K Wefers
- Anatomisches Institut, Anatomie & Zellbiologie, Medizinische Fakultät, University of Bonn, 53115 Bonn, Germany.,Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Christian Haberlandt
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Nuriye B Tekin
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Dmitry A Fedorov
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Aline Timmermann
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Johannes J L van der Want
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Farrukh A Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Christian Steinhäuser
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Karl Schilling
- Anatomisches Institut, Anatomie & Zellbiologie, Medizinische Fakultät, University of Bonn, 53115 Bonn, Germany
| | - Ronald Jabs
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| |
Collapse
|
8
|
Zainolabidin N, Kamath SP, Thanawalla AR, Chen AI. Distinct Activities of Tfap2A and Tfap2B in the Specification of GABAergic Interneurons in the Developing Cerebellum. Front Mol Neurosci 2017; 10:281. [PMID: 28912684 PMCID: PMC5583517 DOI: 10.3389/fnmol.2017.00281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/18/2017] [Indexed: 01/24/2023] Open
Abstract
GABAergic inhibitory neurons in the cerebellum are subdivided into Purkinje cells and distinct subtypes of interneurons from the same pool of progenitors, but the determinants of this diversification process are not well defined. To explore the transcriptional regulation of the development of cerebellar inhibitory neurons, we examined the role of Tfap2A and Tfap2B in the specification of GABAergic neuronal subtypes in mice. We show that Tfap2A and Tfap2B are expressed in inhibitory precursors during embryonic development and that their expression persists into adulthood. The onset of their expression follows Ptf1a and Olig2, key determinants of GABAergic neuronal fate in the cerebellum; and, their expression precedes Pax2, an interneuron-specific factor. Tfap2A is expressed by all GABAergic neurons, whereas Tfap2B is selectively expressed by interneurons. Genetic manipulation via in utero electroporation (IUE) reveals that Tfap2B is necessary for interneuron specification and is capable of suppressing the generation of excitatory cells. Tfap2A, but not Tfap2B, is capable of inducing the generation of interneurons when misexpressed in the ventricular neuroepithelium. Together, our results demonstrate that the differential expression of Tfap2A and Tfap2B defines subtypes of GABAergic neurons and plays specific, but complementary roles in the specification of interneurons in the developing cerebellum.
Collapse
Affiliation(s)
- Norliyana Zainolabidin
- School of Biological Sciences, Nanyang Technological University (NTU)Singapore, Singapore.,School of Life Sciences, University of WarwickCoventry, United Kingdom
| | - Sandhya P Kamath
- School of Biological Sciences, Nanyang Technological University (NTU)Singapore, Singapore.,School of Life Sciences, University of WarwickCoventry, United Kingdom
| | - Ayesha R Thanawalla
- School of Biological Sciences, Nanyang Technological University (NTU)Singapore, Singapore.,School of Life Sciences, University of WarwickCoventry, United Kingdom
| | - Albert I Chen
- School of Biological Sciences, Nanyang Technological University (NTU)Singapore, Singapore.,School of Life Sciences, University of WarwickCoventry, United Kingdom.,ASTAR, Institute of Molecular and Cell BiologySingapore, Singapore
| |
Collapse
|
9
|
Fucà E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis 2017; 102:49-59. [PMID: 28237314 DOI: 10.1016/j.nbd.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023] Open
Abstract
Treatment options for degenerative cerebellar ataxias are currently very limited. A large fraction of such disorders is represented by hereditary cerebellar ataxias, whose familiar transmission facilitates an early diagnosis and may possibly allow to start preventive treatments before the onset of the neurodegeneration and appearance of first symptoms. In spite of the heterogeneous aetiology, histological alterations of ataxias often include the primary degeneration of the cerebellar cortex caused by Purkinje cells (PCs) loss. Thus, approaches aimed at replacing or preserving PCs could represent promising ways of disease management. In the present study, we compared the efficacy of two different preventive strategies, namely cell replacement and motor training. We used tambaleante (tbl) mice as a model for progressive ataxia caused by selective loss of PCs and evaluated the effectiveness of the preventive transplantation of healthy PCs into early postnatal tbl cerebella, in terms of PC replacement and functional preservation. On the other hand, we investigated the effects of motor training on PC survival, cerebellar circuitry and their behavioral correlates. Our results demonstrate that, despite a good survival rate and integration of grafted PCs, the adopted grafting protocol could not alleviate the ataxic symptoms in tbl mice. Conversely, preventive motor training increases PCs survival with a moderate positive impact on the motor phenotype.
Collapse
Affiliation(s)
- Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy.
| | - Michela Guglielmotto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy
| | - Ketty Leto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy.
| |
Collapse
|
10
|
Obana EA, Lundell TG, Yi KJ, Radomski KL, Zhou Q, Doughty ML. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum. THE CEREBELLUM 2016; 14:247-63. [PMID: 25592069 DOI: 10.1007/s12311-014-0641-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neurog1 is a pro-neural basic helix-loop-helix (bHLH) transcription factor expressed in progenitor cells located in the ventricular zone and subsequently the presumptive white matter tracts of the developing mouse cerebellum. We used genetic inducible fate mapping (GIFM) with a transgenic Neurog1-CreER allele to characterize the contributions of Neurog1 lineages to cerebellar circuit formation in mice. GIFM reveals Neurog1-expressing progenitors are fate-mapped to become Purkinje cells and all GABAergic interneuron cell types of the cerebellar cortex but not glia. The spatiotemporal sequence of GIFM is unique to each neuronal cell type. GIFM on embryonic days (E) 10.5 to E12.5 labels Purkinje cells with different medial-lateral settling patterns depending on the day of tamoxifen delivery. GIFM on E11.5 to P7 labels interneurons and the timing of tamoxifen administration correlates with the final inside-to-outside resting position of GABAergic interneurons in the cerebellar cortex. Proliferative status and long-term BrdU retention of GIFM lineages reveals Purkinje cells express Neurog1 around the time they become post-mitotic. In contrast, GIFM labels mitotic and post-mitotic interneurons. Neurog1-CreER GIFM reveals a correlation between the timing of Neurog1 expression and the spatial organization of GABAergic neurons in the cerebellar cortex with possible implications for cerebellar circuit assembly.
Collapse
Affiliation(s)
- Edwin A Obana
- Department of Anatomy, Physiology and Genetics, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | | | | | | | | |
Collapse
|
11
|
De Luca A, Parmigiani E, Tosatto G, Martire S, Hoshino M, Buffo A, Leto K, Rossi F. Exogenous Sonic hedgehog modulates the pool of GABAergic interneurons during cerebellar development. THE CEREBELLUM 2015; 14:72-85. [PMID: 25245619 DOI: 10.1007/s12311-014-0596-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
All cerebellar GABAergic interneurons were derived from a common pool of precursor cells residing in the embryonic ventricular zone (VZ) and migrating in the prospective white matter (PWM) after birth, where both intrinsic and extrinsic factors contribute to regulate their amplification. Among the environmental factors, we focused on Sonic hedgehog (Shh), a morphogen well known to regulate neural progenitor cell proliferation. We asked if and how exogenous Shh treatment affects the lineage of cerebellar GABAergic interneurons. To address these issues, exogenous Shh was administered to embryonic and postnatal organotypic slices. We found that Shh is able to expand the pool of interneuron progenitors residing in the embryonic epithelium and in the postnatal PWM. In particular, Shh signalling pathway was highly mitogenic at early developmental stages of interneuron production, whereas its effect decreased after the first postnatal week. Gene expression analysis of sorted cells and in situ hybridization further showed that immature interneurons express both the Shh receptor patched and the Shh target gene Gli1. Thus, within the interneuron lineage, Shh might exert regulatory functions also in postmitotic cells. On the whole, our data enlighten the role of Shh during cerebellar maturation and further broaden our knowledge on the amplification mechanisms of the interneuron progenitor pool.
Collapse
Affiliation(s)
- A De Luca
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fleming J, Chiang C. The Purkinje neuron: A central orchestrator of cerebellar neurogenesis. NEUROGENESIS 2015; 2:e1025940. [PMID: 27604220 PMCID: PMC4973588 DOI: 10.1080/23262133.2015.1025940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/29/2015] [Accepted: 03/02/2015] [Indexed: 11/02/2022]
Abstract
Within the cyto-architecture of the brain is an often complex, but balanced, neuronal circuitry, the successful construction of which relies on the coordinated generation of functionally opposed neurons. Indeed, deregulated production of excitatory/inhibitory interneurons can greatly disrupt the integrity of excitatory/inhibitory neuronal transmission, which is a hallmark of neurodevelopmental disorders such as autism. Recent work has demonstrated that the Purkinje neuron, the central integrator of signaling within the cerebellar system, acts during development to ensure that neurogenesis occurring in spatially opposed domains reaches completion by transmitting the Sonic hedgehog ligand bi-directionally. In addition to a classic role in driving granule cell precursor proliferation, we now know that Purkinje neuron-derived Sonic hedgehog is simultaneously disseminated to the neonatal white matter. Within this neurogenic niche a lineage of Shh-responding stem and progenitor cells expand pools of GABAergic interneuron and astrocyte precursors. These recent findings advance our understanding of how Purkinje neurons function dynamically to oversee completion of a balanced cerebellar circuit.
Collapse
Affiliation(s)
- Jonathan Fleming
- Department of Cell and Developmental Biology; Vanderbilt University ; Nashville TN USA
| | - Chin Chiang
- Department of Cell and Developmental Biology; Vanderbilt University ; Nashville TN USA
| |
Collapse
|
13
|
Selective transgene expression in cerebellar Purkinje cells and granule cells using adeno-associated viruses together with specific promoters. Brain Res 2015; 1620:1-16. [DOI: 10.1016/j.brainres.2015.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022]
|
14
|
Heterogeneity and Bipotency of Astroglial-Like Cerebellar Progenitors along the Interneuron and Glial Lineages. J Neurosci 2015; 35:7388-402. [PMID: 25972168 DOI: 10.1523/jneurosci.5255-14.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cerebellar GABAergic interneurons in mouse comprise multiple subsets of morphologically and neurochemically distinct phenotypes located at strategic nodes of cerebellar local circuits. These cells are produced by common progenitors deriving from the ventricular epithelium during embryogenesis and from the prospective white matter (PWM) during postnatal development. However, it is not clear whether these progenitors are also shared by other cerebellar lineages and whether germinative sites different from the PWM originate inhibitory interneurons. Indeed, the postnatal cerebellum hosts another germinal site along the Purkinje cell layer (PCL), in which Bergmann glia are generated up to first the postnatal weeks, which was proposed to be neurogenic. Both PCL and PWM comprise precursors displaying traits of juvenile astroglia and neural stem cell markers. First, we examine the proliferative and fate potential of these niches, showing that different proliferative dynamics regulate progenitor amplification at these sites. In addition, PCL and PWM differ in the generated progeny. GABAergic interneurons are produced exclusively by PWM astroglial-like progenitors, whereas PCL precursors produce only astrocytes. Finally, through in vitro, ex vivo, and in vivo clonal analyses we provide evidence that the postnatal PWM hosts a bipotent progenitor that gives rise to both interneurons and white matter astrocytes.
Collapse
|
15
|
Ruzicka WB, Subburaju S, Benes FM. Circuit- and Diagnosis-Specific DNA Methylation Changes at γ-Aminobutyric Acid-Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder. JAMA Psychiatry 2015; 72:541-51. [PMID: 25738424 PMCID: PMC5547581 DOI: 10.1001/jamapsychiatry.2015.49] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Dysfunction related to γ-aminobutyric acid (GABA)-ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. OBJECTIVE To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. DESIGN, SETTING, AND PARTICIPANTS This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8 patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. MAIN OUTCOMES AND MEASURES Methylation levels at 1308 GAD1 regulatory network-associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing information among colocalized probes to identify differentially methylated regions. RESULTS A total of 146 differentially methylated positions with a false detection rate lower than 0.05 were identified across all 6 groups (2 circuit locations in each of 3 diagnostic categories), and 54 differentially methylated regions with P < .01 were identified in single-group comparisons. Methylation changes were enriched in MSX1, CCND2, and DAXX at specific loci within the hippocampus of patients with schizophrenia and bipolar disorder. CONCLUSIONS AND RELEVANCE This work demonstrates diagnosis- and circuit-specific DNA methylation changes at a subset of GAD1 regulatory network genes in the human hippocampus in schizophrenia and bipolar disorder. These genes participate in chromatin regulation and cell cycle control, supporting the concept that the established GABAergic dysfunction in these disorders is related to disruption of GABAergic interneuron physiology at specific circuit locations within the human hippocampus.
Collapse
Affiliation(s)
- W. Brad Ruzicka
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Sivan Subburaju
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Francine M. Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Program in Neuroscience, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Hardwick LJA, Ali FR, Azzarelli R, Philpott A. Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 2014; 359:187-200. [PMID: 24859217 PMCID: PMC4284380 DOI: 10.1007/s00441-014-1895-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023]
Abstract
Formation of the central nervous system requires a period of extensive progenitor cell proliferation, accompanied or closely followed by differentiation; the balance between these two processes in various regions of the central nervous system gives rise to differential growth and cellular diversity. The correlation between cell cycle lengthening and differentiation has been reported across several types of cell lineage and from diverse model organisms, both in vivo and in vitro. Furthermore, different cell fates might be determined during different phases of the preceding cell cycle, indicating direct cell cycle influences on both early lineage commitment and terminal cell fate decisions. Significant advances have been made in the last decade and have revealed multi-directional interactions between the molecular machinery regulating the processes of cell proliferation and neuronal differentiation. Here, we first introduce the modes of proliferation in neural progenitor cells and summarise evidence linking cell cycle length and neuronal differentiation. Second, we describe the manner in which components of the cell cycle machinery can have additional and, sometimes, cell-cycle-independent roles in directly regulating neurogenesis. Finally, we discuss the way that differentiation factors, such as proneural bHLH proteins, can promote either progenitor maintenance or differentiation according to the cellular environment. These intricate connections contribute to precise coordination and the ultimate division versus differentiation decision.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | | | | | | |
Collapse
|
17
|
Hardwick LJA, Philpott A. Nervous decision-making: to divide or differentiate. Trends Genet 2014; 30:254-61. [PMID: 24791612 PMCID: PMC4046230 DOI: 10.1016/j.tig.2014.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 01/07/2023]
Abstract
Multiple mechanisms coordinate the cell cycle and neuronal differentiation. Lengthening of G1 phase is functionally important for differentiation. Cell cycle components can directly and independently affect neurogenesis. Differentiation factors can directly affect the cell cycle structure and machinery.
The intricate balance between proliferation and differentiation is of fundamental importance in the development of the central nervous system (CNS). The division versus differentiation decision influences both the number and identity of daughter cells produced, thus critically shaping the overall microstructure and function of the CNS. During the past decade, significant advances have been made to characterise the changes in the cell cycle during differentiation, and to uncover the multiple bidirectional links that coordinate these two processes. Here, we explore the nature and mechanistic basis of these links in the context of the developing CNS, highlighting new insights into transcriptional, post-translational, and epigenetic levels of interaction.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
18
|
Buffo A, Rossi F. Origin, lineage and function of cerebellar glia. Prog Neurobiol 2013; 109:42-63. [PMID: 23981535 DOI: 10.1016/j.pneurobio.2013.08.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022]
Abstract
The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum.
Collapse
Affiliation(s)
- Annalisa Buffo
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello, 30, 10125 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Neuroscience Institute of Turin, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | | |
Collapse
|
19
|
Leto K, Rossi F. Specification and differentiation of cerebellar GABAergic neurons. THE CEREBELLUM 2012; 11:434-5. [PMID: 22090364 DOI: 10.1007/s12311-011-0324-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerebellar GABAergic projection neurons and interneurons originate from the ventricular neuroepithelium of the cerebellar primordium. However, while projection neurons are born within this germinal layer, interneurons derive from progenitors that delaminate into the prospective white matter. In spite of this common origin, the two main classes of GABAergic neurons are generated according to distinct strategies. Projection neurons are committed to their fate at early ontogenetic stages and acquire their mature phenotypes through cell-autonomous mechanisms. On the contrary, the different categories of cerebellar interneurons derive from a single pool of multipotent progenitors, whose fate choices, production rates and differentiation schedules are strongly influenced by environmental cues.
Collapse
Affiliation(s)
- Ketty Leto
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy.
| | | |
Collapse
|
20
|
Abstract
During embryonic development, cells must divide to produce appropriate numbers, but later must exit the cell cycle to allow differentiation. How these processes of proliferation and differentiation are co-ordinated during embryonic development has been poorly understood until recently. However, a number of studies have now given an insight into how the cell cycle machinery, including cyclins, CDKs (cyclin-dependent kinases), CDK inhibitors and other cell cycle regulators directly influence mechanisms that control cell fate and differentiation. Conversely, examples are emerging of transcriptional regulators that are better known for their role in driving the differentiated phenotype, which also play complementary roles in controlling cell cycle progression. The present review will summarise our current understanding of the mechanisms co-ordinating the cell cycle and differentiation in the developing nervous system, where these links have been, perhaps, most extensively studied.
Collapse
|
21
|
GABAergic neuron specification in the spinal cord, the cerebellum, and the cochlear nucleus. Neural Plast 2012; 2012:921732. [PMID: 22830054 PMCID: PMC3395262 DOI: 10.1155/2012/921732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022] Open
Abstract
In the nervous system, there are a wide variety of neuronal cell types that have morphologically, physiologically, and histochemically different characteristics. These various types of neurons can be classified into two groups: excitatory and inhibitory neurons. The elaborate balance of the activities of the two types is very important to elicit higher brain function, because its imbalance may cause neurological disorders, such as epilepsy and hyperalgesia. In the central nervous system, inhibitory neurons are mainly represented by GABAergic ones with some exceptions such as glycinergic. Although the machinery to specify GABAergic neurons was first studied in the telencephalon, identification of key molecules, such as pancreatic transcription factor 1a (Ptf1a), as well as recently developed genetic lineage-tracing methods led to the better understanding of GABAergic specification in other brain regions, such as the spinal cord, the cerebellum, and the cochlear nucleus.
Collapse
|
22
|
White JJ, Sillitoe RV. Development of the cerebellum: from gene expression patterns to circuit maps. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:149-64. [DOI: 10.1002/wdev.65] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Abstract
In the nervous system, there are hundreds to thousands of neuronal cell types that have morphologically, physiologically, and histochemically different characteristics and this diversity may enable us to elicit higher brain function. A better understanding of the molecular machinery by which neuron subtype specification occurs is thus one of the most important issues in brain science. The dorsal hindbrain, including the cerebellum, is a good model system to study this issue because a variety of types of neurons are produced from this region. Recently developed genetic lineage-tracing methods in addition to gene-transfer technologies have clarified a fate map of neurons produced from the dorsal hindbrain and accelerated our understanding of the molecular machinery of neuronal subtype specification in the nervous system.
Collapse
Affiliation(s)
- Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
24
|
Leto K, Rolando C, Rossi F. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front Neuroanat 2012; 6:6. [PMID: 22363268 PMCID: PMC3282257 DOI: 10.3389/fnana.2012.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/03/2012] [Indexed: 11/15/2022] Open
Abstract
All cerebellar neurons derive from progenitors that proliferate in two germinal neuroepithelia: the ventricular zone (VZ) generates GABAergic neurons, whereas the rhombic lip is the origin of glutamatergic types. Among VZ-derivatives, GABAergic projection neurons, and interneurons are generated according to distinct strategies. Projection neurons (Purkinje cells and nucleo-olivary neurons) are produced at the onset of cerebellar neurogenesis by discrete progenitor pools located in distinct VZ microdomains. These cells are specified within the VZ and acquire mature phenotypes according to cell-autonomous developmental programs. On the other hand, the different categories of inhibitory interneurons derive from a single population of Pax-2-positive precursors that delaminate into the prospective white matter (PWM), where they continue to divide up to postnatal development. Heterotopic/heterochronic transplantation experiments indicate that interneuron progenitors maintain full developmental potentialities up to the end of cerebellar development and acquire mature phenotypes under the influence of environmental cues present in the PWM. Furthermore, the final fate choice occurs in postmitotic cells, rather than dividing progenitors. Extracerebellar cells grafted to the prospective cerebellar white matter are not responsive to local neurogenic cues and fail to adopt clear cerebellar identities. Conversely, cerebellar cells grafted to extracerebellar regions retain typical phenotypes of cerebellar GABAergic interneurons, but acquire type-specific traits under the influence of local cues. These findings indicate that interneuron progenitors are multipotent and sensitive to spatio-temporally patterned environmental signals that regulate the genesis of different categories of interneurons, in precise quantities and at defined times and places.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience, Neuroscience Institute of Turin, University of Turin Turin, Italy
| | | | | |
Collapse
|